blob: d07c0fd0a886e288ca97e0bda3e6caa29f867cd8 [file] [log] [blame]
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1HeterogeneousCollectorPolicy.hpp"
#include "logging/log.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/os.hpp"
#include "utilities/formatBuffer.hpp"
const double G1HeterogeneousCollectorPolicy::MaxRamFractionForYoung = 0.8;
size_t G1HeterogeneousCollectorPolicy::MaxMemoryForYoung;
static size_t calculate_reasonable_max_memory_for_young(FormatBuffer<100> &calc_str, double max_ram_fraction_for_young) {
julong phys_mem;
// If MaxRam is specified, we use that as maximum physical memory available.
if (FLAG_IS_DEFAULT(MaxRAM)) {
phys_mem = os::physical_memory();
calc_str.append("Physical_Memory");
} else {
phys_mem = (julong)MaxRAM;
calc_str.append("MaxRAM");
}
julong reasonable_max = phys_mem;
// If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate
// reasonable max size of young generation.
if (!FLAG_IS_DEFAULT(MaxRAMFraction)) {
reasonable_max = (julong)(phys_mem / MaxRAMFraction);
calc_str.append(" / MaxRAMFraction");
} else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) {
reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100);
calc_str.append(" * MaxRAMPercentage / 100");
} else {
// We use our own fraction to calculate max size of young generation.
reasonable_max = phys_mem * max_ram_fraction_for_young;
calc_str.append(" * %0.2f", max_ram_fraction_for_young);
}
return (size_t)reasonable_max;
}
void G1HeterogeneousCollectorPolicy::initialize_flags() {
FormatBuffer<100> calc_str("");
MaxMemoryForYoung = calculate_reasonable_max_memory_for_young(calc_str, MaxRamFractionForYoung);
if (MaxNewSize > MaxMemoryForYoung) {
if (FLAG_IS_CMDLINE(MaxNewSize)) {
log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
MaxMemoryForYoung, calc_str.buffer());
} else {
log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). "
"Dram usage can be lowered by setting MaxNewSize to a lower value", MaxMemoryForYoung, calc_str.buffer());
}
MaxNewSize = MaxMemoryForYoung;
}
if (NewSize > MaxMemoryForYoung) {
if (FLAG_IS_CMDLINE(NewSize)) {
log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
MaxMemoryForYoung, calc_str.buffer());
}
NewSize = MaxMemoryForYoung;
}
// After setting new size flags, call base class initialize_flags()
G1CollectorPolicy::initialize_flags();
}
size_t G1HeterogeneousCollectorPolicy::reasonable_max_memory_for_young() {
return MaxMemoryForYoung;
}
size_t G1HeterogeneousCollectorPolicy::heap_reserved_size_bytes() const {
return 2 * _max_heap_byte_size;
}
bool G1HeterogeneousCollectorPolicy::is_hetero_heap() const {
return true;
}