blob: 920c874ec53e1f16c54b2f166a8fbb695c656afb [file] [log] [blame]
/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2020, Datadog, Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
// This test performs mocking of certain JVM functionality. This works by
// including the source file under test inside an anonymous namespace (which
// prevents linking conflicts) with the mocked symbols redefined.
// The include list should mirror the one found in the included source file -
// with the ones that should pick up the mocks removed. Those should be included
// later after the mocks have been defined.
#include <cmath>
#include "jfr/utilities/jfrAllocation.hpp"
#include "jfr/utilities/jfrRandom.inline.hpp"
#include "jfr/utilities/jfrSpinlockHelper.hpp"
#include "jfr/utilities/jfrTime.hpp"
#include "jfr/utilities/jfrTimeConverter.hpp"
#include "jfr/utilities/jfrTryLock.hpp"
#include "logging/log.hpp"
#include "runtime/atomic.hpp"
#include "utilities/globalDefinitions.hpp"
#include "unittest.hpp"
// #undef SHARE_JFR_SUPPORT_JFRADAPTIVESAMPLER_HPP
namespace {
class MockJfrTimeConverter : public ::JfrTimeConverter {
public:
static double nano_to_counter_multiplier(bool is_os_time = false) {
return 1.0;
}
static jlong counter_to_nanos(jlong c, bool is_os_time = false) {
return c;
}
static jlong counter_to_millis(jlong c, bool is_os_time = false) {
return c * NANOS_PER_MILLISEC;
}
static jlong nanos_to_countertime(jlong c, bool as_os_time = false) {
return c;
}
};
class MockJfrTickValue {
private:
jlong _ticks;
public:
MockJfrTickValue(jlong ticks) : _ticks(ticks) {};
jlong value() {
return _ticks;
}
};
class MockJfrTicks {
public:
static jlong tick;
static MockJfrTickValue now() {
return MockJfrTickValue(tick);
}
};
jlong MockJfrTicks::tick = 0;
// Reincluding source files in the anonymous namespace unfortunately seems to
// behave strangely with precompiled headers (only when using gcc though)
#ifndef DONT_USE_PRECOMPILED_HEADER
#define DONT_USE_PRECOMPILED_HEADER
#endif
#define JfrTicks MockJfrTicks
#define JfrTimeConverter MockJfrTimeConverter
#include "jfr/support/jfrAdaptiveSampler.hpp"
#include "jfr/support/jfrAdaptiveSampler.cpp"
#undef JfrTimeConverter
#undef JfrTicks
} // anonymous namespace
class JfrGTestAdaptiveSampling : public ::testing::Test {
protected:
const int max_population_per_window = 2000;
const int min_population_per_window = 2;
const int window_count = 10000;
const clock_t window_duration_ms = 100;
const size_t expected_sample_points_per_window = 50;
const size_t expected_sample_points = expected_sample_points_per_window * (size_t)window_count;
const size_t window_lookback_count = 50; // 50 windows == 5 seconds (for a window duration of 100 ms)
const double max_sample_bias = 0.11;
void SetUp() {
// Ensure that tests are separated in time by spreading them by 24hrs apart
MockJfrTicks::tick += (24 * 60 * 60) * NANOSECS_PER_SEC;
}
void TearDown() {
// nothing
}
void assertDistributionProperties(int distr_slots, jlong* population, jlong* sample, size_t population_size, size_t sample_size, const char* msg) {
size_t population_sum = 0;
size_t sample_sum = 0;
for (int i = 0; i < distr_slots; i++) {
population_sum += i * population[i];
sample_sum += i * sample[i];
}
double population_mean = population_sum / (double)population_size;
double sample_mean = sample_sum / (double)sample_size;
double population_variance = 0;
double sample_variance = 0;
for (int i = 0; i < distr_slots; i++) {
double population_diff = i - population_mean;
population_variance = population[i] * population_diff * population_diff;
double sample_diff = i - sample_mean;
sample_variance = sample[i] * sample_diff * sample_diff;
}
population_variance = population_variance / (population_size - 1);
sample_variance = sample_variance / (sample_size - 1);
double population_stdev = sqrt(population_variance);
double sample_stdev = sqrt(sample_variance);
// make sure the standard deviation is ok
EXPECT_NEAR(population_stdev, sample_stdev, 0.5) << msg;
// make sure that the subsampled set mean is within 2-sigma of the original set mean
EXPECT_NEAR(population_mean, sample_mean, population_stdev) << msg;
// make sure that the original set mean is within 2-sigma of the subsampled set mean
EXPECT_NEAR(sample_mean, population_mean, sample_stdev) << msg;
}
typedef size_t(JfrGTestAdaptiveSampling::* incoming)() const;
void test(incoming inc, size_t events_per_window, double expectation, const char* description);
public:
size_t incoming_uniform() const {
return os::random() % max_population_per_window + min_population_per_window;
}
size_t incoming_bursty_10_percent() const {
bool is_burst = (os::random() % 100) < 10; // 10% burst chance
return is_burst ? max_population_per_window : min_population_per_window;
}
size_t incoming_bursty_90_percent() const {
bool is_burst = (os::random() % 100) < 90; // 90% burst chance
return is_burst ? max_population_per_window : min_population_per_window;
}
size_t incoming_low_rate() const {
return min_population_per_window;
}
size_t incoming_high_rate() const {
return max_population_per_window;
}
size_t incoming_burst_eval(size_t& count, size_t mod_value) const {
return count++ % 10 == mod_value ? max_population_per_window : 0;
}
size_t incoming_early_burst() const {
static size_t count = 1;
return incoming_burst_eval(count, 1);
}
size_t incoming_mid_burst() const {
static size_t count = 1;
return incoming_burst_eval(count, 5);
}
size_t incoming_late_burst() const {
static size_t count = 1;
return incoming_burst_eval(count, 0);
}
};
void JfrGTestAdaptiveSampling::test(JfrGTestAdaptiveSampling::incoming inc, size_t sample_points_per_window, double error_factor, const char* const description) {
assert(description != NULL, "invariant");
char output[1024] = "Adaptive sampling: ";
strcat(output, description);
fprintf(stdout, "=== %s\n", output);
jlong population[100] = { 0 };
jlong sample[100] = { 0 };
::JfrGTestFixedRateSampler sampler = ::JfrGTestFixedRateSampler(expected_sample_points_per_window, window_duration_ms, window_lookback_count);
EXPECT_TRUE(sampler.initialize());
size_t population_size = 0;
size_t sample_size = 0;
for (int t = 0; t < window_count; t++) {
const size_t incoming_events = (this->*inc)();
for (size_t i = 0; i < incoming_events; i++) {
++population_size;
size_t index = os::random() % 100;
population[index] += 1;
if (sampler.sample()) {
++sample_size;
sample[index] += 1;
}
}
MockJfrTicks::tick += window_duration_ms * NANOSECS_PER_MILLISEC + 1;
sampler.sample(); // window rotation
}
const size_t target_sample_size = sample_points_per_window * window_count;
EXPECT_NEAR(target_sample_size, sample_size, expected_sample_points * error_factor) << output;
strcat(output, ", hit distribution");
assertDistributionProperties(100, population, sample, population_size, sample_size, output);
}
TEST_VM_F(JfrGTestAdaptiveSampling, uniform_rate) {
test(&JfrGTestAdaptiveSampling::incoming_uniform, expected_sample_points_per_window, 0.05, "random uniform, all samples");
}
TEST_VM_F(JfrGTestAdaptiveSampling, low_rate) {
test(&JfrGTestAdaptiveSampling::incoming_low_rate, min_population_per_window, 0.05, "low rate");
}
TEST_VM_F(JfrGTestAdaptiveSampling, high_rate) {
test(&JfrGTestAdaptiveSampling::incoming_high_rate, expected_sample_points_per_window, 0.02, "high rate");
}
// We can think of the windows as splitting up a time period, for example a second (window_duration_ms = 100)
// The burst tests for early, mid and late apply a burst rate at a selected window, with other windows having no incoming input.
//
// - early during the first window of a new time period
// - mid during the middle window of a new time period
// - late during the last window of a new time period
//
// The tests verify the total sample size correspond to the selected bursts:
//
// - early start of a second -> each second will have sampled the window set point for a single window only since no debt has accumulated into the new time period.
// - mid middle of the second -> each second will have sampled the window set point + accumulated debt for the first 4 windows.
// - late end of the second -> each second will have sampled the window set point + accumulated debt for the first 9 windows (i.e. it will have sampled all)
//
TEST_VM_F(JfrGTestAdaptiveSampling, early_burst) {
test(&JfrGTestAdaptiveSampling::incoming_early_burst, expected_sample_points_per_window, 0.9, "early burst");
}
TEST_VM_F(JfrGTestAdaptiveSampling, mid_burst) {
test(&JfrGTestAdaptiveSampling::incoming_mid_burst, expected_sample_points_per_window, 0.5, "mid burst");
}
TEST_VM_F(JfrGTestAdaptiveSampling, late_burst) {
test(&JfrGTestAdaptiveSampling::incoming_late_burst, expected_sample_points_per_window, 0.0, "late burst");
}
// These are randomized burst tests
TEST_VM_F(JfrGTestAdaptiveSampling, bursty_rate_10_percent) {
test(&JfrGTestAdaptiveSampling::incoming_bursty_10_percent, expected_sample_points_per_window, 0.96, "bursty 10%");
}
TEST_VM_F(JfrGTestAdaptiveSampling, bursty_rate_90_percent) {
test(&JfrGTestAdaptiveSampling::incoming_bursty_10_percent, expected_sample_points_per_window, 0.96, "bursty 90%");
}