blob: 66cb13b9f28ccc804f7907f363754f931a4e89bf [file] [log] [blame]
/*
* Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_doCall.cpp.incl"
#ifndef PRODUCT
void trace_type_profile(ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) {
if (TraceTypeProfile || PrintInlining || PrintOptoInlining) {
tty->print(" ");
for( int i = 0; i < depth; i++ ) tty->print(" ");
if (!PrintOpto) {
method->print_short_name();
tty->print(" ->");
}
tty->print(" @ %d ", bci);
prof_method->print_short_name();
tty->print(" >>TypeProfile (%d/%d counts) = ", receiver_count, site_count);
prof_klass->name()->print_symbol();
tty->print_cr(" (%d bytes)", prof_method->code_size());
}
}
#endif
CallGenerator* Compile::call_generator(ciMethod* call_method, int vtable_index, bool call_is_virtual, JVMState* jvms, bool allow_inline, float prof_factor) {
CallGenerator* cg;
// Dtrace currently doesn't work unless all calls are vanilla
if (DTraceMethodProbes) {
allow_inline = false;
}
// Note: When we get profiling during stage-1 compiles, we want to pull
// from more specific profile data which pertains to this inlining.
// Right now, ignore the information in jvms->caller(), and do method[bci].
ciCallProfile profile = jvms->method()->call_profile_at_bci(jvms->bci());
// See how many times this site has been invoked.
int site_count = profile.count();
int receiver_count = -1;
if (call_is_virtual && UseTypeProfile && profile.has_receiver(0)) {
// Receivers in the profile structure are ordered by call counts
// so that the most called (major) receiver is profile.receiver(0).
receiver_count = profile.receiver_count(0);
}
CompileLog* log = this->log();
if (log != NULL) {
int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
int r2id = (profile.morphism() == 2)? log->identify(profile.receiver(1)):-1;
log->begin_elem("call method='%d' count='%d' prof_factor='%g'",
log->identify(call_method), site_count, prof_factor);
if (call_is_virtual) log->print(" virtual='1'");
if (allow_inline) log->print(" inline='1'");
if (receiver_count >= 0) {
log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
if (profile.has_receiver(1)) {
log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
}
}
log->end_elem();
}
// Special case the handling of certain common, profitable library
// methods. If these methods are replaced with specialized code,
// then we return it as the inlined version of the call.
// We do this before the strict f.p. check below because the
// intrinsics handle strict f.p. correctly.
if (allow_inline) {
cg = find_intrinsic(call_method, call_is_virtual);
if (cg != NULL) return cg;
}
// Do not inline strict fp into non-strict code, or the reverse
bool caller_method_is_strict = jvms->method()->is_strict();
if( caller_method_is_strict ^ call_method->is_strict() ) {
allow_inline = false;
}
// Attempt to inline...
if (allow_inline) {
// The profile data is only partly attributable to this caller,
// scale back the call site information.
float past_uses = jvms->method()->scale_count(site_count, prof_factor);
// This is the number of times we expect the call code to be used.
float expected_uses = past_uses;
// Try inlining a bytecoded method:
if (!call_is_virtual) {
InlineTree* ilt;
if (UseOldInlining) {
ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
} else {
// Make a disembodied, stateless ILT.
// TO DO: When UseOldInlining is removed, copy the ILT code elsewhere.
float site_invoke_ratio = prof_factor;
// Note: ilt is for the root of this parse, not the present call site.
ilt = new InlineTree(this, jvms->method(), jvms->caller(), site_invoke_ratio);
}
WarmCallInfo scratch_ci;
if (!UseOldInlining)
scratch_ci.init(jvms, call_method, profile, prof_factor);
WarmCallInfo* ci = ilt->ok_to_inline(call_method, jvms, profile, &scratch_ci);
assert(ci != &scratch_ci, "do not let this pointer escape");
bool allow_inline = (ci != NULL && !ci->is_cold());
bool require_inline = (allow_inline && ci->is_hot());
if (allow_inline) {
CallGenerator* cg = CallGenerator::for_inline(call_method, expected_uses);
if (cg == NULL) {
// Fall through.
} else if (require_inline || !InlineWarmCalls) {
return cg;
} else {
CallGenerator* cold_cg = call_generator(call_method, vtable_index, call_is_virtual, jvms, false, prof_factor);
return CallGenerator::for_warm_call(ci, cold_cg, cg);
}
}
}
// Try using the type profile.
if (call_is_virtual && site_count > 0 && receiver_count > 0) {
// The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
bool have_major_receiver = (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
ciMethod* receiver_method = NULL;
if (have_major_receiver || profile.morphism() == 1 ||
(profile.morphism() == 2 && UseBimorphicInlining)) {
// receiver_method = profile.method();
// Profiles do not suggest methods now. Look it up in the major receiver.
receiver_method = call_method->resolve_invoke(jvms->method()->holder(),
profile.receiver(0));
}
if (receiver_method != NULL) {
// The single majority receiver sufficiently outweighs the minority.
CallGenerator* hit_cg = this->call_generator(receiver_method,
vtable_index, !call_is_virtual, jvms, allow_inline, prof_factor);
if (hit_cg != NULL) {
// Look up second receiver.
CallGenerator* next_hit_cg = NULL;
ciMethod* next_receiver_method = NULL;
if (profile.morphism() == 2 && UseBimorphicInlining) {
next_receiver_method = call_method->resolve_invoke(jvms->method()->holder(),
profile.receiver(1));
if (next_receiver_method != NULL) {
next_hit_cg = this->call_generator(next_receiver_method,
vtable_index, !call_is_virtual, jvms,
allow_inline, prof_factor);
if (next_hit_cg != NULL && !next_hit_cg->is_inline() &&
have_major_receiver && UseOnlyInlinedBimorphic) {
// Skip if we can't inline second receiver's method
next_hit_cg = NULL;
}
}
}
CallGenerator* miss_cg;
if (( profile.morphism() == 1 ||
(profile.morphism() == 2 && next_hit_cg != NULL) ) &&
!too_many_traps(Deoptimization::Reason_class_check)
// Check only total number of traps per method to allow
// the transition from monomorphic to bimorphic case between
// compilations without falling into virtual call.
// A monomorphic case may have the class_check trap flag is set
// due to the time gap between the uncommon trap processing
// when flags are set in MDO and the call site bytecode execution
// in Interpreter when MDO counters are updated.
// There was also class_check trap in monomorphic case due to
// the bug 6225440.
) {
// Generate uncommon trap for class check failure path
// in case of monomorphic or bimorphic virtual call site.
miss_cg = CallGenerator::for_uncommon_trap(call_method,
Deoptimization::Reason_class_check,
Deoptimization::Action_maybe_recompile);
} else {
// Generate virtual call for class check failure path
// in case of polymorphic virtual call site.
miss_cg = CallGenerator::for_virtual_call(call_method, vtable_index);
}
if (miss_cg != NULL) {
if (next_hit_cg != NULL) {
NOT_PRODUCT(trace_type_profile(jvms->method(), jvms->depth(), jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1)));
// We don't need to record dependency on a receiver here and below.
// Whenever we inline, the dependency is added by Parse::Parse().
miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
}
if (miss_cg != NULL) {
NOT_PRODUCT(trace_type_profile(jvms->method(), jvms->depth(), jvms->bci(), receiver_method, profile.receiver(0), site_count, receiver_count));
cg = CallGenerator::for_predicted_call(profile.receiver(0), miss_cg, hit_cg, profile.receiver_prob(0));
if (cg != NULL) return cg;
}
}
}
}
}
}
// There was no special inlining tactic, or it bailed out.
// Use a more generic tactic, like a simple call.
if (call_is_virtual) {
return CallGenerator::for_virtual_call(call_method, vtable_index);
} else {
// Class Hierarchy Analysis or Type Profile reveals a unique target,
// or it is a static or special call.
return CallGenerator::for_direct_call(call_method);
}
}
// uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
// Additional inputs to consider...
// bc = bc()
// caller = method()
// iter().get_method_holder_index()
assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
// Interface classes can be loaded & linked and never get around to
// being initialized. Uncommon-trap for not-initialized static or
// v-calls. Let interface calls happen.
ciInstanceKlass* holder_klass = dest_method->holder();
if (!holder_klass->is_initialized() &&
!holder_klass->is_interface()) {
uncommon_trap(Deoptimization::Reason_uninitialized,
Deoptimization::Action_reinterpret,
holder_klass);
return true;
}
assert(dest_method->will_link(method()->holder(), klass, bc()), "dest_method: typeflow responsibility");
return false;
}
//------------------------------do_call----------------------------------------
// Handle your basic call. Inline if we can & want to, else just setup call.
void Parse::do_call() {
// It's likely we are going to add debug info soon.
// Also, if we inline a guy who eventually needs debug info for this JVMS,
// our contribution to it is cleaned up right here.
kill_dead_locals();
// Set frequently used booleans
bool is_virtual = bc() == Bytecodes::_invokevirtual;
bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
bool has_receiver = is_virtual_or_interface || bc() == Bytecodes::_invokespecial;
// Find target being called
bool will_link;
ciMethod* dest_method = iter().get_method(will_link);
ciInstanceKlass* holder_klass = dest_method->holder();
ciKlass* holder = iter().get_declared_method_holder();
ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
int nargs = dest_method->arg_size();
// uncommon-trap when callee is unloaded, uninitialized or will not link
// bailout when too many arguments for register representation
if (!will_link || can_not_compile_call_site(dest_method, klass)) {
#ifndef PRODUCT
if (PrintOpto && (Verbose || WizardMode)) {
method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
dest_method->print_name(); tty->cr();
}
#endif
return;
}
assert(holder_klass->is_loaded(), "");
assert(dest_method->is_static() == !has_receiver, "must match bc");
// Note: this takes into account invokeinterface of methods declared in java/lang/Object,
// which should be invokevirtuals but according to the VM spec may be invokeinterfaces
assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc");
// Note: In the absence of miranda methods, an abstract class K can perform
// an invokevirtual directly on an interface method I.m if K implements I.
// ---------------------
// Does Class Hierarchy Analysis reveal only a single target of a v-call?
// Then we may inline or make a static call, but become dependent on there being only 1 target.
// Does the call-site type profile reveal only one receiver?
// Then we may introduce a run-time check and inline on the path where it succeeds.
// The other path may uncommon_trap, check for another receiver, or do a v-call.
// Choose call strategy.
bool call_is_virtual = is_virtual_or_interface;
int vtable_index = methodOopDesc::invalid_vtable_index;
ciMethod* call_method = dest_method;
// Try to get the most accurate receiver type
if (is_virtual_or_interface) {
Node* receiver_node = stack(sp() - nargs);
const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr();
ciMethod* optimized_virtual_method = optimize_inlining(method(), bci(), klass, dest_method, receiver_type);
// Have the call been sufficiently improved such that it is no longer a virtual?
if (optimized_virtual_method != NULL) {
call_method = optimized_virtual_method;
call_is_virtual = false;
} else if (!UseInlineCaches && is_virtual && call_method->is_loaded()) {
// We can make a vtable call at this site
vtable_index = call_method->resolve_vtable_index(method()->holder(), klass);
}
}
// Note: It's OK to try to inline a virtual call.
// The call generator will not attempt to inline a polymorphic call
// unless it knows how to optimize the receiver dispatch.
bool try_inline = (C->do_inlining() || InlineAccessors);
// ---------------------
inc_sp(- nargs); // Temporarily pop args for JVM state of call
JVMState* jvms = sync_jvms();
// ---------------------
// Decide call tactic.
// This call checks with CHA, the interpreter profile, intrinsics table, etc.
// It decides whether inlining is desirable or not.
CallGenerator* cg = C->call_generator(call_method, vtable_index, call_is_virtual, jvms, try_inline, prof_factor());
// ---------------------
// Round double arguments before call
round_double_arguments(dest_method);
#ifndef PRODUCT
// bump global counters for calls
count_compiled_calls(false/*at_method_entry*/, cg->is_inline());
// Record first part of parsing work for this call
parse_histogram()->record_change();
#endif // not PRODUCT
assert(jvms == this->jvms(), "still operating on the right JVMS");
assert(jvms_in_sync(), "jvms must carry full info into CG");
// save across call, for a subsequent cast_not_null.
Node* receiver = has_receiver ? argument(0) : NULL;
// Bump method data counters (We profile *before* the call is made
// because exceptions don't return to the call site.)
profile_call(receiver);
JVMState* new_jvms;
if ((new_jvms = cg->generate(jvms)) == NULL) {
// When inlining attempt fails (e.g., too many arguments),
// it may contaminate the current compile state, making it
// impossible to pull back and try again. Once we call
// cg->generate(), we are committed. If it fails, the whole
// compilation task is compromised.
if (failing()) return;
#ifndef PRODUCT
if (PrintOpto || PrintOptoInlining || PrintInlining) {
// Only one fall-back, so if an intrinsic fails, ignore any bytecodes.
if (cg->is_intrinsic() && call_method->code_size() > 0) {
tty->print("Bailed out of intrinsic, will not inline: ");
call_method->print_name(); tty->cr();
}
}
#endif
// This can happen if a library intrinsic is available, but refuses
// the call site, perhaps because it did not match a pattern the
// intrinsic was expecting to optimize. The fallback position is
// to call out-of-line.
try_inline = false; // Inline tactic bailed out.
cg = C->call_generator(call_method, vtable_index, call_is_virtual, jvms, try_inline, prof_factor());
if ((new_jvms = cg->generate(jvms)) == NULL) {
guarantee(failing(), "call failed to generate: calls should work");
return;
}
}
if (cg->is_inline()) {
// Accumulate has_loops estimate
C->set_has_loops(C->has_loops() || call_method->has_loops());
C->env()->notice_inlined_method(call_method);
}
// Reset parser state from [new_]jvms, which now carries results of the call.
// Return value (if any) is already pushed on the stack by the cg.
add_exception_states_from(new_jvms);
if (new_jvms->map()->control() == top()) {
stop_and_kill_map();
} else {
assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
set_jvms(new_jvms);
}
if (!stopped()) {
// This was some sort of virtual call, which did a null check for us.
// Now we can assert receiver-not-null, on the normal return path.
if (receiver != NULL && cg->is_virtual()) {
Node* cast = cast_not_null(receiver);
// %%% assert(receiver == cast, "should already have cast the receiver");
}
// Round double result after a call from strict to non-strict code
round_double_result(dest_method);
// If the return type of the method is not loaded, assert that the
// value we got is a null. Otherwise, we need to recompile.
if (!dest_method->return_type()->is_loaded()) {
#ifndef PRODUCT
if (PrintOpto && (Verbose || WizardMode)) {
method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
dest_method->print_name(); tty->cr();
}
#endif
if (C->log() != NULL) {
C->log()->elem("assert_null reason='return' klass='%d'",
C->log()->identify(dest_method->return_type()));
}
// If there is going to be a trap, put it at the next bytecode:
set_bci(iter().next_bci());
do_null_assert(peek(), T_OBJECT);
set_bci(iter().cur_bci()); // put it back
}
}
// Restart record of parsing work after possible inlining of call
#ifndef PRODUCT
parse_histogram()->set_initial_state(bc());
#endif
}
//---------------------------catch_call_exceptions-----------------------------
// Put a Catch and CatchProj nodes behind a just-created call.
// Send their caught exceptions to the proper handler.
// This may be used after a call to the rethrow VM stub,
// when it is needed to process unloaded exception classes.
void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
// Exceptions are delivered through this channel:
Node* i_o = this->i_o();
// Add a CatchNode.
GrowableArray<int>* bcis = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, -1);
GrowableArray<const Type*>* extypes = new (C->node_arena()) GrowableArray<const Type*>(C->node_arena(), 8, 0, NULL);
GrowableArray<int>* saw_unloaded = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, 0);
for (; !handlers.is_done(); handlers.next()) {
ciExceptionHandler* h = handlers.handler();
int h_bci = h->handler_bci();
ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
// Do not introduce unloaded exception types into the graph:
if (!h_klass->is_loaded()) {
if (saw_unloaded->contains(h_bci)) {
/* We've already seen an unloaded exception with h_bci,
so don't duplicate. Duplication will cause the CatchNode to be
unnecessarily large. See 4713716. */
continue;
} else {
saw_unloaded->append(h_bci);
}
}
const Type* h_extype = TypeOopPtr::make_from_klass(h_klass);
// (We use make_from_klass because it respects UseUniqueSubclasses.)
h_extype = h_extype->join(TypeInstPtr::NOTNULL);
assert(!h_extype->empty(), "sanity");
// Note: It's OK if the BCIs repeat themselves.
bcis->append(h_bci);
extypes->append(h_extype);
}
int len = bcis->length();
CatchNode *cn = new (C, 2) CatchNode(control(), i_o, len+1);
Node *catch_ = _gvn.transform(cn);
// now branch with the exception state to each of the (potential)
// handlers
for(int i=0; i < len; i++) {
// Setup JVM state to enter the handler.
PreserveJVMState pjvms(this);
// Locals are just copied from before the call.
// Get control from the CatchNode.
int handler_bci = bcis->at(i);
Node* ctrl = _gvn.transform( new (C, 1) CatchProjNode(catch_, i+1,handler_bci));
// This handler cannot happen?
if (ctrl == top()) continue;
set_control(ctrl);
// Create exception oop
const TypeInstPtr* extype = extypes->at(i)->is_instptr();
Node *ex_oop = _gvn.transform(new (C, 2) CreateExNode(extypes->at(i), ctrl, i_o));
// Handle unloaded exception classes.
if (saw_unloaded->contains(handler_bci)) {
// An unloaded exception type is coming here. Do an uncommon trap.
#ifndef PRODUCT
// We do not expect the same handler bci to take both cold unloaded
// and hot loaded exceptions. But, watch for it.
if (extype->is_loaded()) {
tty->print_cr("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ");
method()->print_name(); tty->cr();
} else if (PrintOpto && (Verbose || WizardMode)) {
tty->print("Bailing out on unloaded exception type ");
extype->klass()->print_name();
tty->print(" at bci:%d in ", bci());
method()->print_name(); tty->cr();
}
#endif
// Emit an uncommon trap instead of processing the block.
set_bci(handler_bci);
push_ex_oop(ex_oop);
uncommon_trap(Deoptimization::Reason_unloaded,
Deoptimization::Action_reinterpret,
extype->klass(), "!loaded exception");
set_bci(iter().cur_bci()); // put it back
continue;
}
// go to the exception handler
if (handler_bci < 0) { // merge with corresponding rethrow node
throw_to_exit(make_exception_state(ex_oop));
} else { // Else jump to corresponding handle
push_ex_oop(ex_oop); // Clear stack and push just the oop.
merge_exception(handler_bci);
}
}
// The first CatchProj is for the normal return.
// (Note: If this is a call to rethrow_Java, this node goes dead.)
set_control(_gvn.transform( new (C, 1) CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
}
//----------------------------catch_inline_exceptions--------------------------
// Handle all exceptions thrown by an inlined method or individual bytecode.
// Common case 1: we have no handler, so all exceptions merge right into
// the rethrow case.
// Case 2: we have some handlers, with loaded exception klasses that have
// no subklasses. We do a Deutsch-Shiffman style type-check on the incoming
// exception oop and branch to the handler directly.
// Case 3: We have some handlers with subklasses or are not loaded at
// compile-time. We have to call the runtime to resolve the exception.
// So we insert a RethrowCall and all the logic that goes with it.
void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
// Caller is responsible for saving away the map for normal control flow!
assert(stopped(), "call set_map(NULL) first");
assert(method()->has_exception_handlers(), "don't come here w/o work to do");
Node* ex_node = saved_ex_oop(ex_map);
if (ex_node == top()) {
// No action needed.
return;
}
const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr"));
if (ex_type == NULL)
ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
// determine potential exception handlers
ciExceptionHandlerStream handlers(method(), bci(),
ex_type->klass()->as_instance_klass(),
ex_type->klass_is_exact());
// Start executing from the given throw state. (Keep its stack, for now.)
// Get the exception oop as known at compile time.
ex_node = use_exception_state(ex_map);
// Get the exception oop klass from its header
Node* ex_klass_node = NULL;
if (has_ex_handler() && !ex_type->klass_is_exact()) {
Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
ex_klass_node = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT) );
// Compute the exception klass a little more cleverly.
// Obvious solution is to simple do a LoadKlass from the 'ex_node'.
// However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
// each arm of the Phi. If I know something clever about the exceptions
// I'm loading the class from, I can replace the LoadKlass with the
// klass constant for the exception oop.
if( ex_node->is_Phi() ) {
ex_klass_node = new (C, ex_node->req()) PhiNode( ex_node->in(0), TypeKlassPtr::OBJECT );
for( uint i = 1; i < ex_node->req(); i++ ) {
Node* p = basic_plus_adr( ex_node->in(i), ex_node->in(i), oopDesc::klass_offset_in_bytes() );
Node* k = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT) );
ex_klass_node->init_req( i, k );
}
_gvn.set_type(ex_klass_node, TypeKlassPtr::OBJECT);
}
}
// Scan the exception table for applicable handlers.
// If none, we can call rethrow() and be done!
// If precise (loaded with no subklasses), insert a D.S. style
// pointer compare to the correct handler and loop back.
// If imprecise, switch to the Rethrow VM-call style handling.
int remaining = handlers.count_remaining();
// iterate through all entries sequentially
for (;!handlers.is_done(); handlers.next()) {
// Do nothing if turned off
if( !DeutschShiffmanExceptions ) break;
ciExceptionHandler* handler = handlers.handler();
if (handler->is_rethrow()) {
// If we fell off the end of the table without finding an imprecise
// exception klass (and without finding a generic handler) then we
// know this exception is not handled in this method. We just rethrow
// the exception into the caller.
throw_to_exit(make_exception_state(ex_node));
return;
}
// exception handler bci range covers throw_bci => investigate further
int handler_bci = handler->handler_bci();
if (remaining == 1) {
push_ex_oop(ex_node); // Push exception oop for handler
#ifndef PRODUCT
if (PrintOpto && WizardMode) {
tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
}
#endif
merge_exception(handler_bci); // jump to handler
return; // No more handling to be done here!
}
// %%% The following logic replicates make_from_klass_unique.
// TO DO: Replace by a subroutine call. Then generalize
// the type check, as noted in the next "%%%" comment.
ciInstanceKlass* klass = handler->catch_klass();
if (UseUniqueSubclasses) {
// (We use make_from_klass because it respects UseUniqueSubclasses.)
const TypeOopPtr* tp = TypeOopPtr::make_from_klass(klass);
klass = tp->klass()->as_instance_klass();
}
// Get the handler's klass
if (!klass->is_loaded()) // klass is not loaded?
break; // Must call Rethrow!
if (klass->is_interface()) // should not happen, but...
break; // bail out
// See if the loaded exception klass has no subtypes
if (klass->has_subklass())
break; // Cannot easily do precise test ==> Rethrow
// %%% Now that subclass checking is very fast, we need to rewrite
// this section and remove the option "DeutschShiffmanExceptions".
// The exception processing chain should be a normal typecase pattern,
// with a bailout to the interpreter only in the case of unloaded
// classes. (The bailout should mark the method non-entrant.)
// This rewrite should be placed in GraphKit::, not Parse::.
// Add a dependence; if any subclass added we need to recompile
// %%% should use stronger assert_unique_concrete_subtype instead
if (!klass->is_final()) {
C->dependencies()->assert_leaf_type(klass);
}
// Implement precise test
const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
Node* con = _gvn.makecon(tk);
Node* cmp = _gvn.transform( new (C, 3) CmpPNode(ex_klass_node, con) );
Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
{ BuildCutout unless(this, bol, PROB_LIKELY(0.7f));
const TypeInstPtr* tinst = TypeInstPtr::make_exact(TypePtr::NotNull, klass);
Node* ex_oop = _gvn.transform(new (C, 2) CheckCastPPNode(control(), ex_node, tinst));
push_ex_oop(ex_oop); // Push exception oop for handler
#ifndef PRODUCT
if (PrintOpto && WizardMode) {
tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
klass->print_name();
tty->cr();
}
#endif
merge_exception(handler_bci);
}
// Come here if exception does not match handler.
// Carry on with more handler checks.
--remaining;
}
assert(!stopped(), "you should return if you finish the chain");
if (remaining == 1) {
// Further checks do not matter.
}
if (can_rerun_bytecode()) {
// Do not push_ex_oop here!
// Re-executing the bytecode will reproduce the throwing condition.
bool must_throw = true;
uncommon_trap(Deoptimization::Reason_unhandled,
Deoptimization::Action_none,
(ciKlass*)NULL, (const char*)NULL, // default args
must_throw);
return;
}
// Oops, need to call into the VM to resolve the klasses at runtime.
// Note: This call must not deoptimize, since it is not a real at this bci!
kill_dead_locals();
make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
OptoRuntime::rethrow_Type(),
OptoRuntime::rethrow_stub(),
NULL, NULL,
ex_node);
// Rethrow is a pure call, no side effects, only a result.
// The result cannot be allocated, so we use I_O
// Catch exceptions from the rethrow
catch_call_exceptions(handlers);
}
// (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.)
#ifndef PRODUCT
void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
if( CountCompiledCalls ) {
if( at_method_entry ) {
// bump invocation counter if top method (for statistics)
if (CountCompiledCalls && depth() == 1) {
const TypeInstPtr* addr_type = TypeInstPtr::make(method());
Node* adr1 = makecon(addr_type);
Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(methodOopDesc::compiled_invocation_counter_offset()));
increment_counter(adr2);
}
} else if (is_inline) {
switch (bc()) {
case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
case Bytecodes::_invokestatic:
case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
default: fatal("unexpected call bytecode");
}
} else {
switch (bc()) {
case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
case Bytecodes::_invokestatic:
case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break;
default: fatal("unexpected call bytecode");
}
}
}
}
#endif //PRODUCT
// Identify possible target method and inlining style
ciMethod* Parse::optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
ciMethod *dest_method, const TypeOopPtr* receiver_type) {
// only use for virtual or interface calls
// If it is obviously final, do not bother to call find_monomorphic_target,
// because the class hierarchy checks are not needed, and may fail due to
// incompletely loaded classes. Since we do our own class loading checks
// in this module, we may confidently bind to any method.
if (dest_method->can_be_statically_bound()) {
return dest_method;
}
// Attempt to improve the receiver
bool actual_receiver_is_exact = false;
ciInstanceKlass* actual_receiver = klass;
if (receiver_type != NULL) {
// Array methods are all inherited from Object, and are monomorphic.
if (receiver_type->isa_aryptr() &&
dest_method->holder() == env()->Object_klass()) {
return dest_method;
}
// All other interesting cases are instance klasses.
if (!receiver_type->isa_instptr()) {
return NULL;
}
ciInstanceKlass *ikl = receiver_type->klass()->as_instance_klass();
if (ikl->is_loaded() && ikl->is_initialized() && !ikl->is_interface() &&
(ikl == actual_receiver || ikl->is_subtype_of(actual_receiver))) {
// ikl is a same or better type than the original actual_receiver,
// e.g. static receiver from bytecodes.
actual_receiver = ikl;
// Is the actual_receiver exact?
actual_receiver_is_exact = receiver_type->klass_is_exact();
}
}
ciInstanceKlass* calling_klass = caller->holder();
ciMethod* cha_monomorphic_target = dest_method->find_monomorphic_target(calling_klass, klass, actual_receiver);
if (cha_monomorphic_target != NULL) {
assert(!cha_monomorphic_target->is_abstract(), "");
// Look at the method-receiver type. Does it add "too much information"?
ciKlass* mr_klass = cha_monomorphic_target->holder();
const Type* mr_type = TypeInstPtr::make(TypePtr::BotPTR, mr_klass);
if (receiver_type == NULL || !receiver_type->higher_equal(mr_type)) {
// Calling this method would include an implicit cast to its holder.
// %%% Not yet implemented. Would throw minor asserts at present.
// %%% The most common wins are already gained by +UseUniqueSubclasses.
// To fix, put the higher_equal check at the call of this routine,
// and add a CheckCastPP to the receiver.
if (TraceDependencies) {
tty->print_cr("found unique CHA method, but could not cast up");
tty->print(" method = ");
cha_monomorphic_target->print();
tty->cr();
}
if (C->log() != NULL) {
C->log()->elem("missed_CHA_opportunity klass='%d' method='%d'",
C->log()->identify(klass),
C->log()->identify(cha_monomorphic_target));
}
cha_monomorphic_target = NULL;
}
}
if (cha_monomorphic_target != NULL) {
// Hardwiring a virtual.
// If we inlined because CHA revealed only a single target method,
// then we are dependent on that target method not getting overridden
// by dynamic class loading. Be sure to test the "static" receiver
// dest_method here, as opposed to the actual receiver, which may
// falsely lead us to believe that the receiver is final or private.
C->dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target);
return cha_monomorphic_target;
}
// If the type is exact, we can still bind the method w/o a vcall.
// (This case comes after CHA so we can see how much extra work it does.)
if (actual_receiver_is_exact) {
// In case of evolution, there is a dependence on every inlined method, since each
// such method can be changed when its class is redefined.
ciMethod* exact_method = dest_method->resolve_invoke(calling_klass, actual_receiver);
if (exact_method != NULL) {
#ifndef PRODUCT
if (PrintOpto) {
tty->print(" Calling method via exact type @%d --- ", bci);
exact_method->print_name();
tty->cr();
}
#endif
return exact_method;
}
}
return NULL;
}