blob: 1e8c190c0bfbafb85ebd3797340a5623420b32ca [file] [log] [blame]
/*
* Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_c1_LIRAssembler_sparc.cpp.incl"
#define __ _masm->
//------------------------------------------------------------
bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
if (opr->is_constant()) {
LIR_Const* constant = opr->as_constant_ptr();
switch (constant->type()) {
case T_INT: {
jint value = constant->as_jint();
return Assembler::is_simm13(value);
}
default:
return false;
}
}
return false;
}
bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
switch (op->code()) {
case lir_null_check:
return true;
case lir_add:
case lir_ushr:
case lir_shr:
case lir_shl:
// integer shifts and adds are always one instruction
return op->result_opr()->is_single_cpu();
case lir_move: {
LIR_Op1* op1 = op->as_Op1();
LIR_Opr src = op1->in_opr();
LIR_Opr dst = op1->result_opr();
if (src == dst) {
NEEDS_CLEANUP;
// this works around a problem where moves with the same src and dst
// end up in the delay slot and then the assembler swallows the mov
// since it has no effect and then it complains because the delay slot
// is empty. returning false stops the optimizer from putting this in
// the delay slot
return false;
}
// don't put moves involving oops into the delay slot since the VerifyOops code
// will make it much larger than a single instruction.
if (VerifyOops) {
return false;
}
if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
return false;
}
if (dst->is_register()) {
if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
return !PatchALot;
} else if (src->is_single_stack()) {
return true;
}
}
if (src->is_register()) {
if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
return !PatchALot;
} else if (dst->is_single_stack()) {
return true;
}
}
if (dst->is_register() &&
((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
(src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
return true;
}
return false;
}
default:
return false;
}
ShouldNotReachHere();
}
LIR_Opr LIR_Assembler::receiverOpr() {
return FrameMap::O0_oop_opr;
}
LIR_Opr LIR_Assembler::incomingReceiverOpr() {
return FrameMap::I0_oop_opr;
}
LIR_Opr LIR_Assembler::osrBufferPointer() {
return FrameMap::I0_opr;
}
int LIR_Assembler::initial_frame_size_in_bytes() {
return in_bytes(frame_map()->framesize_in_bytes());
}
// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
// we fetch the class of the receiver (O0) and compare it with the cached class.
// If they do not match we jump to slow case.
int LIR_Assembler::check_icache() {
int offset = __ offset();
__ inline_cache_check(O0, G5_inline_cache_reg);
return offset;
}
void LIR_Assembler::osr_entry() {
// On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
//
// 1. Create a new compiled activation.
// 2. Initialize local variables in the compiled activation. The expression stack must be empty
// at the osr_bci; it is not initialized.
// 3. Jump to the continuation address in compiled code to resume execution.
// OSR entry point
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
ValueStack* entry_state = osr_entry->end()->state();
int number_of_locks = entry_state->locks_size();
// Create a frame for the compiled activation.
__ build_frame(initial_frame_size_in_bytes());
// OSR buffer is
//
// locals[nlocals-1..0]
// monitors[number_of_locks-1..0]
//
// locals is a direct copy of the interpreter frame so in the osr buffer
// so first slot in the local array is the last local from the interpreter
// and last slot is local[0] (receiver) from the interpreter
//
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
// in the interpreter frame (the method lock if a sync method)
// Initialize monitors in the compiled activation.
// I0: pointer to osr buffer
//
// All other registers are dead at this point and the locals will be
// copied into place by code emitted in the IR.
Register OSR_buf = osrBufferPointer()->as_register();
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
int monitor_offset = BytesPerWord * method()->max_locals() +
(BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
for (int i = 0; i < number_of_locks; i++) {
int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
#ifdef ASSERT
// verify the interpreter's monitor has a non-null object
{
Label L;
__ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::obj_offset_in_bytes()), O7);
__ cmp(G0, O7);
__ br(Assembler::notEqual, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("locked object is NULL");
__ bind(L);
}
#endif // ASSERT
// Copy the lock field into the compiled activation.
__ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::lock_offset_in_bytes()), O7);
__ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
__ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::obj_offset_in_bytes()), O7);
__ st_ptr(O7, frame_map()->address_for_monitor_object(i));
}
}
}
// Optimized Library calls
// This is the fast version of java.lang.String.compare; it has not
// OSR-entry and therefore, we generate a slow version for OSR's
void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
Register str0 = left->as_register();
Register str1 = right->as_register();
Label Ldone;
Register result = dst->as_register();
{
// Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
// Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
// Also, get string0.count-string1.count in o7 and get the condition code set
// Note: some instructions have been hoisted for better instruction scheduling
Register tmp0 = L0;
Register tmp1 = L1;
Register tmp2 = L2;
int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
int count_offset = java_lang_String:: count_offset_in_bytes();
__ ld_ptr(Address(str0, 0, value_offset), tmp0);
__ ld(Address(str0, 0, offset_offset), tmp2);
__ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
__ ld(Address(str0, 0, count_offset), str0);
__ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
// str1 may be null
add_debug_info_for_null_check_here(info);
__ ld_ptr(Address(str1, 0, value_offset), tmp1);
__ add(tmp0, tmp2, tmp0);
__ ld(Address(str1, 0, offset_offset), tmp2);
__ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
__ ld(Address(str1, 0, count_offset), str1);
__ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
__ subcc(str0, str1, O7);
__ add(tmp1, tmp2, tmp1);
}
{
// Compute the minimum of the string lengths, scale it and store it in limit
Register count0 = I0;
Register count1 = I1;
Register limit = L3;
Label Lskip;
__ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
__ br(Assembler::greater, true, Assembler::pt, Lskip);
__ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
__ bind(Lskip);
// If either string is empty (or both of them) the result is the difference in lengths
__ cmp(limit, 0);
__ br(Assembler::equal, true, Assembler::pn, Ldone);
__ delayed()->mov(O7, result); // result is difference in lengths
}
{
// Neither string is empty
Label Lloop;
Register base0 = L0;
Register base1 = L1;
Register chr0 = I0;
Register chr1 = I1;
Register limit = L3;
// Shift base0 and base1 to the end of the arrays, negate limit
__ add(base0, limit, base0);
__ add(base1, limit, base1);
__ neg(limit); // limit = -min{string0.count, strin1.count}
__ lduh(base0, limit, chr0);
__ bind(Lloop);
__ lduh(base1, limit, chr1);
__ subcc(chr0, chr1, chr0);
__ br(Assembler::notZero, false, Assembler::pn, Ldone);
assert(chr0 == result, "result must be pre-placed");
__ delayed()->inccc(limit, sizeof(jchar));
__ br(Assembler::notZero, true, Assembler::pt, Lloop);
__ delayed()->lduh(base0, limit, chr0);
}
// If strings are equal up to min length, return the length difference.
__ mov(O7, result);
// Otherwise, return the difference between the first mismatched chars.
__ bind(Ldone);
}
// --------------------------------------------------------------------------------------------
void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
if (!GenerateSynchronizationCode) return;
Register obj_reg = obj_opr->as_register();
Register lock_reg = lock_opr->as_register();
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
Register reg = mon_addr.base();
int offset = mon_addr.disp();
// compute pointer to BasicLock
if (mon_addr.is_simm13()) {
__ add(reg, offset, lock_reg);
}
else {
__ set(offset, lock_reg);
__ add(reg, lock_reg, lock_reg);
}
// unlock object
MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
// _slow_case_stubs->append(slow_case);
// temporary fix: must be created after exceptionhandler, therefore as call stub
_slow_case_stubs->append(slow_case);
if (UseFastLocking) {
// try inlined fast unlocking first, revert to slow locking if it fails
// note: lock_reg points to the displaced header since the displaced header offset is 0!
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
} else {
// always do slow unlocking
// note: the slow unlocking code could be inlined here, however if we use
// slow unlocking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow unlocking code is the same in either case which simplifies
// debugging
__ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
__ delayed()->nop();
}
// done
__ bind(*slow_case->continuation());
}
void LIR_Assembler::emit_exception_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for exception handler
ciMethod* method = compilation()->method();
address handler_base = __ start_a_stub(exception_handler_size);
if (handler_base == NULL) {
// not enough space left for the handler
bailout("exception handler overflow");
return;
}
#ifdef ASSERT
int offset = code_offset();
#endif // ASSERT
compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
__ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
__ delayed()->nop();
}
__ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
__ delayed()->nop();
debug_only(__ stop("should have gone to the caller");)
assert(code_offset() - offset <= exception_handler_size, "overflow");
__ end_a_stub();
}
void LIR_Assembler::emit_deopt_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for deopt handler
ciMethod* method = compilation()->method();
address handler_base = __ start_a_stub(deopt_handler_size);
if (handler_base == NULL) {
// not enough space left for the handler
bailout("deopt handler overflow");
return;
}
#ifdef ASSERT
int offset = code_offset();
#endif // ASSERT
compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
Address deopt_blob(G3_scratch, SharedRuntime::deopt_blob()->unpack());
__ JUMP(deopt_blob, 0); // sethi;jmp
__ delayed()->nop();
assert(code_offset() - offset <= deopt_handler_size, "overflow");
debug_only(__ stop("should have gone to the caller");)
__ end_a_stub();
}
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
if (o == NULL) {
__ set(NULL_WORD, reg);
} else {
int oop_index = __ oop_recorder()->find_index(o);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
__ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
}
}
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in oop table to hold the oop once it's been patched
int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
Address addr = Address(reg, address(NULL), oop_Relocation::spec(oop_index));
assert(addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
// It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
// NULL will be dynamically patched later and the patched value may be large. We must
// therefore generate the sethi/add as a placeholders
__ sethi(addr, true);
__ add(addr, reg, 0);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::emit_op3(LIR_Op3* op) {
Register Rdividend = op->in_opr1()->as_register();
Register Rdivisor = noreg;
Register Rscratch = op->in_opr3()->as_register();
Register Rresult = op->result_opr()->as_register();
int divisor = -1;
if (op->in_opr2()->is_register()) {
Rdivisor = op->in_opr2()->as_register();
} else {
divisor = op->in_opr2()->as_constant_ptr()->as_jint();
assert(Assembler::is_simm13(divisor), "can only handle simm13");
}
assert(Rdividend != Rscratch, "");
assert(Rdivisor != Rscratch, "");
assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
if (Rdivisor == noreg && is_power_of_2(divisor)) {
// convert division by a power of two into some shifts and logical operations
if (op->code() == lir_idiv) {
if (divisor == 2) {
__ srl(Rdividend, 31, Rscratch);
} else {
__ sra(Rdividend, 31, Rscratch);
__ and3(Rscratch, divisor - 1, Rscratch);
}
__ add(Rdividend, Rscratch, Rscratch);
__ sra(Rscratch, log2_intptr(divisor), Rresult);
return;
} else {
if (divisor == 2) {
__ srl(Rdividend, 31, Rscratch);
} else {
__ sra(Rdividend, 31, Rscratch);
__ and3(Rscratch, divisor - 1,Rscratch);
}
__ add(Rdividend, Rscratch, Rscratch);
__ andn(Rscratch, divisor - 1,Rscratch);
__ sub(Rdividend, Rscratch, Rresult);
return;
}
}
__ sra(Rdividend, 31, Rscratch);
__ wry(Rscratch);
if (!VM_Version::v9_instructions_work()) {
// v9 doesn't require these nops
__ nop();
__ nop();
__ nop();
__ nop();
}
add_debug_info_for_div0_here(op->info());
if (Rdivisor != noreg) {
__ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
} else {
assert(Assembler::is_simm13(divisor), "can only handle simm13");
__ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
}
Label skip;
__ br(Assembler::overflowSet, true, Assembler::pn, skip);
__ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
__ bind(skip);
if (op->code() == lir_irem) {
if (Rdivisor != noreg) {
__ smul(Rscratch, Rdivisor, Rscratch);
} else {
__ smul(Rscratch, divisor, Rscratch);
}
__ sub(Rdividend, Rscratch, Rresult);
}
}
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
#ifdef ASSERT
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
if (op->block() != NULL) _branch_target_blocks.append(op->block());
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
#endif
assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
if (op->cond() == lir_cond_always) {
__ br(Assembler::always, false, Assembler::pt, *(op->label()));
} else if (op->code() == lir_cond_float_branch) {
assert(op->ublock() != NULL, "must have unordered successor");
bool is_unordered = (op->ublock() == op->block());
Assembler::Condition acond;
switch (op->cond()) {
case lir_cond_equal: acond = Assembler::f_equal; break;
case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
default : ShouldNotReachHere();
};
if (!VM_Version::v9_instructions_work()) {
__ nop();
}
__ fb( acond, false, Assembler::pn, *(op->label()));
} else {
assert (op->code() == lir_branch, "just checking");
Assembler::Condition acond;
switch (op->cond()) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
default: ShouldNotReachHere();
};
// sparc has different condition codes for testing 32-bit
// vs. 64-bit values. We could always test xcc is we could
// guarantee that 32-bit loads always sign extended but that isn't
// true and since sign extension isn't free, it would impose a
// slight cost.
#ifdef _LP64
if (op->type() == T_INT) {
__ br(acond, false, Assembler::pn, *(op->label()));
} else
#endif
__ brx(acond, false, Assembler::pn, *(op->label()));
}
// The peephole pass fills the delay slot
}
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
Bytecodes::Code code = op->bytecode();
LIR_Opr dst = op->result_opr();
switch(code) {
case Bytecodes::_i2l: {
Register rlo = dst->as_register_lo();
Register rhi = dst->as_register_hi();
Register rval = op->in_opr()->as_register();
#ifdef _LP64
__ sra(rval, 0, rlo);
#else
__ mov(rval, rlo);
__ sra(rval, BitsPerInt-1, rhi);
#endif
break;
}
case Bytecodes::_i2d:
case Bytecodes::_i2f: {
bool is_double = (code == Bytecodes::_i2d);
FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
FloatRegister rsrc = op->in_opr()->as_float_reg();
if (rsrc != rdst) {
__ fmov(FloatRegisterImpl::S, rsrc, rdst);
}
__ fitof(w, rdst, rdst);
break;
}
case Bytecodes::_f2i:{
FloatRegister rsrc = op->in_opr()->as_float_reg();
Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
Label L;
// result must be 0 if value is NaN; test by comparing value to itself
__ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
if (!VM_Version::v9_instructions_work()) {
__ nop();
}
__ fb(Assembler::f_unordered, true, Assembler::pn, L);
__ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
__ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
// move integer result from float register to int register
__ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
__ bind (L);
break;
}
case Bytecodes::_l2i: {
Register rlo = op->in_opr()->as_register_lo();
Register rhi = op->in_opr()->as_register_hi();
Register rdst = dst->as_register();
#ifdef _LP64
__ sra(rlo, 0, rdst);
#else
__ mov(rlo, rdst);
#endif
break;
}
case Bytecodes::_d2f:
case Bytecodes::_f2d: {
bool is_double = (code == Bytecodes::_f2d);
assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
LIR_Opr val = op->in_opr();
FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
__ ftof(vw, dw, rval, rdst);
break;
}
case Bytecodes::_i2s:
case Bytecodes::_i2b: {
Register rval = op->in_opr()->as_register();
Register rdst = dst->as_register();
int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
__ sll (rval, shift, rdst);
__ sra (rdst, shift, rdst);
break;
}
case Bytecodes::_i2c: {
Register rval = op->in_opr()->as_register();
Register rdst = dst->as_register();
int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
__ sll (rval, shift, rdst);
__ srl (rdst, shift, rdst);
break;
}
default: ShouldNotReachHere();
}
}
void LIR_Assembler::align_call(LIR_Code) {
// do nothing since all instructions are word aligned on sparc
}
void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
__ call(entry, rtype);
// the peephole pass fills the delay slot
}
void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
RelocationHolder rspec = virtual_call_Relocation::spec(pc());
__ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
__ relocate(rspec);
__ call(entry, relocInfo::none);
// the peephole pass fills the delay slot
}
void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
add_debug_info_for_null_check_here(info);
__ ld_ptr(Address(O0, 0, oopDesc::klass_offset_in_bytes()), G3_scratch);
if (__ is_simm13(vtable_offset) ) {
__ ld_ptr(G3_scratch, vtable_offset, G5_method);
} else {
// This will generate 2 instructions
__ set(vtable_offset, G5_method);
// ld_ptr, set_hi, set
__ ld_ptr(G3_scratch, G5_method, G5_method);
}
__ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
__ callr(G3_scratch, G0);
// the peephole pass fills the delay slot
}
// load with 32-bit displacement
int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
int load_offset = code_offset();
if (Assembler::is_simm13(disp)) {
if (info != NULL) add_debug_info_for_null_check_here(info);
switch(ld_type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ ldsb(s, disp, d); break;
case T_CHAR : __ lduh(s, disp, d); break;
case T_SHORT : __ ldsh(s, disp, d); break;
case T_INT : __ ld(s, disp, d); break;
case T_ADDRESS:// fall through
case T_ARRAY : // fall through
case T_OBJECT: __ ld_ptr(s, disp, d); break;
default : ShouldNotReachHere();
}
} else {
__ sethi(disp & ~0x3ff, O7, true);
__ add(O7, disp & 0x3ff, O7);
if (info != NULL) add_debug_info_for_null_check_here(info);
load_offset = code_offset();
switch(ld_type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ ldsb(s, O7, d); break;
case T_CHAR : __ lduh(s, O7, d); break;
case T_SHORT : __ ldsh(s, O7, d); break;
case T_INT : __ ld(s, O7, d); break;
case T_ADDRESS:// fall through
case T_ARRAY : // fall through
case T_OBJECT: __ ld_ptr(s, O7, d); break;
default : ShouldNotReachHere();
}
}
if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
return load_offset;
}
// store with 32-bit displacement
void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
if (Assembler::is_simm13(offset)) {
if (info != NULL) add_debug_info_for_null_check_here(info);
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stb(value, base, offset); break;
case T_CHAR : __ sth(value, base, offset); break;
case T_SHORT : __ sth(value, base, offset); break;
case T_INT : __ stw(value, base, offset); break;
case T_ADDRESS:// fall through
case T_ARRAY : // fall through
case T_OBJECT: __ st_ptr(value, base, offset); break;
default : ShouldNotReachHere();
}
} else {
__ sethi(offset & ~0x3ff, O7, true);
__ add(O7, offset & 0x3ff, O7);
if (info != NULL) add_debug_info_for_null_check_here(info);
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stb(value, base, O7); break;
case T_CHAR : __ sth(value, base, O7); break;
case T_SHORT : __ sth(value, base, O7); break;
case T_INT : __ stw(value, base, O7); break;
case T_ADDRESS:// fall through
case T_ARRAY : //fall through
case T_OBJECT: __ st_ptr(value, base, O7); break;
default : ShouldNotReachHere();
}
}
// Note: Do the store before verification as the code might be patched!
if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
}
// load float with 32-bit displacement
void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
FloatRegisterImpl::Width w;
switch(ld_type) {
case T_FLOAT : w = FloatRegisterImpl::S; break;
case T_DOUBLE: w = FloatRegisterImpl::D; break;
default : ShouldNotReachHere();
}
if (Assembler::is_simm13(disp)) {
if (info != NULL) add_debug_info_for_null_check_here(info);
if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
__ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
__ ldf(FloatRegisterImpl::S, s, disp , d);
} else {
__ ldf(w, s, disp, d);
}
} else {
__ sethi(disp & ~0x3ff, O7, true);
__ add(O7, disp & 0x3ff, O7);
if (info != NULL) add_debug_info_for_null_check_here(info);
__ ldf(w, s, O7, d);
}
}
// store float with 32-bit displacement
void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
FloatRegisterImpl::Width w;
switch(type) {
case T_FLOAT : w = FloatRegisterImpl::S; break;
case T_DOUBLE: w = FloatRegisterImpl::D; break;
default : ShouldNotReachHere();
}
if (Assembler::is_simm13(offset)) {
if (info != NULL) add_debug_info_for_null_check_here(info);
if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
__ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
__ stf(FloatRegisterImpl::S, value , base, offset);
} else {
__ stf(w, value, base, offset);
}
} else {
__ sethi(offset & ~0x3ff, O7, true);
__ add(O7, offset & 0x3ff, O7);
if (info != NULL) add_debug_info_for_null_check_here(info);
__ stf(w, value, O7, base);
}
}
int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
int store_offset;
if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
assert(!unaligned, "can't handle this");
// for offsets larger than a simm13 we setup the offset in O7
__ sethi(offset & ~0x3ff, O7, true);
__ add(O7, offset & 0x3ff, O7);
store_offset = store(from_reg, base, O7, type);
} else {
if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
store_offset = code_offset();
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
case T_INT : __ stw(from_reg->as_register(), base, offset); break;
case T_LONG :
#ifdef _LP64
if (unaligned || PatchALot) {
__ srax(from_reg->as_register_lo(), 32, O7);
__ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
__ stw(O7, base, offset + hi_word_offset_in_bytes);
} else {
__ stx(from_reg->as_register_lo(), base, offset);
}
#else
assert(Assembler::is_simm13(offset + 4), "must be");
__ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
__ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
#endif
break;
case T_ADDRESS:// fall through
case T_ARRAY : // fall through
case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
case T_DOUBLE:
{
FloatRegister reg = from_reg->as_double_reg();
// split unaligned stores
if (unaligned || PatchALot) {
assert(Assembler::is_simm13(offset + 4), "must be");
__ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
__ stf(FloatRegisterImpl::S, reg, base, offset);
} else {
__ stf(FloatRegisterImpl::D, reg, base, offset);
}
break;
}
default : ShouldNotReachHere();
}
}
return store_offset;
}
int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
int store_offset = code_offset();
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
case T_INT : __ stw(from_reg->as_register(), base, disp); break;
case T_LONG :
#ifdef _LP64
__ stx(from_reg->as_register_lo(), base, disp);
#else
assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
__ std(from_reg->as_register_hi(), base, disp);
#endif
break;
case T_ADDRESS:// fall through
case T_ARRAY : // fall through
case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
default : ShouldNotReachHere();
}
return store_offset;
}
int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
int load_offset;
if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
assert(base != O7, "destroying register");
assert(!unaligned, "can't handle this");
// for offsets larger than a simm13 we setup the offset in O7
__ sethi(offset & ~0x3ff, O7, true);
__ add(O7, offset & 0x3ff, O7);
load_offset = load(base, O7, to_reg, type);
} else {
load_offset = code_offset();
switch(type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
case T_INT : __ ld(base, offset, to_reg->as_register()); break;
case T_LONG :
if (!unaligned) {
#ifdef _LP64
__ ldx(base, offset, to_reg->as_register_lo());
#else
assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
"must be sequential");
__ ldd(base, offset, to_reg->as_register_hi());
#endif
} else {
#ifdef _LP64
assert(base != to_reg->as_register_lo(), "can't handle this");
__ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
__ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
__ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
#else
if (base == to_reg->as_register_lo()) {
__ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
__ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
} else {
__ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
__ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
}
#endif
}
break;
case T_ADDRESS:// fall through
case T_ARRAY : // fall through
case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
case T_DOUBLE:
{
FloatRegister reg = to_reg->as_double_reg();
// split unaligned loads
if (unaligned || PatchALot) {
__ ldf(FloatRegisterImpl::S, base, offset + BytesPerWord, reg->successor());
__ ldf(FloatRegisterImpl::S, base, offset, reg);
} else {
__ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
}
break;
}
default : ShouldNotReachHere();
}
if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
}
return load_offset;
}
int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
int load_offset = code_offset();
switch(type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
case T_INT : __ ld(base, disp, to_reg->as_register()); break;
case T_ADDRESS:// fall through
case T_ARRAY : // fall through
case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
case T_LONG :
#ifdef _LP64
__ ldx(base, disp, to_reg->as_register_lo());
#else
assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
"must be sequential");
__ ldd(base, disp, to_reg->as_register_hi());
#endif
break;
default : ShouldNotReachHere();
}
if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
return load_offset;
}
// load/store with an Address
void LIR_Assembler::load(const Address& a, Register d, BasicType ld_type, CodeEmitInfo *info, int offset) {
load(a.base(), a.disp() + offset, d, ld_type, info);
}
void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
store(value, dest.base(), dest.disp() + offset, type, info);
}
// loadf/storef with an Address
void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
load(a.base(), a.disp() + offset, d, ld_type, info);
}
void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
store(value, dest.base(), dest.disp() + offset, type, info);
}
// load/store with an Address
void LIR_Assembler::load(LIR_Address* a, Register d, BasicType ld_type, CodeEmitInfo *info) {
load(as_Address(a), d, ld_type, info);
}
void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
store(value, as_Address(dest), type, info);
}
// loadf/storef with an Address
void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
load(as_Address(a), d, ld_type, info);
}
void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
store(value, as_Address(dest), type, info);
}
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_INT:
case T_FLOAT: {
Register src_reg = O7;
int value = c->as_jint_bits();
if (value == 0) {
src_reg = G0;
} else {
__ set(value, O7);
}
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ stw(src_reg, addr.base(), addr.disp());
break;
}
case T_OBJECT: {
Register src_reg = O7;
jobject2reg(c->as_jobject(), src_reg);
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ st_ptr(src_reg, addr.base(), addr.disp());
break;
}
case T_LONG:
case T_DOUBLE: {
Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
Register tmp = O7;
int value_lo = c->as_jint_lo_bits();
if (value_lo == 0) {
tmp = G0;
} else {
__ set(value_lo, O7);
}
__ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
int value_hi = c->as_jint_hi_bits();
if (value_hi == 0) {
tmp = G0;
} else {
__ set(value_hi, O7);
}
__ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
break;
}
default:
Unimplemented();
}
}
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
LIR_Const* c = src->as_constant_ptr();
LIR_Address* addr = dest->as_address_ptr();
Register base = addr->base()->as_pointer_register();
if (info != NULL) {
add_debug_info_for_null_check_here(info);
}
switch (c->type()) {
case T_INT:
case T_FLOAT: {
LIR_Opr tmp = FrameMap::O7_opr;
int value = c->as_jint_bits();
if (value == 0) {
tmp = FrameMap::G0_opr;
} else if (Assembler::is_simm13(value)) {
__ set(value, O7);
}
if (addr->index()->is_valid()) {
assert(addr->disp() == 0, "must be zero");
store(tmp, base, addr->index()->as_pointer_register(), type);
} else {
assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
store(tmp, base, addr->disp(), type);
}
break;
}
case T_LONG:
case T_DOUBLE: {
assert(!addr->index()->is_valid(), "can't handle reg reg address here");
assert(Assembler::is_simm13(addr->disp()) &&
Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
Register tmp = O7;
int value_lo = c->as_jint_lo_bits();
if (value_lo == 0) {
tmp = G0;
} else {
__ set(value_lo, O7);
}
store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
int value_hi = c->as_jint_hi_bits();
if (value_hi == 0) {
tmp = G0;
} else {
__ set(value_hi, O7);
}
store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
break;
}
case T_OBJECT: {
jobject obj = c->as_jobject();
LIR_Opr tmp;
if (obj == NULL) {
tmp = FrameMap::G0_opr;
} else {
tmp = FrameMap::O7_opr;
jobject2reg(c->as_jobject(), O7);
}
// handle either reg+reg or reg+disp address
if (addr->index()->is_valid()) {
assert(addr->disp() == 0, "must be zero");
store(tmp, base, addr->index()->as_pointer_register(), type);
} else {
assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
store(tmp, base, addr->disp(), type);
}
break;
}
default:
Unimplemented();
}
}
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
LIR_Const* c = src->as_constant_ptr();
LIR_Opr to_reg = dest;
switch (c->type()) {
case T_INT:
{
jint con = c->as_jint();
if (to_reg->is_single_cpu()) {
assert(patch_code == lir_patch_none, "no patching handled here");
__ set(con, to_reg->as_register());
} else {
ShouldNotReachHere();
assert(to_reg->is_single_fpu(), "wrong register kind");
__ set(con, O7);
Address temp_slot(SP, 0, (frame::register_save_words * wordSize) + STACK_BIAS);
__ st(O7, temp_slot);
__ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
}
}
break;
case T_LONG:
{
jlong con = c->as_jlong();
if (to_reg->is_double_cpu()) {
#ifdef _LP64
__ set(con, to_reg->as_register_lo());
#else
__ set(low(con), to_reg->as_register_lo());
__ set(high(con), to_reg->as_register_hi());
#endif
#ifdef _LP64
} else if (to_reg->is_single_cpu()) {
__ set(con, to_reg->as_register());
#endif
} else {
ShouldNotReachHere();
assert(to_reg->is_double_fpu(), "wrong register kind");
Address temp_slot_lo(SP, 0, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
Address temp_slot_hi(SP, 0, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
__ set(low(con), O7);
__ st(O7, temp_slot_lo);
__ set(high(con), O7);
__ st(O7, temp_slot_hi);
__ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
}
}
break;
case T_OBJECT:
{
if (patch_code == lir_patch_none) {
jobject2reg(c->as_jobject(), to_reg->as_register());
} else {
jobject2reg_with_patching(to_reg->as_register(), info);
}
}
break;
case T_FLOAT:
{
address const_addr = __ float_constant(c->as_jfloat());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
if (to_reg->is_single_fpu()) {
__ sethi( (intx)const_addr & ~0x3ff, O7, true, rspec);
__ relocate(rspec);
int offset = (intx)const_addr & 0x3ff;
__ ldf (FloatRegisterImpl::S, O7, offset, to_reg->as_float_reg());
} else {
assert(to_reg->is_single_cpu(), "Must be a cpu register.");
__ set((intx)const_addr, O7, rspec);
load(O7, 0, to_reg->as_register(), T_INT);
}
}
break;
case T_DOUBLE:
{
address const_addr = __ double_constant(c->as_jdouble());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
if (to_reg->is_double_fpu()) {
__ sethi( (intx)const_addr & ~0x3ff, O7, true, rspec);
int offset = (intx)const_addr & 0x3ff;
__ relocate(rspec);
__ ldf (FloatRegisterImpl::D, O7, offset, to_reg->as_double_reg());
} else {
assert(to_reg->is_double_cpu(), "Must be a long register.");
#ifdef _LP64
__ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
#else
__ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
__ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
#endif
}
}
break;
default:
ShouldNotReachHere();
}
}
Address LIR_Assembler::as_Address(LIR_Address* addr) {
Register reg = addr->base()->as_register();
return Address(reg, 0, addr->disp());
}
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
switch (type) {
case T_INT:
case T_FLOAT: {
Register tmp = O7;
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ lduw(from.base(), from.disp(), tmp);
__ stw(tmp, to.base(), to.disp());
break;
}
case T_OBJECT: {
Register tmp = O7;
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ ld_ptr(from.base(), from.disp(), tmp);
__ st_ptr(tmp, to.base(), to.disp());
break;
}
case T_LONG:
case T_DOUBLE: {
Register tmp = O7;
Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
__ lduw(from.base(), from.disp(), tmp);
__ stw(tmp, to.base(), to.disp());
__ lduw(from.base(), from.disp() + 4, tmp);
__ stw(tmp, to.base(), to.disp() + 4);
break;
}
default:
ShouldNotReachHere();
}
}
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
Address base = as_Address(addr);
return Address(base.base(), 0, base.disp() + hi_word_offset_in_bytes);
}
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
Address base = as_Address(addr);
return Address(base.base(), 0, base.disp() + lo_word_offset_in_bytes);
}
void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
LIR_Address* addr = src_opr->as_address_ptr();
LIR_Opr to_reg = dest;
Register src = addr->base()->as_pointer_register();
Register disp_reg = noreg;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
if (addr->base()->type() == T_OBJECT) {
__ verify_oop(src);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!to_reg->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
if (addr->index()->is_illegal()) {
if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
if (needs_patching) {
__ sethi(0, O7, true);
__ add(O7, 0, O7);
} else {
__ set(disp_value, O7);
}
disp_reg = O7;
}
} else if (unaligned || PatchALot) {
__ add(src, addr->index()->as_register(), O7);
src = O7;
} else {
disp_reg = addr->index()->as_pointer_register();
assert(disp_value == 0, "can't handle 3 operand addresses");
}
// remember the offset of the load. The patching_epilog must be done
// before the call to add_debug_info, otherwise the PcDescs don't get
// entered in increasing order.
int offset = code_offset();
assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
if (disp_reg == noreg) {
offset = load(src, disp_value, to_reg, type, unaligned);
} else {
assert(!unaligned, "can't handle this");
offset = load(src, disp_reg, to_reg, type);
}
if (patch != NULL) {
patching_epilog(patch, patch_code, src, info);
}
if (info != NULL) add_debug_info_for_null_check(offset, info);
}
void LIR_Assembler::prefetchr(LIR_Opr src) {
LIR_Address* addr = src->as_address_ptr();
Address from_addr = as_Address(addr);
if (VM_Version::has_v9()) {
__ prefetch(from_addr, Assembler::severalReads);
}
}
void LIR_Assembler::prefetchw(LIR_Opr src) {
LIR_Address* addr = src->as_address_ptr();
Address from_addr = as_Address(addr);
if (VM_Version::has_v9()) {
__ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
}
}
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
Address addr;
if (src->is_single_word()) {
addr = frame_map()->address_for_slot(src->single_stack_ix());
} else if (src->is_double_word()) {
addr = frame_map()->address_for_double_slot(src->double_stack_ix());
}
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
}
void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
Address addr;
if (dest->is_single_word()) {
addr = frame_map()->address_for_slot(dest->single_stack_ix());
} else if (dest->is_double_word()) {
addr = frame_map()->address_for_slot(dest->double_stack_ix());
}
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
}
void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
if (from_reg->is_double_fpu()) {
// double to double moves
assert(to_reg->is_double_fpu(), "should match");
__ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
} else {
// float to float moves
assert(to_reg->is_single_fpu(), "should match");
__ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
}
} else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
if (from_reg->is_double_cpu()) {
#ifdef _LP64
__ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
#else
assert(to_reg->is_double_cpu() &&
from_reg->as_register_hi() != to_reg->as_register_lo() &&
from_reg->as_register_lo() != to_reg->as_register_hi(),
"should both be long and not overlap");
// long to long moves
__ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
__ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
#endif
#ifdef _LP64
} else if (to_reg->is_double_cpu()) {
// int to int moves
__ mov(from_reg->as_register(), to_reg->as_register_lo());
#endif
} else {
// int to int moves
__ mov(from_reg->as_register(), to_reg->as_register());
}
} else {
ShouldNotReachHere();
}
if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
__ verify_oop(to_reg->as_register());
}
}
void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
bool unaligned) {
LIR_Address* addr = dest->as_address_ptr();
Register src = addr->base()->as_pointer_register();
Register disp_reg = noreg;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
if (addr->base()->is_oop_register()) {
__ verify_oop(src);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!from_reg->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
if (addr->index()->is_illegal()) {
if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
if (needs_patching) {
__ sethi(0, O7, true);
__ add(O7, 0, O7);
} else {
__ set(disp_value, O7);
}
disp_reg = O7;
}
} else if (unaligned || PatchALot) {
__ add(src, addr->index()->as_register(), O7);
src = O7;
} else {
disp_reg = addr->index()->as_pointer_register();
assert(disp_value == 0, "can't handle 3 operand addresses");
}
// remember the offset of the store. The patching_epilog must be done
// before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
// entered in increasing order.
int offset;
assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
if (disp_reg == noreg) {
offset = store(from_reg, src, disp_value, type, unaligned);
} else {
assert(!unaligned, "can't handle this");
offset = store(from_reg, src, disp_reg, type);
}
if (patch != NULL) {
patching_epilog(patch, patch_code, src, info);
}
if (info != NULL) add_debug_info_for_null_check(offset, info);
}
void LIR_Assembler::return_op(LIR_Opr result) {
// the poll may need a register so just pick one that isn't the return register
#ifdef TIERED
if (result->type_field() == LIR_OprDesc::long_type) {
// Must move the result to G1
// Must leave proper result in O0,O1 and G1 (TIERED only)
__ sllx(I0, 32, G1); // Shift bits into high G1
__ srl (I1, 0, I1); // Zero extend O1 (harmless?)
__ or3 (I1, G1, G1); // OR 64 bits into G1
}
#endif // TIERED
__ set((intptr_t)os::get_polling_page(), L0);
__ relocate(relocInfo::poll_return_type);
__ ld_ptr(L0, 0, G0);
__ ret();
__ delayed()->restore();
}
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
__ set((intptr_t)os::get_polling_page(), tmp->as_register());
if (info != NULL) {
add_debug_info_for_branch(info);
} else {
__ relocate(relocInfo::poll_type);
}
int offset = __ offset();
__ ld_ptr(tmp->as_register(), 0, G0);
return offset;
}
void LIR_Assembler::emit_static_call_stub() {
address call_pc = __ pc();
address stub = __ start_a_stub(call_stub_size);
if (stub == NULL) {
bailout("static call stub overflow");
return;
}
int start = __ offset();
__ relocate(static_stub_Relocation::spec(call_pc));
__ set_oop(NULL, G5);
// must be set to -1 at code generation time
Address a(G3, (address)-1);
__ jump_to(a, 0);
__ delayed()->nop();
assert(__ offset() - start <= call_stub_size, "stub too big");
__ end_a_stub();
}
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
if (opr1->is_single_fpu()) {
__ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
} else if (opr1->is_double_fpu()) {
__ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
} else if (opr1->is_single_cpu()) {
if (opr2->is_constant()) {
switch (opr2->as_constant_ptr()->type()) {
case T_INT:
{ jint con = opr2->as_constant_ptr()->as_jint();
if (Assembler::is_simm13(con)) {
__ cmp(opr1->as_register(), con);
} else {
__ set(con, O7);
__ cmp(opr1->as_register(), O7);
}
}
break;
case T_OBJECT:
// there are only equal/notequal comparisions on objects
{ jobject con = opr2->as_constant_ptr()->as_jobject();
if (con == NULL) {
__ cmp(opr1->as_register(), 0);
} else {
jobject2reg(con, O7);
__ cmp(opr1->as_register(), O7);
}
}
break;
default:
ShouldNotReachHere();
break;
}
} else {
if (opr2->is_address()) {
LIR_Address * addr = opr2->as_address_ptr();
BasicType type = addr->type();
if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
else __ ld(as_Address(addr), O7);
__ cmp(opr1->as_register(), O7);
} else {
__ cmp(opr1->as_register(), opr2->as_register());
}
}
} else if (opr1->is_double_cpu()) {
Register xlo = opr1->as_register_lo();
Register xhi = opr1->as_register_hi();
if (opr2->is_constant() && opr2->as_jlong() == 0) {
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
#ifdef _LP64
__ orcc(xhi, G0, G0);
#else
__ orcc(xhi, xlo, G0);
#endif
} else if (opr2->is_register()) {
Register ylo = opr2->as_register_lo();
Register yhi = opr2->as_register_hi();
#ifdef _LP64
__ cmp(xlo, ylo);
#else
__ subcc(xlo, ylo, xlo);
__ subccc(xhi, yhi, xhi);
if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
__ orcc(xhi, xlo, G0);
}
#endif
} else {
ShouldNotReachHere();
}
} else if (opr1->is_address()) {
LIR_Address * addr = opr1->as_address_ptr();
BasicType type = addr->type();
assert (opr2->is_constant(), "Checking");
if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
else __ ld(as_Address(addr), O7);
__ cmp(O7, opr2->as_constant_ptr()->as_jint());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
bool is_unordered_less = (code == lir_ucmp_fd2i);
if (left->is_single_fpu()) {
__ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
} else if (left->is_double_fpu()) {
__ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
} else {
ShouldNotReachHere();
}
} else if (code == lir_cmp_l2i) {
__ lcmp(left->as_register_hi(), left->as_register_lo(),
right->as_register_hi(), right->as_register_lo(),
dst->as_register());
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
Assembler::Condition acond;
switch (condition) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
default: ShouldNotReachHere();
};
if (opr1->is_constant() && opr1->type() == T_INT) {
Register dest = result->as_register();
// load up first part of constant before branch
// and do the rest in the delay slot.
if (!Assembler::is_simm13(opr1->as_jint())) {
__ sethi(opr1->as_jint(), dest);
}
} else if (opr1->is_constant()) {
const2reg(opr1, result, lir_patch_none, NULL);
} else if (opr1->is_register()) {
reg2reg(opr1, result);
} else if (opr1->is_stack()) {
stack2reg(opr1, result, result->type());
} else {
ShouldNotReachHere();
}
Label skip;
__ br(acond, false, Assembler::pt, skip);
if (opr1->is_constant() && opr1->type() == T_INT) {
Register dest = result->as_register();
if (Assembler::is_simm13(opr1->as_jint())) {
__ delayed()->or3(G0, opr1->as_jint(), dest);
} else {
// the sethi has been done above, so just put in the low 10 bits
__ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
}
} else {
// can't do anything useful in the delay slot
__ delayed()->nop();
}
if (opr2->is_constant()) {
const2reg(opr2, result, lir_patch_none, NULL);
} else if (opr2->is_register()) {
reg2reg(opr2, result);
} else if (opr2->is_stack()) {
stack2reg(opr2, result, result->type());
} else {
ShouldNotReachHere();
}
__ bind(skip);
}
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
assert(info == NULL, "unused on this code path");
assert(left->is_register(), "wrong items state");
assert(dest->is_register(), "wrong items state");
if (right->is_register()) {
if (dest->is_float_kind()) {
FloatRegister lreg, rreg, res;
FloatRegisterImpl::Width w;
if (right->is_single_fpu()) {
w = FloatRegisterImpl::S;
lreg = left->as_float_reg();
rreg = right->as_float_reg();
res = dest->as_float_reg();
} else {
w = FloatRegisterImpl::D;
lreg = left->as_double_reg();
rreg = right->as_double_reg();
res = dest->as_double_reg();
}
switch (code) {
case lir_add: __ fadd(w, lreg, rreg, res); break;
case lir_sub: __ fsub(w, lreg, rreg, res); break;
case lir_mul: // fall through
case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
case lir_div: // fall through
case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
default: ShouldNotReachHere();
}
} else if (dest->is_double_cpu()) {
#ifdef _LP64
Register dst_lo = dest->as_register_lo();
Register op1_lo = left->as_pointer_register();
Register op2_lo = right->as_pointer_register();
switch (code) {
case lir_add:
__ add(op1_lo, op2_lo, dst_lo);
break;
case lir_sub:
__ sub(op1_lo, op2_lo, dst_lo);
break;
default: ShouldNotReachHere();
}
#else
Register op1_lo = left->as_register_lo();
Register op1_hi = left->as_register_hi();
Register op2_lo = right->as_register_lo();
Register op2_hi = right->as_register_hi();
Register dst_lo = dest->as_register_lo();
Register dst_hi = dest->as_register_hi();
switch (code) {
case lir_add:
__ addcc(op1_lo, op2_lo, dst_lo);
__ addc (op1_hi, op2_hi, dst_hi);
break;
case lir_sub:
__ subcc(op1_lo, op2_lo, dst_lo);
__ subc (op1_hi, op2_hi, dst_hi);
break;
default: ShouldNotReachHere();
}
#endif
} else {
assert (right->is_single_cpu(), "Just Checking");
Register lreg = left->as_register();
Register res = dest->as_register();
Register rreg = right->as_register();
switch (code) {
case lir_add: __ add (lreg, rreg, res); break;
case lir_sub: __ sub (lreg, rreg, res); break;
case lir_mul: __ mult (lreg, rreg, res); break;
default: ShouldNotReachHere();
}
}
} else {
assert (right->is_constant(), "must be constant");
if (dest->is_single_cpu()) {
Register lreg = left->as_register();
Register res = dest->as_register();
int simm13 = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_add: __ add (lreg, simm13, res); break;
case lir_sub: __ sub (lreg, simm13, res); break;
case lir_mul: __ mult (lreg, simm13, res); break;
default: ShouldNotReachHere();
}
} else {
Register lreg = left->as_pointer_register();
Register res = dest->as_register_lo();
long con = right->as_constant_ptr()->as_jlong();
assert(Assembler::is_simm13(con), "must be simm13");
switch (code) {
case lir_add: __ add (lreg, (int)con, res); break;
case lir_sub: __ sub (lreg, (int)con, res); break;
case lir_mul: __ mult (lreg, (int)con, res); break;
default: ShouldNotReachHere();
}
}
}
}
void LIR_Assembler::fpop() {
// do nothing
}
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
switch (code) {
case lir_sin:
case lir_tan:
case lir_cos: {
assert(thread->is_valid(), "preserve the thread object for performance reasons");
assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
break;
}
case lir_sqrt: {
assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
FloatRegister src_reg = value->as_double_reg();
FloatRegister dst_reg = dest->as_double_reg();
__ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
break;
}
case lir_abs: {
assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
FloatRegister src_reg = value->as_double_reg();
FloatRegister dst_reg = dest->as_double_reg();
__ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
break;
}
default: {
ShouldNotReachHere();
break;
}
}
}
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
if (right->is_constant()) {
if (dest->is_single_cpu()) {
int simm13 = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
default: ShouldNotReachHere();
}
} else {
long c = right->as_constant_ptr()->as_jlong();
assert(c == (int)c && Assembler::is_simm13(c), "out of range");
int simm13 = (int)c;
switch (code) {
case lir_logic_and:
#ifndef _LP64
__ and3 (left->as_register_hi(), 0, dest->as_register_hi());
#endif
__ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
break;
case lir_logic_or:
#ifndef _LP64
__ or3 (left->as_register_hi(), 0, dest->as_register_hi());
#endif
__ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
break;
case lir_logic_xor:
#ifndef _LP64
__ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
#endif
__ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
break;
default: ShouldNotReachHere();
}
}
} else {
assert(right->is_register(), "right should be in register");
if (dest->is_single_cpu()) {
switch (code) {
case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
default: ShouldNotReachHere();
}
} else {
#ifdef _LP64
Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
left->as_register_lo();
Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
right->as_register_lo();
switch (code) {
case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
default: ShouldNotReachHere();
}
#else
switch (code) {
case lir_logic_and:
__ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
__ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
break;
case lir_logic_or:
__ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
__ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
break;
case lir_logic_xor:
__ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
__ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
break;
default: ShouldNotReachHere();
}
#endif
}
}
}
int LIR_Assembler::shift_amount(BasicType t) {
int elem_size = type2aelembytes(t);
switch (elem_size) {
case 1 : return 0;
case 2 : return 1;
case 4 : return 2;
case 8 : return 3;
}
ShouldNotReachHere();
return -1;
}
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
assert(exceptionOop->as_register() == Oexception, "should match");
assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
info->add_register_oop(exceptionOop);
if (unwind) {
__ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
__ delayed()->nop();
} else {
// reuse the debug info from the safepoint poll for the throw op itself
address pc_for_athrow = __ pc();
int pc_for_athrow_offset = __ offset();
RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
__ set((intptr_t)pc_for_athrow, Oissuing_pc, rspec);
add_call_info(pc_for_athrow_offset, info); // for exception handler
__ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
__ delayed()->nop();
}
}
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
Register src = op->src()->as_register();
Register dst = op->dst()->as_register();
Register src_pos = op->src_pos()->as_register();
Register dst_pos = op->dst_pos()->as_register();
Register length = op->length()->as_register();
Register tmp = op->tmp()->as_register();
Register tmp2 = O7;
int flags = op->flags();
ciArrayKlass* default_type = op->expected_type();
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
// set up the arraycopy stub information
ArrayCopyStub* stub = op->stub();
// always do stub if no type information is available. it's ok if
// the known type isn't loaded since the code sanity checks
// in debug mode and the type isn't required when we know the exact type
// also check that the type is an array type.
// We also, for now, always call the stub if the barrier set requires a
// write_ref_pre barrier (which the stub does, but none of the optimized
// cases currently does).
if (op->expected_type() == NULL ||
Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
__ mov(src, O0);
__ mov(src_pos, O1);
__ mov(dst, O2);
__ mov(dst_pos, O3);
__ mov(length, O4);
__ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
__ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
__ delayed()->nop();
__ bind(*stub->continuation());
return;
}
assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
// make sure src and dst are non-null and load array length
if (flags & LIR_OpArrayCopy::src_null_check) {
__ tst(src);
__ br(Assembler::equal, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::dst_null_check) {
__ tst(dst);
__ br(Assembler::equal, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
// test src_pos register
__ tst(src_pos);
__ br(Assembler::less, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
// test dst_pos register
__ tst(dst_pos);
__ br(Assembler::less, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::length_positive_check) {
// make sure length isn't negative
__ tst(length);
__ br(Assembler::less, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::src_range_check) {
__ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
__ add(length, src_pos, tmp);
__ cmp(tmp2, tmp);
__ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::dst_range_check) {
__ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
__ add(length, dst_pos, tmp);
__ cmp(tmp2, tmp);
__ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
if (flags & LIR_OpArrayCopy::type_check) {
__ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
__ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
__ cmp(tmp, tmp2);
__ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
__ delayed()->nop();
}
#ifdef ASSERT
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
// Sanity check the known type with the incoming class. For the
// primitive case the types must match exactly with src.klass and
// dst.klass each exactly matching the default type. For the
// object array case, if no type check is needed then either the
// dst type is exactly the expected type and the src type is a
// subtype which we can't check or src is the same array as dst
// but not necessarily exactly of type default_type.
Label known_ok, halt;
jobject2reg(op->expected_type()->encoding(), tmp);
__ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
if (basic_type != T_OBJECT) {
__ cmp(tmp, tmp2);
__ br(Assembler::notEqual, false, Assembler::pn, halt);
__ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
__ cmp(tmp, tmp2);
__ br(Assembler::equal, false, Assembler::pn, known_ok);
__ delayed()->nop();
} else {
__ cmp(tmp, tmp2);
__ br(Assembler::equal, false, Assembler::pn, known_ok);
__ delayed()->cmp(src, dst);
__ br(Assembler::equal, false, Assembler::pn, known_ok);
__ delayed()->nop();
}
__ bind(halt);
__ stop("incorrect type information in arraycopy");
__ bind(known_ok);
}
#endif
int shift = shift_amount(basic_type);
Register src_ptr = O0;
Register dst_ptr = O1;
Register len = O2;
__ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
if (shift == 0) {
__ add(src_ptr, src_pos, src_ptr);
} else {
__ sll(src_pos, shift, tmp);
__ add(src_ptr, tmp, src_ptr);
}
__ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
if (shift == 0) {
__ add(dst_ptr, dst_pos, dst_ptr);
} else {
__ sll(dst_pos, shift, tmp);
__ add(dst_ptr, tmp, dst_ptr);
}
if (basic_type != T_OBJECT) {
if (shift == 0) {
__ mov(length, len);
} else {
__ sll(length, shift, len);
}
__ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
} else {
// oop_arraycopy takes a length in number of elements, so don't scale it.
__ mov(length, len);
__ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
}
__ bind(*stub->continuation());
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
if (dest->is_single_cpu()) {
#ifdef _LP64
if (left->type() == T_OBJECT) {
switch (code) {
case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
default: ShouldNotReachHere();
}
} else
#endif
switch (code) {
case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
default: ShouldNotReachHere();
}
} else {
#ifdef _LP64
switch (code) {
case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
default: ShouldNotReachHere();
}
#else
switch (code) {
case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
default: ShouldNotReachHere();
}
#endif
}
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
#ifdef _LP64
if (left->type() == T_OBJECT) {
count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
Register l = left->as_register();
Register d = dest->as_register_lo();
switch (code) {
case lir_shl: __ sllx (l, count, d); break;
case lir_shr: __ srax (l, count, d); break;
case lir_ushr: __ srlx (l, count, d); break;
default: ShouldNotReachHere();
}
return;
}
#endif
if (dest->is_single_cpu()) {
count = count & 0x1F; // Java spec
switch (code) {
case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
default: ShouldNotReachHere();
}
} else if (dest->is_double_cpu()) {
count = count & 63; // Java spec
switch (code) {
case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
default: ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
assert(op->tmp1()->as_register() == G1 &&
op->tmp2()->as_register() == G3 &&
op->tmp3()->as_register() == G4 &&
op->obj()->as_register() == O0 &&
op->klass()->as_register() == G5, "must be");
if (op->init_check()) {
__ ld(op->klass()->as_register(),
instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
op->tmp1()->as_register());
add_debug_info_for_null_check_here(op->stub()->info());
__ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
__ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
__ delayed()->nop();
}
__ allocate_object(op->obj()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
op->header_size(),
op->object_size(),
op->klass()->as_register(),
*op->stub()->entry());
__ bind(*op->stub()->continuation());
__ verify_oop(op->obj()->as_register());
}
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
assert(op->tmp1()->as_register() == G1 &&
op->tmp2()->as_register() == G3 &&
op->tmp3()->as_register() == G4 &&
op->tmp4()->as_register() == O1 &&
op->klass()->as_register() == G5, "must be");
if (UseSlowPath ||
(!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
(!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
__ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
__ delayed()->nop();
} else {
__ allocate_array(op->obj()->as_register(),
op->len()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->tmp3()->as_register(),
arrayOopDesc::header_size(op->type()),
type2aelembytes(op->type()),
op->klass()->as_register(),
*op->stub()->entry());
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
LIR_Code code = op->code();
if (code == lir_store_check) {
Register value = op->object()->as_register();
Register array = op->array()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
__ verify_oop(value);
CodeStub* stub = op->stub();
Label done;
__ cmp(value, 0);
__ br(Assembler::equal, false, Assembler::pn, done);
__ delayed()->nop();
load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
// get instance klass
load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ delayed()->nop();
__ cmp(G3, 0);
__ br(Assembler::equal, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
__ bind(done);
} else if (op->code() == lir_checkcast) {
// we always need a stub for the failure case.
CodeStub* stub = op->stub();
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register dst = op->result_opr()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
ciKlass* k = op->klass();
if (obj == k_RInfo) {
k_RInfo = klass_RInfo;
klass_RInfo = obj;
}
if (op->profiled_method() != NULL) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
// We need two temporaries to perform this operation on SPARC,
// so to keep things simple we perform a redundant test here
Label profile_done;
__ cmp(obj, 0);
__ br(Assembler::notEqual, false, Assembler::pn, profile_done);
__ delayed()->nop();
// Object is null; update methodDataOop
ciMethodData* md = method->method_data();
if (md == NULL) {
bailout("out of memory building methodDataOop");
return;
}
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL, "need data for checkcast");
assert(data->is_BitData(), "need BitData for checkcast");
Register mdo = k_RInfo;
Register data_val = Rtmp1;
jobject2reg(md->encoding(), mdo);
int mdo_offset_bias = 0;
if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
// The offset is large so bias the mdo by the base of the slot so
// that the ld can use simm13s to reference the slots of the data
mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
__ set(mdo_offset_bias, data_val);
__ add(mdo, data_val, mdo);
}
Address flags_addr(mdo, 0, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
__ ldub(flags_addr, data_val);
__ or3(data_val, BitData::null_seen_byte_constant(), data_val);
__ stb(data_val, flags_addr);
__ bind(profile_done);
}
Label done;
// patching may screw with our temporaries on sparc,
// so let's do it before loading the class
if (k->is_loaded()) {
jobject2reg(k->encoding(), k_RInfo);
} else {
jobject2reg_with_patching(k_RInfo, op->info_for_patch());
}
assert(obj != k_RInfo, "must be different");
__ cmp(obj, 0);
__ br(Assembler::equal, false, Assembler::pn, done);
__ delayed()->nop();
// get object class
// not a safepoint as obj null check happens earlier
load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
if (op->fast_check()) {
assert_different_registers(klass_RInfo, k_RInfo);
__ cmp(k_RInfo, klass_RInfo);
__ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
__ delayed()->nop();
__ bind(done);
} else {
bool need_slow_path = true;
if (k->is_loaded()) {
if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
need_slow_path = false;
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
(need_slow_path ? &done : NULL),
stub->entry(), NULL,
RegisterOrConstant(k->super_check_offset()));
} else {
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
&done, stub->entry(), NULL);
}
if (need_slow_path) {
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ delayed()->nop();
__ cmp(G3, 0);
__ br(Assembler::equal, false, Assembler::pn, *stub->entry());
__ delayed()->nop();
}
__ bind(done);
}
__ mov(obj, dst);
} else if (code == lir_instanceof) {
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register dst = op->result_opr()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
ciKlass* k = op->klass();
Label done;
if (obj == k_RInfo) {
k_RInfo = klass_RInfo;
klass_RInfo = obj;
}
// patching may screw with our temporaries on sparc,
// so let's do it before loading the class
if (k->is_loaded()) {
jobject2reg(k->encoding(), k_RInfo);
} else {
jobject2reg_with_patching(k_RInfo, op->info_for_patch());
}
assert(obj != k_RInfo, "must be different");
__ cmp(obj, 0);
__ br(Assembler::equal, true, Assembler::pn, done);
__ delayed()->set(0, dst);
// get object class
// not a safepoint as obj null check happens earlier
load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
if (op->fast_check()) {
__ cmp(k_RInfo, klass_RInfo);
__ br(Assembler::equal, true, Assembler::pt, done);
__ delayed()->set(1, dst);
__ set(0, dst);
__ bind(done);
} else {
bool need_slow_path = true;
if (k->is_loaded()) {
if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
need_slow_path = false;
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
(need_slow_path ? &done : NULL),
(need_slow_path ? &done : NULL), NULL,
RegisterOrConstant(k->super_check_offset()),
dst);
} else {
assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
&done, &done, NULL,
RegisterOrConstant(-1),
dst);
}
if (need_slow_path) {
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
__ delayed()->nop();
__ mov(G3, dst);
}
__ bind(done);
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
if (op->code() == lir_cas_long) {
assert(VM_Version::supports_cx8(), "wrong machine");
Register addr = op->addr()->as_pointer_register();
Register cmp_value_lo = op->cmp_value()->as_register_lo();
Register cmp_value_hi = op->cmp_value()->as_register_hi();
Register new_value_lo = op->new_value()->as_register_lo();
Register new_value_hi = op->new_value()->as_register_hi();
Register t1 = op->tmp1()->as_register();
Register t2 = op->tmp2()->as_register();
#ifdef _LP64
__ mov(cmp_value_lo, t1);
__ mov(new_value_lo, t2);
#else
// move high and low halves of long values into single registers
__ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
__ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
__ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
__ sllx(new_value_hi, 32, t2);
__ srl(new_value_lo, 0, new_value_lo);
__ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
#endif
// perform the compare and swap operation
__ casx(addr, t1, t2);
// generate condition code - if the swap succeeded, t2 ("new value" reg) was
// overwritten with the original value in "addr" and will be equal to t1.
__ cmp(t1, t2);
} else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
Register addr = op->addr()->as_pointer_register();
Register cmp_value = op->cmp_value()->as_register();
Register new_value = op->new_value()->as_register();
Register t1 = op->tmp1()->as_register();
Register t2 = op->tmp2()->as_register();
__ mov(cmp_value, t1);
__ mov(new_value, t2);
#ifdef _LP64
if (op->code() == lir_cas_obj) {
__ casx(addr, t1, t2);
} else
#endif
{
__ cas(addr, t1, t2);
}
__ cmp(t1, t2);
} else {
Unimplemented();
}
}
void LIR_Assembler::set_24bit_FPU() {
Unimplemented();
}
void LIR_Assembler::reset_FPU() {
Unimplemented();
}
void LIR_Assembler::breakpoint() {
__ breakpoint_trap();
}
void LIR_Assembler::push(LIR_Opr opr) {
Unimplemented();
}
void LIR_Assembler::pop(LIR_Opr opr) {
Unimplemented();
}
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
Register dst = dst_opr->as_register();
Register reg = mon_addr.base();
int offset = mon_addr.disp();
// compute pointer to BasicLock
if (mon_addr.is_simm13()) {
__ add(reg, offset, dst);
} else {
__ set(offset, dst);
__ add(dst, reg, dst);
}
}
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
Register obj = op->obj_opr()->as_register();
Register hdr = op->hdr_opr()->as_register();
Register lock = op->lock_opr()->as_register();
// obj may not be an oop
if (op->code() == lir_lock) {
MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
if (UseFastLocking) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
// add debug info for NullPointerException only if one is possible
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
__ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
} else {
// always do slow locking
// note: the slow locking code could be inlined here, however if we use
// slow locking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow locking code is the same in either case which simplifies
// debugging
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
__ delayed()->nop();
}
} else {
assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
if (UseFastLocking) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
} else {
// always do slow unlocking
// note: the slow unlocking code could be inlined here, however if we use
// slow unlocking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow unlocking code is the same in either case which simplifies
// debugging
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
__ delayed()->nop();
}
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
// Update counter for all call types
ciMethodData* md = method->method_data();
if (md == NULL) {
bailout("out of memory building methodDataOop");
return;
}
ciProfileData* data = md->bci_to_data(bci);
assert(data->is_CounterData(), "need CounterData for calls");
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
Register mdo = op->mdo()->as_register();
Register tmp1 = op->tmp1()->as_register();
jobject2reg(md->encoding(), mdo);
int mdo_offset_bias = 0;
if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
data->size_in_bytes())) {
// The offset is large so bias the mdo by the base of the slot so
// that the ld can use simm13s to reference the slots of the data
mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
__ set(mdo_offset_bias, O7);
__ add(mdo, O7, mdo);
}
Address counter_addr(mdo, 0, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
__ lduw(counter_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ stw(tmp1, counter_addr);
Bytecodes::Code bc = method->java_code_at_bci(bci);
// Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes
if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
Tier1ProfileVirtualCalls) {
assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register();
assert_different_registers(mdo, tmp1, recv);
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
ciKlass* known_klass = op->known_holder();
if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
// We know the type that will be seen at this call site; we can
// statically update the methodDataOop rather than needing to do
// dynamic tests on the receiver type
// NOTE: we should probably put a lock around this search to
// avoid collisions by concurrent compilations
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (known_klass->equals(receiver)) {
Address data_addr(mdo, 0, md->byte_offset_of_slot(data,
VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias);
__ lduw(data_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ stw(tmp1, data_addr);
return;
}
}
// Receiver type not found in profile data; select an empty slot
// Note that this is less efficient than it should be because it
// always does a write to the receiver part of the
// VirtualCallData rather than just the first time
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (receiver == NULL) {
Address recv_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
mdo_offset_bias);
jobject2reg(known_klass->encoding(), tmp1);
__ st_ptr(tmp1, recv_addr);
Address data_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias);
__ lduw(data_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ stw(tmp1, data_addr);
return;
}
}
} else {
load(Address(recv, 0, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
Label update_done;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
// See if the receiver is receiver[n].
Address receiver_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
mdo_offset_bias);
__ ld_ptr(receiver_addr, tmp1);
__ verify_oop(tmp1);
__ cmp(recv, tmp1);
__ brx(Assembler::notEqual, false, Assembler::pt, next_test);
__ delayed()->nop();
Address data_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias);
__ lduw(data_addr, tmp1);
__ add(tmp1, DataLayout::counter_increment, tmp1);
__ stw(tmp1, data_addr);
__ br(Assembler::always, false, Assembler::pt, update_done);
__ delayed()->nop();
__ bind(next_test);
}
// Didn't find receiver; find next empty slot and fill it in
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
Address recv_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
mdo_offset_bias);
load(recv_addr, tmp1, T_OBJECT);
__ tst(tmp1);
__ brx(Assembler::notEqual, false, Assembler::pt, next_test);
__ delayed()->nop();
__ st_ptr(recv, recv_addr);
__ set(DataLayout::counter_increment, tmp1);
__ st_ptr(tmp1, Address(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
mdo_offset_bias));
if (i < (VirtualCallData::row_limit() - 1)) {
__ br(Assembler::always, false, Assembler::pt, update_done);
__ delayed()->nop();
}
__ bind(next_test);
}
__ bind(update_done);
}
}
}
void LIR_Assembler::align_backward_branch_target() {
__ align(16);
}
void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
// make sure we are expecting a delay
// this has the side effect of clearing the delay state
// so we can use _masm instead of _masm->delayed() to do the
// code generation.
__ delayed();
// make sure we only emit one instruction
int offset = code_offset();
op->delay_op()->emit_code(this);
#ifdef ASSERT
if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
op->delay_op()->print();
}
assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
"only one instruction can go in a delay slot");
#endif
// we may also be emitting the call info for the instruction
// which we are the delay slot of.
CodeEmitInfo * call_info = op->call_info();
if (call_info) {
add_call_info(code_offset(), call_info);
}
if (VerifyStackAtCalls) {
_masm->sub(FP, SP, O7);
_masm->cmp(O7, initial_frame_size_in_bytes());
_masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
}
}
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
assert(left->is_register(), "can only handle registers");
if (left->is_single_cpu()) {
__ neg(left->as_register(), dest->as_register());
} else if (left->is_single_fpu()) {
__ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
} else if (left->is_double_fpu()) {
__ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
} else {
assert (left->is_double_cpu(), "Must be a long");
Register Rlow = left->as_register_lo();
Register Rhi = left->as_register_hi();
#ifdef _LP64
__ sub(G0, Rlow, dest->as_register_lo());
#else
__ subcc(G0, Rlow, dest->as_register_lo());
__ subc (G0, Rhi, dest->as_register_hi());
#endif
}
}
void LIR_Assembler::fxch(int i) {
Unimplemented();
}
void LIR_Assembler::fld(int i) {
Unimplemented();
}
void LIR_Assembler::ffree(int i) {
Unimplemented();
}
void LIR_Assembler::rt_call(LIR_Opr result, address dest,
const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
// if tmp is invalid, then the function being called doesn't destroy the thread
if (tmp->is_valid()) {
__ save_thread(tmp->as_register());
}
__ call(dest, relocInfo::runtime_call_type);
__ delayed()->nop();
if (info != NULL) {
add_call_info_here(info);
}
if (tmp->is_valid()) {
__ restore_thread(tmp->as_register());
}
#ifdef ASSERT
__ verify_thread();
#endif // ASSERT
}
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
#ifdef _LP64
ShouldNotReachHere();
#endif
NEEDS_CLEANUP;
if (type == T_LONG) {
LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
// (extended to allow indexed as well as constant displaced for JSR-166)
Register idx = noreg; // contains either constant offset or index
int disp = mem_addr->disp();
if (mem_addr->index() == LIR_OprFact::illegalOpr) {
if (!Assembler::is_simm13(disp)) {
idx = O7;
__ set(disp, idx);
}
} else {
assert(disp == 0, "not both indexed and disp");
idx = mem_addr->index()->as_register();
}
int null_check_offset = -1;
Register base = mem_addr->base()->as_register();
if (src->is_register() && dest->is_address()) {
// G4 is high half, G5 is low half
if (VM_Version::v9_instructions_work()) {
// clear the top bits of G5, and scale up G4
__ srl (src->as_register_lo(), 0, G5);
__ sllx(src->as_register_hi(), 32, G4);
// combine the two halves into the 64 bits of G4
__ or3(G4, G5, G4);
null_check_offset = __ offset();
if (idx == noreg) {
__ stx(G4, base, disp);
} else {
__ stx(G4, base, idx);
}
} else {
__ mov (src->as_register_hi(), G4);
__ mov (src->as_register_lo(), G5);
null_check_offset = __ offset();
if (idx == noreg) {
__ std(G4, base, disp);
} else {
__ std(G4, base, idx);
}
}
} else if (src->is_address() && dest->is_register()) {
null_check_offset = __ offset();
if (VM_Version::v9_instructions_work()) {
if (idx == noreg) {
__ ldx(base, disp, G5);
} else {
__ ldx(base, idx, G5);
}
__ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
__ mov (G5, dest->as_register_lo()); // copy low half into lo
} else {
if (idx == noreg) {
__ ldd(base, disp, G4);
} else {
__ ldd(base, idx, G4);
}
// G4 is high half, G5 is low half
__ mov (G4, dest->as_register_hi());
__ mov (G5, dest->as_register_lo());
}
} else {
Unimplemented();
}
if (info != NULL) {
add_debug_info_for_null_check(null_check_offset, info);
}
} else {
// use normal move for all other volatiles since they don't need
// special handling to remain atomic.
move_op(src, dest, type, lir_patch_none, info, false, false);
}
}
void LIR_Assembler::membar() {
// only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
__ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
}
void LIR_Assembler::membar_acquire() {
// no-op on TSO
}
void LIR_Assembler::membar_release() {
// no-op on TSO
}
// Macro to Pack two sequential registers containing 32 bit values
// into a single 64 bit register.
// rs and rs->successor() are packed into rd
// rd and rs may be the same register.
// Note: rs and rs->successor() are destroyed.
void LIR_Assembler::pack64( Register rs, Register rd ) {
__ sllx(rs, 32, rs);
__ srl(rs->successor(), 0, rs->successor());
__ or3(rs, rs->successor(), rd);
}
// Macro to unpack a 64 bit value in a register into
// two sequential registers.
// rd is unpacked into rd and rd->successor()
void LIR_Assembler::unpack64( Register rd ) {
__ mov(rd, rd->successor());
__ srax(rd, 32, rd);
__ sra(rd->successor(), 0, rd->successor());
}
void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
LIR_Address* addr = addr_opr->as_address_ptr();
assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
__ add(addr->base()->as_register(), addr->disp(), dest->as_register());
}
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
assert(result_reg->is_register(), "check");
__ mov(G2_thread, result_reg->as_register());
}
void LIR_Assembler::peephole(LIR_List* lir) {
LIR_OpList* inst = lir->instructions_list();
for (int i = 0; i < inst->length(); i++) {
LIR_Op* op = inst->at(i);
switch (op->code()) {
case lir_cond_float_branch:
case lir_branch: {
LIR_OpBranch* branch = op->as_OpBranch();
assert(branch->info() == NULL, "shouldn't be state on branches anymore");
LIR_Op* delay_op = NULL;
// we'd like to be able to pull following instructions into
// this slot but we don't know enough to do it safely yet so
// only optimize block to block control flow.
if (LIRFillDelaySlots && branch->block()) {
LIR_Op* prev = inst->at(i - 1);
if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
// swap previous instruction into delay slot
inst->at_put(i - 1, op);
inst->at_put(i, new LIR_OpDelay(prev, op->info()));
#ifndef PRODUCT
if (LIRTracePeephole) {
tty->print_cr("delayed");
inst->at(i - 1)->print();
inst->at(i)->print();
}
#endif
continue;
}
}
if (!delay_op) {
delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
}
inst->insert_before(i + 1, delay_op);
break;
}
case lir_static_call:
case lir_virtual_call:
case lir_icvirtual_call:
case lir_optvirtual_call: {
LIR_Op* delay_op = NULL;
LIR_Op* prev = inst->at(i - 1);
if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
(op->code() != lir_virtual_call ||
!prev->result_opr()->is_single_cpu() ||
prev->result_opr()->as_register() != O0) &&
LIR_Assembler::is_single_instruction(prev)) {
// Only moves without info can be put into the delay slot.
// Also don't allow the setup of the receiver in the delay
// slot for vtable calls.
inst->at_put(i - 1, op);
inst->at_put(i, new LIR_OpDelay(prev, op->info()));
#ifndef PRODUCT
if (LIRTracePeephole) {
tty->print_cr("delayed");
inst->at(i - 1)->print();
inst->at(i)->print();
}
#endif
continue;
}
if (!delay_op) {
delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
inst->insert_before(i + 1, delay_op);
}
break;
}
}
}
}
#undef __