blob: 96b8ff8594ddedf4b33f89a4e8f0897867d48892 [file] [log] [blame]
/*
* Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
address interpreted_entry) {
// Just before the actual machine code entry point, allocate space
// for a MethodHandleEntry::Data record, so that we can manage everything
// from one base pointer.
__ align(wordSize);
address target = __ pc() + sizeof(Data);
while (__ pc() < target) {
__ nop();
__ align(wordSize);
}
MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
me->set_end_address(__ pc()); // set a temporary end_address
me->set_from_interpreted_entry(interpreted_entry);
me->set_type_checking_entry(NULL);
return (address) me;
}
MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
address start_addr) {
MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
assert(me->end_address() == start_addr, "valid ME");
// Fill in the real end_address:
__ align(wordSize);
me->set_end_address(__ pc());
return me;
}
// stack walking support
frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
//RicochetFrame* f = RicochetFrame::from_frame(fr);
// Cf. is_interpreted_frame path of frame::sender
intptr_t* younger_sp = fr.sp();
intptr_t* sp = fr.sender_sp();
map->make_integer_regs_unsaved();
map->shift_window(sp, younger_sp);
bool this_frame_adjusted_stack = true; // I5_savedSP is live in this RF
return frame(sp, younger_sp, this_frame_adjusted_stack);
}
void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
ResourceMark rm;
RicochetFrame* f = RicochetFrame::from_frame(fr);
// pick up the argument type descriptor:
Thread* thread = Thread::current();
Handle cookie(thread, f->compute_saved_args_layout(true, true));
// process fixed part
blk->do_oop((oop*)f->saved_target_addr());
blk->do_oop((oop*)f->saved_args_layout_addr());
// process variable arguments:
if (cookie.is_null()) return; // no arguments to describe
// the cookie is actually the invokeExact method for my target
// his argument signature is what I'm interested in
assert(cookie->is_method(), "");
methodHandle invoker(thread, methodOop(cookie()));
assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
assert(!invoker->is_static(), "must have MH argument");
int slot_count = invoker->size_of_parameters();
assert(slot_count >= 1, "must include 'this'");
intptr_t* base = f->saved_args_base();
intptr_t* retval = NULL;
if (f->has_return_value_slot())
retval = f->return_value_slot_addr();
int slot_num = slot_count - 1;
intptr_t* loc = &base[slot_num];
//blk->do_oop((oop*) loc); // original target, which is irrelevant
int arg_num = 0;
for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
if (ss.at_return_type()) continue;
BasicType ptype = ss.type();
if (ptype == T_ARRAY) ptype = T_OBJECT; // fold all refs to T_OBJECT
assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
slot_num -= type2size[ptype];
loc = &base[slot_num];
bool is_oop = (ptype == T_OBJECT && loc != retval);
if (is_oop) blk->do_oop((oop*)loc);
arg_num += 1;
}
assert(slot_num == 0, "must have processed all the arguments");
}
// Ricochet Frames
const Register MethodHandles::RicochetFrame::L1_continuation = L1;
const Register MethodHandles::RicochetFrame::L2_saved_target = L2;
const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3;
const Register MethodHandles::RicochetFrame::L4_saved_args_base = L4; // cf. Gargs = G4
const Register MethodHandles::RicochetFrame::L5_conversion = L5;
#ifdef ASSERT
const Register MethodHandles::RicochetFrame::L0_magic_number_1 = L0;
#endif //ASSERT
oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
if (read_cache) {
oop cookie = saved_args_layout();
if (cookie != NULL) return cookie;
}
oop target = saved_target();
oop mtype = java_lang_invoke_MethodHandle::type(target);
oop mtform = java_lang_invoke_MethodType::form(mtype);
oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
if (write_cache) {
(*saved_args_layout_addr()) = cookie;
}
return cookie;
}
void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words) {
(*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
address start = __ pc();
#ifdef ASSERT
__ illtrap(0); __ illtrap(0); __ illtrap(0);
// here's a hint of something special:
__ set(MAGIC_NUMBER_1, G0);
__ set(MAGIC_NUMBER_2, G0);
#endif //ASSERT
__ illtrap(0); // not reached
// Return values are in registers.
// L1_continuation contains a cleanup continuation we must return
// to.
(*bounce_offset) = __ pc() - start;
BLOCK_COMMENT("ricochet_blob.bounce");
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
trace_method_handle(_masm, "ricochet_blob.bounce");
__ JMP(L1_continuation, 0);
__ delayed()->nop();
__ illtrap(0);
DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0));
(*exception_offset) = __ pc() - start;
BLOCK_COMMENT("ricochet_blob.exception");
// compare this to Interpreter::rethrow_exception_entry, which is parallel code
// for example, see TemplateInterpreterGenerator::generate_throw_exception
// Live registers in:
// Oexception (O0): exception
// Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr)
__ verify_oop(Oexception);
// Take down the frame.
// Cf. InterpreterMacroAssembler::remove_activation.
leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7);
// We are done with this activation frame; find out where to go next.
// The continuation point will be an exception handler, which expects
// the following registers set up:
//
// Oexception: exception
// Oissuing_pc: the local call that threw exception
// Other On: garbage
// In/Ln: the contents of the caller's register window
//
// We do the required restore at the last possible moment, because we
// need to preserve some state across a runtime call.
// (Remember that the caller activation is unknown--it might not be
// interpreted, so things like Lscratch are useless in the caller.)
__ mov(Oexception, Oexception ->after_save()); // get exception in I0 so it will be on O0 after restore
__ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); // likewise set I1 to a value local to the caller
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
G2_thread, Oissuing_pc->after_save());
// The caller's SP was adjusted upon method entry to accomodate
// the callee's non-argument locals. Undo that adjustment.
__ JMP(O0, 0); // return exception handler in caller
__ delayed()->restore(I5_savedSP, G0, SP);
// (same old exception object is already in Oexception; see above)
// Note that an "issuing PC" is actually the next PC after the call
}
void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register argv_reg,
address return_handler) {
// does not include the __ save()
assert(argv_reg == Gargs, "");
Address G3_mh_vmtarget( recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
// Create the RicochetFrame.
// Unlike on x86 we can store all required information in local
// registers.
BLOCK_COMMENT("push RicochetFrame {");
__ set(ExternalAddress(return_handler), L1_continuation);
__ load_heap_oop(G3_mh_vmtarget, L2_saved_target);
__ mov(G0, L3_saved_args_layout);
__ mov(Gargs, L4_saved_args_base);
__ lduw(G3_amh_conversion, L5_conversion); // 32-bit field
// I5, I6, I7 are already set up
DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1, L0_magic_number_1));
BLOCK_COMMENT("} RicochetFrame");
}
void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register new_sp_reg,
Register sender_pc_reg) {
assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place");
assert(sender_pc_reg == I7, "in a fixed place");
// does not include the __ ret() & __ restore()
assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg);
// Take down the frame.
// Cf. InterpreterMacroAssembler::remove_activation.
BLOCK_COMMENT("end_ricochet_frame {");
if (recv_reg->is_valid())
__ mov(L2_saved_target, recv_reg);
BLOCK_COMMENT("} end_ricochet_frame");
}
// Emit code to verify that FP is pointing at a valid ricochet frame.
#ifdef ASSERT
enum {
ARG_LIMIT = 255, SLOP = 45,
// use this parameter for checking for garbage stack movements:
UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
// the slop defends against false alarms due to fencepost errors
};
void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
// The stack should look like this:
// ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF]
// Check various invariants.
Register O7_temp = O7, O5_temp = O5;
Label L_ok_1, L_ok_2, L_ok_3, L_ok_4;
BLOCK_COMMENT("verify_clean {");
// Magic numbers must check out:
__ set((int32_t) MAGIC_NUMBER_1, O7_temp);
__ cmp_and_br_short(O7_temp, L0_magic_number_1, Assembler::equal, Assembler::pt, L_ok_1);
__ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found");
__ BIND(L_ok_1);
// Arguments pointer must look reasonable:
#ifdef _LP64
Register FP_temp = O5_temp;
__ add(FP, STACK_BIAS, FP_temp);
#else
Register FP_temp = FP;
#endif
__ cmp_and_brx_short(L4_saved_args_base, FP_temp, Assembler::greaterEqualUnsigned, Assembler::pt, L_ok_2);
__ stop("damaged ricochet frame: L4 < FP");
__ BIND(L_ok_2);
// Disable until we decide on it's fate
// __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp);
// __ cmp(O7_temp, FP_temp);
// __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3);
// __ delayed()->nop();
// __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP");
__ BIND(L_ok_3);
extract_conversion_dest_type(_masm, L5_conversion, O7_temp);
__ cmp_and_br_short(O7_temp, T_VOID, Assembler::equal, Assembler::pt, L_ok_4);
extract_conversion_vminfo(_masm, L5_conversion, O5_temp);
__ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp);
assert(Assembler::is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13");
__ cmp_and_brx_short(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER, Assembler::equal, Assembler::pt, L_ok_4);
__ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found");
__ BIND(L_ok_4);
BLOCK_COMMENT("} verify_clean");
}
#endif //ASSERT
void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) {
if (VerifyMethodHandles)
verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg,
"AMH argument is a Class");
__ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg);
}
void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) {
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load");
__ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg);
}
void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
__ and3(conversion_field_reg, CONV_VMINFO_MASK, reg);
}
void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
__ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg);
__ and3(reg, 0x0F, reg);
}
void MethodHandles::load_stack_move(MacroAssembler* _masm,
Address G3_amh_conversion,
Register stack_move_reg) {
BLOCK_COMMENT("load_stack_move {");
__ ldsw(G3_amh_conversion, stack_move_reg);
__ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
#ifdef ASSERT
if (VerifyMethodHandles) {
Label L_ok, L_bad;
int32_t stack_move_limit = 0x0800; // extra-large
__ cmp_and_br_short(stack_move_reg, stack_move_limit, Assembler::greaterEqual, Assembler::pn, L_bad);
__ cmp(stack_move_reg, -stack_move_limit);
__ br(Assembler::greater, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ BIND(L_bad);
__ stop("load_stack_move of garbage value");
__ BIND(L_ok);
}
#endif
BLOCK_COMMENT("} load_stack_move");
}
#ifdef ASSERT
void MethodHandles::RicochetFrame::verify() const {
assert(magic_number_1() == MAGIC_NUMBER_1, "");
if (!Universe::heap()->is_gc_active()) {
if (saved_args_layout() != NULL) {
assert(saved_args_layout()->is_method(), "must be valid oop");
}
if (saved_target() != NULL) {
assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
}
}
int conv_op = adapter_conversion_op(conversion());
assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
"must be a sane conversion");
if (has_return_value_slot()) {
assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
}
}
void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
// Verify that argslot lies within (Gargs, FP].
Label L_ok, L_bad;
BLOCK_COMMENT("verify_argslot {");
__ cmp_and_brx_short(Gargs, argslot_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
__ add(FP, STACK_BIAS, temp_reg); // STACK_BIAS is zero on !_LP64
__ cmp_and_brx_short(argslot_reg, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
__ BIND(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_argslot");
}
void MethodHandles::verify_argslots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register arg_slot_base_reg,
Register temp_reg,
Register temp2_reg,
bool negate_argslots,
const char* error_message) {
// Verify that [argslot..argslot+size) lies within (Gargs, FP).
Label L_ok, L_bad;
BLOCK_COMMENT("verify_argslots {");
if (negate_argslots) {
if (arg_slots.is_constant()) {
arg_slots = -1 * arg_slots.as_constant();
} else {
__ neg(arg_slots.as_register(), temp_reg);
arg_slots = temp_reg;
}
}
__ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg);
__ add(FP, STACK_BIAS, temp2_reg); // STACK_BIAS is zero on !_LP64
__ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
// Gargs points to the first word so adjust by BytesPerWord
__ add(arg_slot_base_reg, BytesPerWord, temp_reg);
__ cmp_and_brx_short(Gargs, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
__ BIND(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_argslots");
}
// Make sure that arg_slots has the same sign as the given direction.
// If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
void MethodHandles::verify_stack_move(MacroAssembler* _masm,
RegisterOrConstant arg_slots, int direction) {
enum { UNREASONABLE_STACK_MOVE = 256 * 4 }; // limit of 255 arguments
bool allow_zero = arg_slots.is_constant();
if (direction == 0) { direction = +1; allow_zero = true; }
assert(stack_move_unit() == -1, "else add extra checks here");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
BLOCK_COMMENT("verify_stack_move {");
// __ btst(-stack_move_unit() - 1, arg_slots.as_register()); // no need
// __ br(Assembler::notZero, false, Assembler::pn, L_bad);
// __ delayed()->nop();
__ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
if (direction > 0) {
__ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
__ br(Assembler::less, false, Assembler::pn, L_ok);
__ delayed()->nop();
} else {
__ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
__ br(Assembler::greater, false, Assembler::pn, L_ok);
__ delayed()->nop();
}
__ BIND(L_bad);
if (direction > 0)
__ stop("assert arg_slots > 0");
else
__ stop("assert arg_slots < 0");
__ BIND(L_ok);
BLOCK_COMMENT("} verify_stack_move");
} else {
intptr_t size = arg_slots.as_constant();
if (direction < 0) size = -size;
assert(size >= 0, "correct direction of constant move");
assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
}
}
void MethodHandles::verify_klass(MacroAssembler* _masm,
Register obj_reg, KlassHandle klass,
Register temp_reg, Register temp2_reg,
const char* error_message) {
oop* klass_addr = klass.raw_value();
assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
"must be one of the SystemDictionaryHandles");
Label L_ok, L_bad;
BLOCK_COMMENT("verify_klass {");
__ verify_oop(obj_reg);
__ br_null_short(obj_reg, Assembler::pn, L_bad);
__ load_klass(obj_reg, temp_reg);
__ set(ExternalAddress(klass_addr), temp2_reg);
__ ld_ptr(Address(temp2_reg, 0), temp2_reg);
__ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
intptr_t super_check_offset = klass->super_check_offset();
__ ld_ptr(Address(temp_reg, super_check_offset), temp_reg);
__ set(ExternalAddress(klass_addr), temp2_reg);
__ ld_ptr(Address(temp2_reg, 0), temp2_reg);
__ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
__ BIND(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_klass");
}
#endif // ASSERT
void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp) {
assert(method == G5_method, "interpreter calling convention");
__ verify_oop(method);
__ ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
if (JvmtiExport::can_post_interpreter_events()) {
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
__ verify_thread();
Label skip_compiled_code;
const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
__ ld(interp_only, temp);
__ tst(temp);
__ br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
__ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
__ bind(skip_compiled_code);
}
__ jmp(target, 0);
__ delayed()->nop();
}
// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
// I5_savedSP/O5_savedSP: sender SP (must preserve)
// G4 (Gargs): incoming argument list (must preserve)
// G5_method: invoke methodOop
// G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
// O0, O1, O2, O3, O4: garbage temps, blown away
Register O0_mtype = O0;
Register O1_scratch = O1;
Register O2_scratch = O2;
Register O3_scratch = O3;
Register O4_argslot = O4;
Register O4_argbase = O4;
// emit WrongMethodType path first, to enable back-branch from main path
Label wrong_method_type;
__ bind(wrong_method_type);
Label invoke_generic_slow_path;
assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
__ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
__ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
__ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
__ delayed()->nop();
__ mov(O0_mtype, G5_method_type); // required by throw_WrongMethodType
__ mov(G3_method_handle, G3_method_handle); // already in this register
// O0 will be filled in with JavaThread in stub
__ jump_to(AddressLiteral(StubRoutines::throw_WrongMethodTypeException_entry()), O3_scratch);
__ delayed()->nop();
// here's where control starts out:
__ align(CodeEntryAlignment);
address entry_point = __ pc();
// fetch the MethodType from the method handle
// FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
// This would simplify several touchy bits of code.
// See 6984712: JSR 292 method handle calls need a clean argument base pointer
{
Register tem = G5_method;
for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
__ ld_ptr(Address(tem, *pchase), O0_mtype);
tem = O0_mtype; // in case there is another indirection
}
}
// given the MethodType, find out where the MH argument is buried
__ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, O1_scratch)), O4_argslot);
__ ldsw( Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
__ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase);
// Note: argument_address uses its input as a scratch register!
Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize);
__ ld_ptr(mh_receiver_slot_addr, G3_method_handle);
trace_method_handle(_masm, "invokeExact");
__ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
// Nobody uses the MH receiver slot after this. Make sure.
DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr));
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
// for invokeGeneric (only), apply argument and result conversions on the fly
__ bind(invoke_generic_slow_path);
#ifdef ASSERT
if (VerifyMethodHandles) {
Label L;
__ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
__ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
__ brx(Assembler::equal, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("bad methodOop::intrinsic_id");
__ bind(L);
}
#endif //ASSERT
// make room on the stack for another pointer:
insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch);
// load up an adapter from the calling type (Java weaves this)
Register O2_form = O2_scratch;
Register O3_adapter = O3_scratch;
__ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, O1_scratch)), O2_form);
__ load_heap_oop(Address(O2_form, __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
__ verify_oop(O3_adapter);
__ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
// As a trusted first argument, pass the type being called, so the adapter knows
// the actual types of the arguments and return values.
// (Generic invokers are shared among form-families of method-type.)
__ st_ptr(O0_mtype, Address(O4_argbase, 0 * Interpreter::stackElementSize));
// FIXME: assert that O3_adapter is of the right method-type.
__ mov(O3_adapter, G3_method_handle);
trace_method_handle(_masm, "invokeGeneric");
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
return entry_point;
}
// Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
static RegisterOrConstant constant(int value) {
return RegisterOrConstant(value);
}
static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) {
__ ldsw(vmargslot_addr, result);
}
static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register temp_reg, Register temp2_reg) {
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
if (arg_slots.is_constant()) {
const int offset = arg_slots.as_constant() << LogBytesPerWord;
const int masked_offset = round_to(offset, 2 * BytesPerWord);
const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask;
assert(masked_offset == masked_offset2, "must agree");
__ sub(Gargs, offset, Gargs);
__ sub(SP, masked_offset, SP );
return offset;
} else {
#ifdef ASSERT
{
Label L_ok;
__ cmp_and_br_short(arg_slots.as_register(), 0, Assembler::greaterEqual, Assembler::pt, L_ok);
__ stop("negative arg_slots");
__ bind(L_ok);
}
#endif
__ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
__ add( temp_reg, 1*BytesPerWord, temp2_reg);
__ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg);
__ sub(Gargs, temp_reg, Gargs);
__ sub(SP, temp2_reg, SP );
return temp_reg;
}
}
static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register temp_reg, Register temp2_reg) {
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
if (arg_slots.is_constant()) {
const int offset = arg_slots.as_constant() << LogBytesPerWord;
const int masked_offset = offset & ~TwoWordAlignmentMask;
__ add(Gargs, offset, Gargs);
__ add(SP, masked_offset, SP );
return offset;
} else {
__ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
__ andn(temp_reg, TwoWordAlignmentMask, temp2_reg);
__ add(Gargs, temp_reg, Gargs);
__ add(SP, temp2_reg, SP );
return temp_reg;
}
}
// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and < 0
// argslot_reg is decremented to point to the new (shifted) location of the argslot
// But, temp_reg ends up holding the original value of argslot_reg.
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg) {
// allow constant zero
if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
return;
assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
(!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
BLOCK_COMMENT("insert_arg_slots {");
if (VerifyMethodHandles)
verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
if (VerifyMethodHandles)
verify_stack_move(_masm, arg_slots, -1);
// Make space on the stack for the inserted argument(s).
// Then pull down everything shallower than argslot_reg.
// The stacked return address gets pulled down with everything else.
// That is, copy [sp, argslot) downward by -size words. In pseudo-code:
// sp -= size;
// for (temp = sp + size; temp < argslot; temp++)
// temp[-size] = temp[0]
// argslot -= size;
// offset is temp3_reg in case of arg_slots being a register.
RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
__ sub(Gargs, offset, temp_reg); // source pointer for copy
{
Label loop;
__ BIND(loop);
// pull one word down each time through the loop
__ ld_ptr( Address(temp_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset) );
__ add(temp_reg, wordSize, temp_reg);
__ cmp_and_brx_short(temp_reg, argslot_reg, Assembler::lessUnsigned, Assembler::pt, loop);
}
// Now move the argslot down, to point to the opened-up space.
__ add(argslot_reg, offset, argslot_reg);
BLOCK_COMMENT("} insert_arg_slots");
}
// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and > 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg) {
// allow constant zero
if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
return;
assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
(!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
BLOCK_COMMENT("remove_arg_slots {");
if (VerifyMethodHandles)
verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false,
"deleted argument(s) must fall within current frame");
if (VerifyMethodHandles)
verify_stack_move(_masm, arg_slots, +1);
// Pull up everything shallower than argslot.
// Then remove the excess space on the stack.
// The stacked return address gets pulled up with everything else.
// That is, copy [sp, argslot) upward by size words. In pseudo-code:
// for (temp = argslot-1; temp >= sp; --temp)
// temp[size] = temp[0]
// argslot += size;
// sp += size;
RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
__ sub(argslot_reg, wordSize, temp_reg); // source pointer for copy
{
Label L_loop;
__ BIND(L_loop);
// pull one word up each time through the loop
__ ld_ptr( Address(temp_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset) );
__ sub(temp_reg, wordSize, temp_reg);
__ cmp_and_brx_short(temp_reg, Gargs, Assembler::greaterEqualUnsigned, Assembler::pt, L_loop);
}
// And adjust the argslot address to point at the deletion point.
__ add(argslot_reg, offset, argslot_reg);
// We don't need the offset at this point anymore, just adjust SP and Gargs.
(void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
BLOCK_COMMENT("} remove_arg_slots");
}
// Helper to copy argument slots to the top of the stack.
// The sequence starts with argslot_reg and is counted by slot_count
// slot_count must be a multiple of stack_move_unit() and >= 0
// This function blows the temps but does not change argslot_reg.
void MethodHandles::push_arg_slots(MacroAssembler* _masm,
Register argslot_reg,
RegisterOrConstant slot_count,
Register temp_reg, Register temp2_reg) {
// allow constant zero
if (slot_count.is_constant() && slot_count.as_constant() == 0)
return;
assert_different_registers(argslot_reg, temp_reg, temp2_reg,
(!slot_count.is_register() ? Gargs : slot_count.as_register()),
SP);
assert(Interpreter::stackElementSize == wordSize, "else change this code");
BLOCK_COMMENT("push_arg_slots {");
if (VerifyMethodHandles)
verify_stack_move(_masm, slot_count, 0);
RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg);
if (slot_count.is_constant()) {
for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
__ ld_ptr( Address(argslot_reg, i * wordSize), temp_reg);
__ st_ptr(temp_reg, Address(Gargs, i * wordSize));
}
} else {
Label L_plural, L_loop, L_break;
// Emit code to dynamically check for the common cases, zero and one slot.
__ cmp(slot_count.as_register(), (int32_t) 1);
__ br(Assembler::greater, false, Assembler::pn, L_plural);
__ delayed()->nop();
__ br(Assembler::less, false, Assembler::pn, L_break);
__ delayed()->nop();
__ ld_ptr( Address(argslot_reg, 0), temp_reg);
__ st_ptr(temp_reg, Address(Gargs, 0));
__ ba_short(L_break);
__ BIND(L_plural);
// Loop for 2 or more:
// top = &argslot[slot_count]
// while (top > argslot) *(--Gargs) = *(--top)
Register top_reg = temp_reg;
__ add(argslot_reg, offset, top_reg);
__ add(Gargs, offset, Gargs ); // move back up again so we can go down
__ BIND(L_loop);
__ sub(top_reg, wordSize, top_reg);
__ sub(Gargs, wordSize, Gargs );
__ ld_ptr( Address(top_reg, 0), temp2_reg);
__ st_ptr(temp2_reg, Address(Gargs, 0));
__ cmp_and_brx_short(top_reg, argslot_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
__ BIND(L_break);
}
BLOCK_COMMENT("} push_arg_slots");
}
// in-place movement; no change to Gargs
// blows temp_reg, temp2_reg
void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
Register bottom_reg, // invariant
Address top_addr, // can use temp_reg
RegisterOrConstant positive_distance_in_slots, // destroyed if register
Register temp_reg, Register temp2_reg) {
assert_different_registers(bottom_reg,
temp_reg, temp2_reg,
positive_distance_in_slots.register_or_noreg());
BLOCK_COMMENT("move_arg_slots_up {");
Label L_loop, L_break;
Register top_reg = temp_reg;
if (!top_addr.is_same_address(Address(top_reg, 0))) {
__ add(top_addr, top_reg);
}
// Detect empty (or broken) loop:
#ifdef ASSERT
if (VerifyMethodHandles) {
// Verify that &bottom < &top (non-empty interval)
Label L_ok, L_bad;
if (positive_distance_in_slots.is_register()) {
__ cmp(positive_distance_in_slots.as_register(), (int32_t) 0);
__ br(Assembler::lessEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
}
__ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
__ BIND(L_bad);
__ stop("valid bounds (copy up)");
__ BIND(L_ok);
}
#endif
__ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
// work top down to bottom, copying contiguous data upwards
// In pseudo-code:
// while (--top >= bottom) *(top + distance) = *(top + 0);
RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg());
__ BIND(L_loop);
__ sub(top_reg, wordSize, top_reg);
__ ld_ptr( Address(top_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(top_reg, offset) );
__ cmp_and_brx_short(top_reg, bottom_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
assert(Interpreter::stackElementSize == wordSize, "else change loop");
__ BIND(L_break);
BLOCK_COMMENT("} move_arg_slots_up");
}
// in-place movement; no change to rsp
// blows temp_reg, temp2_reg
void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
Address bottom_addr, // can use temp_reg
Register top_reg, // invariant
RegisterOrConstant negative_distance_in_slots, // destroyed if register
Register temp_reg, Register temp2_reg) {
assert_different_registers(top_reg,
negative_distance_in_slots.register_or_noreg(),
temp_reg, temp2_reg);
BLOCK_COMMENT("move_arg_slots_down {");
Label L_loop, L_break;
Register bottom_reg = temp_reg;
if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) {
__ add(bottom_addr, bottom_reg);
}
// Detect empty (or broken) loop:
#ifdef ASSERT
assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
if (VerifyMethodHandles) {
// Verify that &bottom < &top (non-empty interval)
Label L_ok, L_bad;
if (negative_distance_in_slots.is_register()) {
__ cmp(negative_distance_in_slots.as_register(), (int32_t) 0);
__ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
}
__ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
__ BIND(L_bad);
__ stop("valid bounds (copy down)");
__ BIND(L_ok);
}
#endif
__ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
// work bottom up to top, copying contiguous data downwards
// In pseudo-code:
// while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++;
RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg());
__ BIND(L_loop);
__ ld_ptr( Address(bottom_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(bottom_reg, offset) );
__ add(bottom_reg, wordSize, bottom_reg);
__ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_loop);
assert(Interpreter::stackElementSize == wordSize, "else change loop");
__ BIND(L_break);
BLOCK_COMMENT("} move_arg_slots_down");
}
// Copy from a field or array element to a stacked argument slot.
// is_element (ignored) says whether caller is loading an array element instead of an instance field.
void MethodHandles::move_typed_arg(MacroAssembler* _masm,
BasicType type, bool is_element,
Address value_src, Address slot_dest,
Register temp_reg) {
assert(!slot_dest.uses(temp_reg), "must be different register");
BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
if (type == T_OBJECT || type == T_ARRAY) {
__ load_heap_oop(value_src, temp_reg);
__ verify_oop(temp_reg);
__ st_ptr(temp_reg, slot_dest);
} else if (type != T_VOID) {
int arg_size = type2aelembytes(type);
bool arg_is_signed = is_signed_subword_type(type);
int slot_size = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size; // store int sub-words as int
__ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed);
__ store_sized_value(temp_reg, slot_dest, slot_size );
}
BLOCK_COMMENT("} move_typed_arg");
}
// Cf. TemplateInterpreterGenerator::generate_return_entry_for and
// InterpreterMacroAssembler::save_return_value
void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
Address return_slot) {
BLOCK_COMMENT("move_return_value {");
// Look at the type and pull the value out of the corresponding register.
if (type == T_VOID) {
// nothing to do
} else if (type == T_OBJECT) {
__ verify_oop(O0);
__ st_ptr(O0, return_slot);
} else if (type == T_INT || is_subword_type(type)) {
int type_size = type2aelembytes(T_INT);
__ store_sized_value(O0, return_slot, type_size);
} else if (type == T_LONG) {
// store the value by parts
// Note: We assume longs are continguous (if misaligned) on the interpreter stack.
#if !defined(_LP64) && defined(COMPILER2)
__ stx(G1, return_slot);
#else
#ifdef _LP64
__ stx(O0, return_slot);
#else
if (return_slot.has_disp()) {
// The displacement is a constant
__ st(O0, return_slot);
__ st(O1, return_slot.plus_disp(Interpreter::stackElementSize));
} else {
__ std(O0, return_slot);
}
#endif
#endif
} else if (type == T_FLOAT) {
__ stf(FloatRegisterImpl::S, Ftos_f, return_slot);
} else if (type == T_DOUBLE) {
__ stf(FloatRegisterImpl::D, Ftos_f, return_slot);
} else {
ShouldNotReachHere();
}
BLOCK_COMMENT("} move_return_value");
}
#ifdef ASSERT
void MethodHandles::RicochetFrame::describe(const frame* fr, FrameValues& values, int frame_no) {
RicochetFrame* rf = new RicochetFrame(*fr);
// ricochet slots (kept in registers for sparc)
values.describe(frame_no, rf->register_addr(I5_savedSP), err_msg("exact_sender_sp reg for #%d", frame_no));
values.describe(frame_no, rf->register_addr(L5_conversion), err_msg("conversion reg for #%d", frame_no));
values.describe(frame_no, rf->register_addr(L4_saved_args_base), err_msg("saved_args_base reg for #%d", frame_no));
values.describe(frame_no, rf->register_addr(L3_saved_args_layout), err_msg("saved_args_layout reg for #%d", frame_no));
values.describe(frame_no, rf->register_addr(L2_saved_target), err_msg("saved_target reg for #%d", frame_no));
values.describe(frame_no, rf->register_addr(L1_continuation), err_msg("continuation reg for #%d", frame_no));
// relevant ricochet targets (in caller frame)
values.describe(-1, rf->saved_args_base(), err_msg("*saved_args_base for #%d", frame_no));
values.describe(-1, (intptr_t *)(STACK_BIAS+(uintptr_t)rf->exact_sender_sp()), err_msg("*exact_sender_sp+STACK_BIAS for #%d", frame_no));
}
#endif // ASSERT
#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
oopDesc* mh,
intptr_t* saved_sp) {
bool has_mh = (strstr(adaptername, "return/") == NULL); // return adapters don't have mh
tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp);
if (has_mh)
print_method_handle(mh);
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
if (!TraceMethodHandles) return;
BLOCK_COMMENT("trace_method_handle {");
// save: Gargs, O5_savedSP
__ save_frame(16);
__ set((intptr_t) adaptername, O0);
__ mov(G3_method_handle, O1);
__ mov(I5_savedSP, O2);
__ mov(G3_method_handle, L3);
__ mov(Gargs, L4);
__ mov(G5_method_type, L5);
__ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub));
__ mov(L3, G3_method_handle);
__ mov(L4, Gargs);
__ mov(L5, G5_method_type);
__ restore();
BLOCK_COMMENT("} trace_method_handle");
}
#endif // PRODUCT
// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
// OP_PRIM_TO_REF is below...
|(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
// OP_COLLECT_ARGS is below...
|(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
|(
java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
)
)
);
}
//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
// Here is the register state during an interpreted call,
// as set up by generate_method_handle_interpreter_entry():
// - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
// - G3: receiver method handle
// - O5_savedSP: sender SP (must preserve)
const Register O0_scratch = O0;
const Register O1_scratch = O1;
const Register O2_scratch = O2;
const Register O3_scratch = O3;
const Register O4_scratch = O4;
const Register G5_scratch = G5;
// Often used names:
const Register O0_argslot = O0;
// Argument registers for _raise_exception:
const Register O0_code = O0;
const Register O1_actual = O1;
const Register O2_required = O2;
guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
// Some handy addresses:
Address G3_mh_vmtarget( G3_method_handle, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
Address G3_dmh_vmindex( G3_method_handle, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes());
Address G3_bmh_vmargslot( G3_method_handle, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes());
Address G3_bmh_argument( G3_method_handle, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes());
Address G3_amh_vmargslot( G3_method_handle, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes());
Address G3_amh_argument ( G3_method_handle, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes());
Address G3_amh_conversion(G3_method_handle, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
const int java_mirror_offset = in_bytes(Klass::java_mirror_offset());
if (have_entry(ek)) {
__ nop(); // empty stubs make SG sick
return;
}
address interp_entry = __ pc();
trace_method_handle(_masm, entry_name(ek));
BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
switch ((int) ek) {
case _raise_exception:
{
// Not a real MH entry, but rather shared code for raising an
// exception. For sharing purposes the arguments are passed into registers
// and then placed in the intepreter calling convention here.
assert(raise_exception_method(), "must be set");
assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
__ set(AddressLiteral((address) &_raise_exception_method), G5_method);
__ ld_ptr(Address(G5_method, 0), G5_method);
const int jobject_oop_offset = 0;
__ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);
adjust_SP_and_Gargs_down_by_slots(_masm, 3, noreg, noreg);
__ st (O0_code, __ argument_address(constant(2), noreg, 0));
__ st_ptr(O1_actual, __ argument_address(constant(1), noreg, 0));
__ st_ptr(O2_required, __ argument_address(constant(0), noreg, 0));
jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
}
break;
case _invokestatic_mh:
case _invokespecial_mh:
{
__ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop
// Same as TemplateTable::invokestatic or invokespecial,
// minus the CP setup and profiling:
if (ek == _invokespecial_mh) {
// Must load & check the first argument before entering the target method.
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
__ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle);
__ verify_oop(G3_method_handle);
}
jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
}
break;
case _invokevirtual_mh:
{
// Same as TemplateTable::invokevirtual,
// minus the CP setup and profiling:
// Pick out the vtable index and receiver offset from the MH,
// and then we can discard it:
Register O2_index = O2_scratch;
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
__ ldsw(G3_dmh_vmindex, O2_index);
// Note: The verifier allows us to ignore G3_mh_vmtarget.
__ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
// Get receiver klass:
Register O0_klass = O0_argslot;
__ load_klass(G3_method_handle, O0_klass);
__ verify_oop(O0_klass);
// Get target methodOop & entry point:
const int base = instanceKlass::vtable_start_offset() * wordSize;
assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
__ sll_ptr(O2_index, LogBytesPerWord, O2_index);
__ add(O0_klass, O2_index, O0_klass);
Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
__ ld_ptr(vtable_entry_addr, G5_method);
jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
}
break;
case _invokeinterface_mh:
{
// Same as TemplateTable::invokeinterface,
// minus the CP setup and profiling:
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
Register O1_intf = O1_scratch;
Register G5_index = G5_scratch;
__ load_heap_oop(G3_mh_vmtarget, O1_intf);
__ ldsw(G3_dmh_vmindex, G5_index);
__ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
// Get receiver klass:
Register O0_klass = O0_argslot;
__ load_klass(G3_method_handle, O0_klass);
__ verify_oop(O0_klass);
// Get interface:
Label no_such_interface;
__ verify_oop(O1_intf);
__ lookup_interface_method(O0_klass, O1_intf,
// Note: next two args must be the same:
G5_index, G5_method,
O2_scratch,
O3_scratch,
no_such_interface);
jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
__ bind(no_such_interface);
// Throw an exception.
// For historical reasons, it will be IncompatibleClassChangeError.
__ unimplemented("not tested yet");
__ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required); // required interface
__ mov( O0_klass, O1_actual); // bad receiver
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_invokeinterface, O0_code); // who is complaining?
}
break;
case _bound_ref_mh:
case _bound_int_mh:
case _bound_long_mh:
case _bound_ref_direct_mh:
case _bound_int_direct_mh:
case _bound_long_direct_mh:
{
const bool direct_to_method = (ek >= _bound_ref_direct_mh);
BasicType arg_type = ek_bound_mh_arg_type(ek);
int arg_slots = type2size[arg_type];
// Make room for the new argument:
load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
// Store bound argument into the new stack slot:
__ load_heap_oop(G3_bmh_argument, O1_scratch);
if (arg_type == T_OBJECT) {
__ st_ptr(O1_scratch, Address(O0_argslot, 0));
} else {
Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
move_typed_arg(_masm, arg_type, false,
prim_value_addr,
Address(O0_argslot, 0),
O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3)
}
if (direct_to_method) {
__ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop
jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
} else {
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle); // target is a methodOop
__ verify_oop(G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
}
break;
case _adapter_opt_profiling:
if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
Address G3_mh_vmcount(G3_method_handle, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
__ ld(G3_mh_vmcount, O1_scratch);
__ add(O1_scratch, 1, O1_scratch);
__ st(O1_scratch, G3_mh_vmcount);
}
// fall through
case _adapter_retype_only:
case _adapter_retype_raw:
// Immediately jump to the next MH layer:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ verify_oop(G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
// This is OK when all parameter types widen.
// It is also OK when a return type narrows.
break;
case _adapter_check_cast:
{
// Check a reference argument before jumping to the next layer of MH:
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
Address vmarg = __ argument_address(O0_argslot, O0_argslot);
// What class are we casting to?
Register O1_klass = O1_scratch; // Interesting AMH data.
__ load_heap_oop(G3_amh_argument, O1_klass); // This is a Class object!
load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch);
Label L_done;
__ ld_ptr(vmarg, O2_scratch);
__ br_null_short(O2_scratch, Assembler::pn, L_done); // No cast if null.
__ load_klass(O2_scratch, O2_scratch);
// Live at this point:
// - O0_argslot : argslot index in vmarg; may be required in the failing path
// - O1_klass : klass required by the target method
// - O2_scratch : argument klass to test
// - G3_method_handle: adapter method handle
__ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done);
// If we get here, the type check failed!
__ load_heap_oop(G3_amh_argument, O2_required); // required class
__ ld_ptr( vmarg, O1_actual); // bad object
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_checkcast, O0_code); // who is complaining?
__ BIND(L_done);
// Get the new MH:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_prim_to_prim:
case _adapter_ref_to_prim:
// Handled completely by optimized cases.
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim
{
// Perform an in-place conversion to int or an int subword.
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
Address value;
Address vmarg;
bool value_left_justified = false;
switch (ek) {
case _adapter_opt_i2i:
value = vmarg = __ argument_address(O0_argslot, O0_argslot);
break;
case _adapter_opt_l2i:
{
// just delete the extra slot
#ifdef _LP64
// In V9, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
// Keep the second slot.
__ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot);
remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
value = Address(O0_argslot, 4); // Get least-significant 32-bit of 64-bit value.
vmarg = Address(O0_argslot, Interpreter::stackElementSize);
#else
// Keep the first slot.
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
value = Address(O0_argslot, 0);
vmarg = value;
#endif
}
break;
case _adapter_opt_unboxi:
{
vmarg = __ argument_address(O0_argslot, O0_argslot);
// Load the value up from the heap.
__ ld_ptr(vmarg, O1_scratch);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt)))
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
}
#endif
__ null_check(O1_scratch, value_offset);
value = Address(O1_scratch, value_offset);
#ifdef _BIG_ENDIAN
// Values stored in objects are packed.
value_left_justified = true;
#endif
}
break;
default:
ShouldNotReachHere();
}
// This check is required on _BIG_ENDIAN
Register G5_vminfo = G5_scratch;
__ ldsw(G3_amh_conversion, G5_vminfo);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
// Original 32-bit vmdata word must be of this form:
// | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
__ lduw(value, O1_scratch);
if (!value_left_justified)
__ sll(O1_scratch, G5_vminfo, O1_scratch);
Label zero_extend, done;
__ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
__ br(Assembler::zero, false, Assembler::pn, zero_extend);
__ delayed()->nop();
// this path is taken for int->byte, int->short
__ sra(O1_scratch, G5_vminfo, O1_scratch);
__ ba_short(done);
__ bind(zero_extend);
// this is taken for int->char
__ srl(O1_scratch, G5_vminfo, O1_scratch);
__ bind(done);
__ st(O1_scratch, vmarg);
// Get the new MH:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim
{
// Perform an in-place int-to-long or ref-to-long conversion.
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
// On big-endian machine we duplicate the slot and store the MSW
// in the first slot.
__ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot);
insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
Address arg_lsw(O0_argslot, 0);
Address arg_msw(O0_argslot, -Interpreter::stackElementSize);
switch (ek) {
case _adapter_opt_i2l:
{
#ifdef _LP64
__ ldsw(arg_lsw, O2_scratch); // Load LSW sign-extended
#else
__ ldsw(arg_lsw, O3_scratch); // Load LSW sign-extended
__ srlx(O3_scratch, BitsPerInt, O2_scratch); // Move MSW value to lower 32-bits for std
#endif
__ st_long(O2_scratch, arg_msw); // Uses O2/O3 on !_LP64
}
break;
case _adapter_opt_unboxl:
{
// Load the value up from the heap.
__ ld_ptr(arg_lsw, O1_scratch);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
__ null_check(O1_scratch, value_offset);
__ ld_long(Address(O1_scratch, value_offset), O2_scratch); // Uses O2/O3 on !_LP64
__ st_long(O2_scratch, arg_msw);
}
break;
default:
ShouldNotReachHere();
}
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim
{
// perform an in-place floating primitive conversion
__ unimplemented(entry_name(ek));
}
break;
case _adapter_prim_to_ref:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
case _adapter_swap_args:
case _adapter_rot_args:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_swap_1:
case _adapter_opt_swap_2:
case _adapter_opt_rot_1_up:
case _adapter_opt_rot_1_down:
case _adapter_opt_rot_2_up:
case _adapter_opt_rot_2_down:
{
int swap_slots = ek_adapter_opt_swap_slots(ek);
int rotate = ek_adapter_opt_swap_mode(ek);
// 'argslot' is the position of the first argument to swap.
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
if (VerifyMethodHandles)
verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame");
// 'vminfo' is the second.
Register O1_destslot = O1_scratch;
load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot);
__ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot);
if (VerifyMethodHandles)
verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame");
assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
if (!rotate) {
// simple swap
for (int i = 0; i < swap_slots; i++) {
__ ld_ptr( Address(O0_argslot, i * wordSize), O2_scratch);
__ ld_ptr( Address(O1_destslot, i * wordSize), O3_scratch);
__ st_ptr(O3_scratch, Address(O0_argslot, i * wordSize));
__ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize));
}
} else {
// A rotate is actually pair of moves, with an "odd slot" (or pair)
// changing place with a series of other slots.
// First, push the "odd slot", which is going to get overwritten
switch (swap_slots) {
case 2 : __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru
case 1 : __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break;
default: ShouldNotReachHere();
}
if (rotate > 0) {
// Here is rotate > 0:
// (low mem) (high mem)
// | dest: more_slots... | arg: odd_slot :arg+1 |
// =>
// | dest: odd_slot | dest+1: more_slots... :arg+1 |
// work argslot down to destslot, copying contiguous data upwards
// pseudo-code:
// argslot = src_addr - swap_bytes
// destslot = dest_addr
// while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--;
move_arg_slots_up(_masm,
O1_destslot,
Address(O0_argslot, 0),
swap_slots,
O0_argslot, O2_scratch);
} else {
// Here is the other direction, rotate < 0:
// (low mem) (high mem)
// | arg: odd_slot | arg+1: more_slots... :dest+1 |
// =>
// | arg: more_slots... | dest: odd_slot :dest+1 |
// work argslot up to destslot, copying contiguous data downwards
// pseudo-code:
// argslot = src_addr + swap_bytes
// destslot = dest_addr
// while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++;
// dest_slot denotes an exclusive upper limit
int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
if (limit_bias != 0)
__ add(O1_destslot, - limit_bias * wordSize, O1_destslot);
move_arg_slots_down(_masm,
Address(O0_argslot, swap_slots * wordSize),
O1_destslot,
-swap_slots,
O0_argslot, O2_scratch);
__ sub(O1_destslot, swap_slots * wordSize, O1_destslot);
}
// pop the original first chunk into the destination slot, now free
switch (swap_slots) {
case 2 : __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru
case 1 : __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break;
default: ShouldNotReachHere();
}
}
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_dup_args:
{
// 'argslot' is the position of the first argument to duplicate.
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
// 'stack_move' is negative number of words to duplicate.
Register O1_stack_move = O1_scratch;
load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
if (VerifyMethodHandles) {
verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true,
"copied argument(s) must fall within current frame");
}
// insert location is always the bottom of the argument list:
__ neg(O1_stack_move);
push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch);
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_drop_args:
{
// 'argslot' is the position of the first argument to nuke.
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
// 'stack_move' is number of words to drop.
Register O1_stack_move = O1_scratch;
load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch);
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_collect_args:
case _adapter_fold_args:
case _adapter_spread_args:
// Handled completely by optimized cases.
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_collect_ref:
case _adapter_opt_collect_int:
case _adapter_opt_collect_long:
case _adapter_opt_collect_float:
case _adapter_opt_collect_double:
case _adapter_opt_collect_void:
case _adapter_opt_collect_0_ref:
case _adapter_opt_collect_1_ref:
case _adapter_opt_collect_2_ref:
case _adapter_opt_collect_3_ref:
case _adapter_opt_collect_4_ref:
case _adapter_opt_collect_5_ref:
case _adapter_opt_filter_S0_ref:
case _adapter_opt_filter_S1_ref:
case _adapter_opt_filter_S2_ref:
case _adapter_opt_filter_S3_ref:
case _adapter_opt_filter_S4_ref:
case _adapter_opt_filter_S5_ref:
case _adapter_opt_collect_2_S0_ref:
case _adapter_opt_collect_2_S1_ref:
case _adapter_opt_collect_2_S2_ref:
case _adapter_opt_collect_2_S3_ref:
case _adapter_opt_collect_2_S4_ref:
case _adapter_opt_collect_2_S5_ref:
case _adapter_opt_fold_ref:
case _adapter_opt_fold_int:
case _adapter_opt_fold_long:
case _adapter_opt_fold_float:
case _adapter_opt_fold_double:
case _adapter_opt_fold_void:
case _adapter_opt_fold_1_ref:
case _adapter_opt_fold_2_ref:
case _adapter_opt_fold_3_ref:
case _adapter_opt_fold_4_ref:
case _adapter_opt_fold_5_ref:
{
// Given a fresh incoming stack frame, build a new ricochet frame.
// On entry, TOS points at a return PC, and FP is the callers frame ptr.
// RSI/R13 has the caller's exact stack pointer, which we must also preserve.
// RCX contains an AdapterMethodHandle of the indicated kind.
// Relevant AMH fields:
// amh.vmargslot:
// points to the trailing edge of the arguments
// to filter, collect, or fold. For a boxing operation,
// it points just after the single primitive value.
// amh.argument:
// recursively called MH, on |collect| arguments
// amh.vmtarget:
// final destination MH, on return value, etc.
// amh.conversion.dest:
// tells what is the type of the return value
// (not needed here, since dest is also derived from ek)
// amh.conversion.vminfo:
// points to the trailing edge of the return value
// when the vmtarget is to be called; this is
// equal to vmargslot + (retained ? |collect| : 0)
// Pass 0 or more argument slots to the recursive target.
int collect_count_constant = ek_adapter_opt_collect_count(ek);
// The collected arguments are copied from the saved argument list:
int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
assert(ek_orig == _adapter_collect_args ||
ek_orig == _adapter_fold_args, "");
bool retain_original_args = (ek_orig == _adapter_fold_args);
// The return value is replaced (or inserted) at the 'vminfo' argslot.
// Sometimes we can compute this statically.
int dest_slot_constant = -1;
if (!retain_original_args)
dest_slot_constant = collect_slot_constant;
else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
// We are preserving all the arguments, and the return value is prepended,
// so the return slot is to the left (above) the |collect| sequence.
dest_slot_constant = collect_slot_constant + collect_count_constant;
// Replace all those slots by the result of the recursive call.
// The result type can be one of ref, int, long, float, double, void.
// In the case of void, nothing is pushed on the stack after return.
BasicType dest = ek_adapter_opt_collect_type(ek);
assert(dest == type2wfield[dest], "dest is a stack slot type");
int dest_count = type2size[dest];
assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
// Choose a return continuation.
EntryKind ek_ret = _adapter_opt_return_any;
if (dest != T_CONFLICT && OptimizeMethodHandles) {
switch (dest) {
case T_INT : ek_ret = _adapter_opt_return_int; break;
case T_LONG : ek_ret = _adapter_opt_return_long; break;
case T_FLOAT : ek_ret = _adapter_opt_return_float; break;
case T_DOUBLE : ek_ret = _adapter_opt_return_double; break;
case T_OBJECT : ek_ret = _adapter_opt_return_ref; break;
case T_VOID : ek_ret = _adapter_opt_return_void; break;
default : ShouldNotReachHere();
}
if (dest == T_OBJECT && dest_slot_constant >= 0) {
EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
if (ek_try <= _adapter_opt_return_LAST &&
ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
ek_ret = ek_try;
}
}
assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
}
// Already pushed: ... keep1 | collect | keep2 |
// Push a few extra argument words, if we need them to store the return value.
{
int extra_slots = 0;
if (retain_original_args) {
extra_slots = dest_count;
} else if (collect_count_constant == -1) {
extra_slots = dest_count; // collect_count might be zero; be generous
} else if (dest_count > collect_count_constant) {
extra_slots = (dest_count - collect_count_constant);
} else {
// else we know we have enough dead space in |collect| to repurpose for return values
}
if (extra_slots != 0) {
__ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP);
}
}
// Set up Ricochet Frame.
__ mov(SP, O5_savedSP); // record SP for the callee
// One extra (empty) slot for outgoing target MH (see Gargs computation below).
__ save_frame(2); // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23.
// Note: Gargs is live throughout the following, until we make our recursive call.
// And the RF saves a copy in L4_saved_args_base.
RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs,
entry(ek_ret)->from_interpreted_entry());
// Compute argument base:
// Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above).
__ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs);
// Now pushed: ... keep1 | collect | keep2 | extra | [RF]
#ifdef ASSERT
if (VerifyMethodHandles && dest != T_CONFLICT) {
BLOCK_COMMENT("verify AMH.conv.dest {");
extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch);
Label L_dest_ok;
__ cmp(O1_scratch, (int) dest);
__ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
__ delayed()->nop();
if (dest == T_INT) {
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt))) {
__ cmp(O1_scratch, (int) bt);
__ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
__ delayed()->nop();
}
}
}
__ stop("bad dest in AMH.conv");
__ BIND(L_dest_ok);
BLOCK_COMMENT("} verify AMH.conv.dest");
}
#endif //ASSERT
// Find out where the original copy of the recursive argument sequence begins.
Register O0_coll = O0_scratch;
{
RegisterOrConstant collect_slot = collect_slot_constant;
if (collect_slot_constant == -1) {
load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch);
collect_slot = O1_scratch;
}
// collect_slot might be 0, but we need the move anyway.
__ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll);
// O0_coll now points at the trailing edge of |collect| and leading edge of |keep2|
}
// Replace the old AMH with the recursive MH. (No going back now.)
// In the case of a boxing call, the recursive call is to a 'boxer' method,
// such as Integer.valueOf or Long.valueOf. In the case of a filter
// or collect call, it will take one or more arguments, transform them,
// and return some result, to store back into argument_base[vminfo].
__ load_heap_oop(G3_amh_argument, G3_method_handle);
if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch);
// Calculate |collect|, the number of arguments we are collecting.
Register O1_collect_count = O1_scratch;
RegisterOrConstant collect_count;
if (collect_count_constant < 0) {
__ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch);
collect_count = O1_collect_count;
} else {
collect_count = collect_count_constant;
#ifdef ASSERT
if (VerifyMethodHandles) {
BLOCK_COMMENT("verify collect_count_constant {");
__ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch);
Label L_count_ok;
__ cmp_and_br_short(O3_scratch, collect_count_constant, Assembler::equal, Assembler::pt, L_count_ok);
__ stop("bad vminfo in AMH.conv");
__ BIND(L_count_ok);
BLOCK_COMMENT("} verify collect_count_constant");
}
#endif //ASSERT
}
// copy |collect| slots directly to TOS:
push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch);
// Now pushed: ... keep1 | collect | keep2 | RF... | collect |
// O0_coll still points at the trailing edge of |collect| and leading edge of |keep2|
// If necessary, adjust the saved arguments to make room for the eventual return value.
// Normal adjustment: ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
// If retaining args: ... keep1 | +dest+ | collect | keep2 | RF... | collect |
// In the non-retaining case, this might move keep2 either up or down.
// We don't have to copy the whole | RF... collect | complex,
// but we must adjust RF.saved_args_base.
// Also, from now on, we will forget about the original copy of |collect|.
// If we are retaining it, we will treat it as part of |keep2|.
// For clarity we will define |keep3| = |collect|keep2| or |keep2|.
BLOCK_COMMENT("adjust trailing arguments {");
// Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
int open_count = dest_count;
RegisterOrConstant close_count = collect_count_constant;
Register O1_close_count = O1_collect_count;
if (retain_original_args) {
close_count = constant(0);
} else if (collect_count_constant == -1) {
close_count = O1_collect_count;
}
// How many slots need moving? This is simply dest_slot (0 => no |keep3|).
RegisterOrConstant keep3_count;
Register O2_keep3_count = O2_scratch;
if (dest_slot_constant < 0) {
extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count);
keep3_count = O2_keep3_count;
} else {
keep3_count = dest_slot_constant;
#ifdef ASSERT
if (VerifyMethodHandles && dest_slot_constant < 0) {
BLOCK_COMMENT("verify dest_slot_constant {");
extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch);
Label L_vminfo_ok;
__ cmp_and_br_short(O3_scratch, dest_slot_constant, Assembler::equal, Assembler::pt, L_vminfo_ok);
__ stop("bad vminfo in AMH.conv");
__ BIND(L_vminfo_ok);
BLOCK_COMMENT("} verify dest_slot_constant");
}
#endif //ASSERT
}
// tasks remaining:
bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
// Old and new argument locations (based at slot 0).
// Net shift (&new_argv - &old_argv) is (close_count - open_count).
bool zero_open_count = (open_count == 0); // remember this bit of info
if (move_keep3 && fix_arg_base) {
// It will be easier to have everything in one register:
if (close_count.is_register()) {
// Deduct open_count from close_count register to get a clean +/- value.
__ sub(close_count.as_register(), open_count, close_count.as_register());
} else {
close_count = close_count.as_constant() - open_count;
}
open_count = 0;
}
Register L4_old_argv = RicochetFrame::L4_saved_args_base;
Register O3_new_argv = O3_scratch;
if (fix_arg_base) {
__ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv,
-(open_count * Interpreter::stackElementSize));
}
// First decide if any actual data are to be moved.
// We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
// (As it happens, all movements involve an argument list size change.)
// If there are variable parameters, use dynamic checks to skip around the whole mess.
Label L_done;
if (keep3_count.is_register()) {
__ cmp_and_br_short(keep3_count.as_register(), 0, Assembler::equal, Assembler::pn, L_done);
}
if (close_count.is_register()) {
__ cmp_and_br_short(close_count.as_register(), open_count, Assembler::equal, Assembler::pn, L_done);
}
if (move_keep3 && fix_arg_base) {
bool emit_move_down = false, emit_move_up = false, emit_guard = false;
if (!close_count.is_constant()) {
emit_move_down = emit_guard = !zero_open_count;
emit_move_up = true;
} else if (open_count != close_count.as_constant()) {
emit_move_down = (open_count > close_count.as_constant());
emit_move_up = !emit_move_down;
}
Label L_move_up;
if (emit_guard) {
__ cmp(close_count.as_register(), open_count);
__ br(Assembler::greater, false, Assembler::pn, L_move_up);
__ delayed()->nop();
}
if (emit_move_down) {
// Move arguments down if |+dest+| > |-collect-|
// (This is rare, except when arguments are retained.)
// This opens space for the return value.
if (keep3_count.is_constant()) {
for (int i = 0; i < keep3_count.as_constant(); i++) {
__ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
__ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) );
}
} else {
// Live: O1_close_count, O2_keep3_count, O3_new_argv
Register argv_top = O0_scratch;
__ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top);
move_arg_slots_down(_masm,
Address(L4_old_argv, 0), // beginning of old argv
argv_top, // end of old argv
close_count, // distance to move down (must be negative)
O4_scratch, G5_scratch);
}
}
if (emit_guard) {
__ ba_short(L_done); // assumes emit_move_up is true also
__ BIND(L_move_up);
}
if (emit_move_up) {
// Move arguments up if |+dest+| < |-collect-|
// (This is usual, except when |keep3| is empty.)
// This closes up the space occupied by the now-deleted collect values.
if (keep3_count.is_constant()) {
for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
__ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
__ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) );
}
} else {
Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch));
// Live: O1_close_count, O2_keep3_count, O3_new_argv
move_arg_slots_up(_masm,
L4_old_argv, // beginning of old argv
argv_top, // end of old argv
close_count, // distance to move up (must be positive)
O4_scratch, G5_scratch);
}
}
}
__ BIND(L_done);
if (fix_arg_base) {
// adjust RF.saved_args_base
__ mov(O3_new_argv, RicochetFrame::L4_saved_args_base);
}
if (stomp_dest) {
// Stomp the return slot, so it doesn't hold garbage.
// This isn't strictly necessary, but it may help detect bugs.
__ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch);
__ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base,
__ argument_offset(keep3_count, keep3_count.register_or_noreg()))); // uses O2_keep3_count
}
BLOCK_COMMENT("} adjust trailing arguments");
BLOCK_COMMENT("do_recursive_call");
__ mov(SP, O5_savedSP); // record SP for the callee
__ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7);
// The globally unique bounce address has two purposes:
// 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
// 2. When returned to, it cuts back the stack and redirects control flow
// to the return handler.
// The return handler will further cut back the stack when it takes
// down the RF. Perhaps there is a way to streamline this further.
// State during recursive call:
// ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_opt_return_ref:
case _adapter_opt_return_int:
case _adapter_opt_return_long:
case _adapter_opt_return_float:
case _adapter_opt_return_double:
case _adapter_opt_return_void:
case _adapter_opt_return_S0_ref:
case _adapter_opt_return_S1_ref:
case _adapter_opt_return_S2_ref:
case _adapter_opt_return_S3_ref:
case _adapter_opt_return_S4_ref:
case _adapter_opt_return_S5_ref:
{
BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
int dest_slot_constant = ek_adapter_opt_return_slot(ek);
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
if (dest_slot_constant == -1) {
// The current stub is a general handler for this dest_type.
// It can be called from _adapter_opt_return_any below.
// Stash the address in a little table.
assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
address return_handler = __ pc();
_adapter_return_handlers[dest_type_constant] = return_handler;
if (dest_type_constant == T_INT) {
// do the subword types too
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt)) &&
_adapter_return_handlers[bt] == NULL) {
_adapter_return_handlers[bt] = return_handler;
}
}
}
}
// On entry to this continuation handler, make Gargs live again.
__ mov(RicochetFrame::L4_saved_args_base, Gargs);
Register O7_temp = O7;
Register O5_vminfo = O5;
RegisterOrConstant dest_slot = dest_slot_constant;
if (dest_slot_constant == -1) {
extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo);
dest_slot = O5_vminfo;
}
// Store the result back into the argslot.
// This code uses the interpreter calling sequence, in which the return value
// is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
// There are certain irregularities with floating point values, which can be seen
// in TemplateInterpreterGenerator::generate_return_entry_for.
move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp));
RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7);
// Load the final target and go.
if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch);
__ restore(I5_savedSP, G0, SP);
__ jump_to_method_handle_entry(G3_method_handle, O0_scratch);
__ illtrap(0);
}
break;
case _adapter_opt_return_any:
{
Register O7_temp = O7;
Register O5_dest_type = O5;
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type);
__ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp);
__ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type);
__ ld_ptr(O7_temp, O5_dest_type, O7_temp);
#ifdef ASSERT
{ Label L_ok;
__ br_notnull_short(O7_temp, Assembler::pt, L_ok);
__ stop("bad method handle return");
__ BIND(L_ok);
}
#endif //ASSERT
__ JMP(O7_temp, 0);
__ delayed()->nop();
}
break;
case _adapter_opt_spread_0:
case _adapter_opt_spread_1_ref:
case _adapter_opt_spread_2_ref:
case _adapter_opt_spread_3_ref:
case _adapter_opt_spread_4_ref:
case _adapter_opt_spread_5_ref:
case _adapter_opt_spread_ref:
case _adapter_opt_spread_byte:
case _adapter_opt_spread_char:
case _adapter_opt_spread_short:
case _adapter_opt_spread_int:
case _adapter_opt_spread_long:
case _adapter_opt_spread_float:
case _adapter_opt_spread_double:
{
// spread an array out into a group of arguments
int length_constant = ek_adapter_opt_spread_count(ek);
bool length_can_be_zero = (length_constant == 0);
if (length_constant < 0) {
// some adapters with variable length must handle the zero case
if (!OptimizeMethodHandles ||
ek_adapter_opt_spread_type(ek) != T_OBJECT)
length_can_be_zero = true;
}
// find the address of the array argument
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
// O0_argslot points both to the array and to the first output arg
Address vmarg = Address(O0_argslot, 0);
// Get the array value.
Register O1_array = O1_scratch;
Register O2_array_klass = O2_scratch;
BasicType elem_type = ek_adapter_opt_spread_type(ek);
int elem_slots = type2size[elem_type]; // 1 or 2
int array_slots = 1; // array is always a T_OBJECT
int length_offset = arrayOopDesc::length_offset_in_bytes();
int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type);
__ ld_ptr(vmarg, O1_array);
Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
if (length_can_be_zero) {
// handle the null pointer case, if zero is allowed
Label L_skip;
if (length_constant < 0) {
load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch);
__ cmp_zero_and_br(Assembler::notZero, O3_scratch, L_skip);
__ delayed()->nop(); // to avoid back-to-back cbcond instructions
}
__ br_null_short(O1_array, Assembler::pn, L_array_is_empty);
__ BIND(L_skip);
}
__ null_check(O1_array, oopDesc::klass_offset_in_bytes());
__ load_klass(O1_array, O2_array_klass);
// Check the array type.
Register O3_klass = O3_scratch;
__ load_heap_oop(G3_amh_argument, O3_klass); // this is a Class object!
load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch);
Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length;
__ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass);
// If we get here, the type check failed!
__ ba_short(L_bad_array_klass);
__ BIND(L_ok_array_klass);
// Check length.
if (length_constant >= 0) {
__ ldsw(Address(O1_array, length_offset), O4_scratch);
__ cmp(O4_scratch, length_constant);
} else {
Register O3_vminfo = O3_scratch;
load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo);
__ ldsw(Address(O1_array, length_offset), O4_scratch);
__ cmp(O3_vminfo, O4_scratch);
}
__ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length);
__ delayed()->nop();
Register O2_argslot_limit = O2_scratch;
// Array length checks out. Now insert any required stack slots.
if (length_constant == -1) {
// Form a pointer to the end of the affected region.
__ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit);
// 'stack_move' is negative number of words to insert
// This number already accounts for elem_slots.
Register O3_stack_move = O3_scratch;
load_stack_move(_masm, G3_amh_conversion, O3_stack_move);
__ cmp(O3_stack_move, 0);
assert(stack_move_unit() < 0, "else change this comparison");
__ br(Assembler::less, false, Assembler::pn, L_insert_arg_space);
__ delayed()->nop();
__ br(Assembler::equal, false, Assembler::pn, L_copy_args);
__ delayed()->nop();
// single argument case, with no array movement
__ BIND(L_array_is_empty);
remove_arg_slots(_masm, -stack_move_unit() * array_slots,
O0_argslot, O1_scratch, O2_scratch, O3_scratch);
__ ba_short(L_args_done); // no spreading to do
__ BIND(L_insert_arg_space);
// come here in the usual case, stack_move < 0 (2 or more spread arguments)
// Live: O1_array, O2_argslot_limit, O3_stack_move
insert_arg_slots(_masm, O3_stack_move,
O0_argslot, O4_scratch, G5_scratch, O1_scratch);
// reload from rdx_argslot_limit since rax_argslot is now decremented
__ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array);
} else if (length_constant >= 1) {
int new_slots = (length_constant * elem_slots) - array_slots;
insert_arg_slots(_masm, new_slots * stack_move_unit(),
O0_argslot, O2_scratch, O3_scratch, O4_scratch);
} else if (length_constant == 0) {
__ BIND(L_array_is_empty);
remove_arg_slots(_masm, -stack_move_unit() * array_slots,
O0_argslot, O1_scratch, O2_scratch, O3_scratch);
} else {
ShouldNotReachHere();
}
// Copy from the array to the new slots.
// Note: Stack change code preserves integrity of O0_argslot pointer.
// So even after slot insertions, O0_argslot still points to first argument.
// Beware: Arguments that are shallow on the stack are deep in the array,
// and vice versa. So a downward-growing stack (the usual) has to be copied
// elementwise in reverse order from the source array.
__ BIND(L_copy_args);
if (length_constant == -1) {
// [O0_argslot, O2_argslot_limit) is the area we are inserting into.
// Array element [0] goes at O0_argslot_limit[-wordSize].
Register O1_source = O1_array;
__ add(Address(O1_array, elem0_offset), O1_source);
Register O4_fill_ptr = O4_scratch;
__ mov(O2_argslot_limit, O4_fill_ptr);
Label L_loop;
__ BIND(L_loop);
__ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr);
move_typed_arg(_masm, elem_type, true,
Address(O1_source, 0), Address(O4_fill_ptr, 0),
O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3)
__ add(O1_source, type2aelembytes(elem_type), O1_source);
__ cmp_and_brx_short(O4_fill_ptr, O0_argslot, Assembler::greaterUnsigned, Assembler::pt, L_loop);
} else if (length_constant == 0) {
// nothing to copy
} else {
int elem_offset = elem0_offset;
int slot_offset = length_constant * Interpreter::stackElementSize;
for (int index = 0; index < length_constant; index++) {
slot_offset -= Interpreter::stackElementSize * elem_slots; // fill backward
move_typed_arg(_masm, elem_type, true,
Address(O1_array, elem_offset), Address(O0_argslot, slot_offset),
O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3)
elem_offset += type2aelembytes(elem_type);
}
}
__ BIND(L_args_done);
// Arguments are spread. Move to next method handle.
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
__ BIND(L_bad_array_klass);
assert(!vmarg.uses(O2_required), "must be different registers");
__ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required); // required class
__ ld_ptr( vmarg, O1_actual); // bad object
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_aaload, O0_code); // who is complaining?
__ bind(L_bad_array_length);
assert(!vmarg.uses(O2_required), "must be different registers");
__ mov( G3_method_handle, O2_required); // required class
__ ld_ptr(vmarg, O1_actual); // bad object
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_arraylength, O0_code); // who is complaining?
}
break;
default:
DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek)));
ShouldNotReachHere();
}
BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}