blob: 0afa2d4c8c6fea86949d758d490cbb36b74035fc [file] [log] [blame]
/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OOPS_ACCESSBACKEND_HPP
#define SHARE_OOPS_ACCESSBACKEND_HPP
#include "gc/shared/barrierSetConfig.hpp"
#include "memory/allocation.hpp"
#include "metaprogramming/conditional.hpp"
#include "metaprogramming/decay.hpp"
#include "metaprogramming/enableIf.hpp"
#include "metaprogramming/integralConstant.hpp"
#include "metaprogramming/isFloatingPoint.hpp"
#include "metaprogramming/isIntegral.hpp"
#include "metaprogramming/isPointer.hpp"
#include "metaprogramming/isSame.hpp"
#include "metaprogramming/isVolatile.hpp"
#include "oops/accessDecorators.hpp"
#include "oops/oopsHierarchy.hpp"
#include "runtime/globals.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
// This metafunction returns either oop or narrowOop depending on whether
// an access needs to use compressed oops or not.
template <DecoratorSet decorators>
struct HeapOopType: AllStatic {
static const bool needs_oop_compress = HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value &&
HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value;
typedef typename Conditional<needs_oop_compress, narrowOop, oop>::type type;
};
namespace AccessInternal {
enum BarrierType {
BARRIER_STORE,
BARRIER_STORE_AT,
BARRIER_LOAD,
BARRIER_LOAD_AT,
BARRIER_ATOMIC_CMPXCHG,
BARRIER_ATOMIC_CMPXCHG_AT,
BARRIER_ATOMIC_XCHG,
BARRIER_ATOMIC_XCHG_AT,
BARRIER_ARRAYCOPY,
BARRIER_CLONE,
BARRIER_RESOLVE
};
template <DecoratorSet decorators, typename T>
struct MustConvertCompressedOop: public IntegralConstant<bool,
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
IsSame<typename HeapOopType<decorators>::type, narrowOop>::value &&
IsSame<T, oop>::value> {};
// This metafunction returns an appropriate oop type if the value is oop-like
// and otherwise returns the same type T.
template <DecoratorSet decorators, typename T>
struct EncodedType: AllStatic {
typedef typename Conditional<
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
typename HeapOopType<decorators>::type, T>::type type;
};
template <DecoratorSet decorators>
inline typename HeapOopType<decorators>::type*
oop_field_addr(oop base, ptrdiff_t byte_offset) {
return reinterpret_cast<typename HeapOopType<decorators>::type*>(
reinterpret_cast<intptr_t>((void*)base) + byte_offset);
}
// This metafunction returns whether it is possible for a type T to require
// locking to support wide atomics or not.
template <typename T>
#ifdef SUPPORTS_NATIVE_CX8
struct PossiblyLockedAccess: public IntegralConstant<bool, false> {};
#else
struct PossiblyLockedAccess: public IntegralConstant<bool, (sizeof(T) > 4)> {};
#endif
template <DecoratorSet decorators, typename T>
struct AccessFunctionTypes {
typedef T (*load_at_func_t)(oop base, ptrdiff_t offset);
typedef void (*store_at_func_t)(oop base, ptrdiff_t offset, T value);
typedef T (*atomic_cmpxchg_at_func_t)(T new_value, oop base, ptrdiff_t offset, T compare_value);
typedef T (*atomic_xchg_at_func_t)(oop base, ptrdiff_t offset, T new_value);
typedef T (*load_func_t)(void* addr);
typedef void (*store_func_t)(void* addr, T value);
typedef T (*atomic_cmpxchg_func_t)(T new_value, void* addr, T compare_value);
typedef T (*atomic_xchg_func_t)(void* addr, T new_value);
typedef bool (*arraycopy_func_t)(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length);
typedef void (*clone_func_t)(oop src, oop dst, size_t size);
typedef oop (*resolve_func_t)(oop obj);
};
template <DecoratorSet decorators>
struct AccessFunctionTypes<decorators, void> {
typedef bool (*arraycopy_func_t)(arrayOop src_obj, size_t src_offset_in_bytes, void* src,
arrayOop dst_obj, size_t dst_offset_in_bytes, void* dst,
size_t length);
};
template <DecoratorSet decorators, typename T, BarrierType barrier> struct AccessFunction {};
#define ACCESS_GENERATE_ACCESS_FUNCTION(bt, func) \
template <DecoratorSet decorators, typename T> \
struct AccessFunction<decorators, T, bt>: AllStatic{ \
typedef typename AccessFunctionTypes<decorators, T>::func type; \
}
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE, store_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE_AT, store_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD, load_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD_AT, load_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG, atomic_cmpxchg_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG_AT, atomic_cmpxchg_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG, atomic_xchg_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG_AT, atomic_xchg_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ARRAYCOPY, arraycopy_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_CLONE, clone_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_RESOLVE, resolve_func_t);
#undef ACCESS_GENERATE_ACCESS_FUNCTION
template <DecoratorSet decorators, typename T, BarrierType barrier_type>
typename AccessFunction<decorators, T, barrier_type>::type resolve_barrier();
template <DecoratorSet decorators, typename T, BarrierType barrier_type>
typename AccessFunction<decorators, T, barrier_type>::type resolve_oop_barrier();
class AccessLocker {
public:
AccessLocker();
~AccessLocker();
};
bool wide_atomic_needs_locking();
void* field_addr(oop base, ptrdiff_t offset);
// Forward calls to Copy:: in the cpp file to reduce dependencies and allow
// faster build times, given how frequently included access is.
void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length);
void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length);
void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length);
void arraycopy_disjoint_words(void* src, void* dst, size_t length);
void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length);
template<typename T>
void arraycopy_conjoint(T* src, T* dst, size_t length);
template<typename T>
void arraycopy_arrayof_conjoint(T* src, T* dst, size_t length);
template<typename T>
void arraycopy_conjoint_atomic(T* src, T* dst, size_t length);
}
// This mask specifies what decorators are relevant for raw accesses. When passing
// accesses to the raw layer, irrelevant decorators are removed.
const DecoratorSet RAW_DECORATOR_MASK = INTERNAL_DECORATOR_MASK | MO_DECORATOR_MASK |
ARRAYCOPY_DECORATOR_MASK | IS_NOT_NULL;
// The RawAccessBarrier performs raw accesses with additional knowledge of
// memory ordering, so that OrderAccess/Atomic is called when necessary.
// It additionally handles compressed oops, and hence is not completely "raw"
// strictly speaking.
template <DecoratorSet decorators>
class RawAccessBarrier: public AllStatic {
protected:
static inline void* field_addr(oop base, ptrdiff_t byte_offset) {
return AccessInternal::field_addr(base, byte_offset);
}
protected:
// Only encode if INTERNAL_VALUE_IS_OOP
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators, T>::value,
typename HeapOopType<idecorators>::type>::type
encode_internal(T value);
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
!AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
encode_internal(T value) {
return value;
}
template <typename T>
static inline typename AccessInternal::EncodedType<decorators, T>::type
encode(T value) {
return encode_internal<decorators, T>(value);
}
// Only decode if INTERNAL_VALUE_IS_OOP
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
decode_internal(typename HeapOopType<idecorators>::type value);
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
!AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
decode_internal(T value) {
return value;
}
template <typename T>
static inline T decode(typename AccessInternal::EncodedType<decorators, T>::type value) {
return decode_internal<decorators, T>(value);
}
protected:
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_ACQUIRE>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_VOLATILE>::value, T>::type
load_internal(void* addr) {
return *reinterpret_cast<const volatile T*>(addr);
}
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_UNORDERED>::value, T>::type
load_internal(void* addr) {
return *reinterpret_cast<T*>(addr);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELEASE>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_VOLATILE>::value>::type
store_internal(void* addr, T value) {
(void)const_cast<T&>(*reinterpret_cast<volatile T*>(addr) = value);
}
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_UNORDERED>::value>::type
store_internal(void* addr, T value) {
*reinterpret_cast<T*>(addr) = value;
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
atomic_cmpxchg_internal(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
atomic_cmpxchg_internal(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
atomic_xchg_internal(void* addr, T new_value);
// The following *_locked mechanisms serve the purpose of handling atomic operations
// that are larger than a machine can handle, and then possibly opt for using
// a slower path using a mutex to perform the operation.
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
!AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value) {
return atomic_cmpxchg_internal<ds>(new_value, addr, compare_value);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
!AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_xchg_maybe_locked(void* addr, T new_value) {
return atomic_xchg_internal<ds>(addr, new_value);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_xchg_maybe_locked(void* addr, T new_value);
public:
template <typename T>
static inline void store(void* addr, T value) {
store_internal<decorators>(addr, value);
}
template <typename T>
static inline T load(void* addr) {
return load_internal<decorators, T>(addr);
}
template <typename T>
static inline T atomic_cmpxchg(T new_value, void* addr, T compare_value) {
return atomic_cmpxchg_maybe_locked<decorators>(new_value, addr, compare_value);
}
template <typename T>
static inline T atomic_xchg(void* addr, T new_value) {
return atomic_xchg_maybe_locked<decorators>(addr, new_value);
}
template <typename T>
static bool arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length);
template <typename T>
static void oop_store(void* addr, T value);
template <typename T>
static void oop_store_at(oop base, ptrdiff_t offset, T value);
template <typename T>
static T oop_load(void* addr);
template <typename T>
static T oop_load_at(oop base, ptrdiff_t offset);
template <typename T>
static T oop_atomic_cmpxchg(T new_value, void* addr, T compare_value);
template <typename T>
static T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value);
template <typename T>
static T oop_atomic_xchg(void* addr, T new_value);
template <typename T>
static T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value);
template <typename T>
static void store_at(oop base, ptrdiff_t offset, T value) {
store(field_addr(base, offset), value);
}
template <typename T>
static T load_at(oop base, ptrdiff_t offset) {
return load<T>(field_addr(base, offset));
}
template <typename T>
static T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return atomic_cmpxchg(new_value, field_addr(base, offset), compare_value);
}
template <typename T>
static T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
return atomic_xchg(field_addr(base, offset), new_value);
}
template <typename T>
static bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length);
static void clone(oop src, oop dst, size_t size);
static oop resolve(oop obj) { return obj; }
};
// Below is the implementation of the first 4 steps of the template pipeline:
// * Step 1: Set default decorators and decay types. This step gets rid of CV qualifiers
// and sets default decorators to sensible values.
// * Step 2: Reduce types. This step makes sure there is only a single T type and not
// multiple types. The P type of the address and T type of the value must
// match.
// * Step 3: Pre-runtime dispatch. This step checks whether a runtime call can be
// avoided, and in that case avoids it (calling raw accesses or
// primitive accesses in a build that does not require primitive GC barriers)
// * Step 4: Runtime-dispatch. This step performs a runtime dispatch to the corresponding
// BarrierSet::AccessBarrier accessor that attaches GC-required barriers
// to the access.
namespace AccessInternal {
template <typename T>
struct OopOrNarrowOopInternal: AllStatic {
typedef oop type;
};
template <>
struct OopOrNarrowOopInternal<narrowOop>: AllStatic {
typedef narrowOop type;
};
// This metafunction returns a canonicalized oop/narrowOop type for a passed
// in oop-like types passed in from oop_* overloads where the user has sworn
// that the passed in values should be oop-like (e.g. oop, oopDesc*, arrayOop,
// narrowOoop, instanceOopDesc*, and random other things).
// In the oop_* overloads, it must hold that if the passed in type T is not
// narrowOop, then it by contract has to be one of many oop-like types implicitly
// convertible to oop, and hence returns oop as the canonical oop type.
// If it turns out it was not, then the implicit conversion to oop will fail
// to compile, as desired.
template <typename T>
struct OopOrNarrowOop: AllStatic {
typedef typename OopOrNarrowOopInternal<typename Decay<T>::type>::type type;
};
inline void* field_addr(oop base, ptrdiff_t byte_offset) {
return reinterpret_cast<void*>(reinterpret_cast<intptr_t>((void*)base) + byte_offset);
}
// Step 4: Runtime dispatch
// The RuntimeDispatch class is responsible for performing a runtime dispatch of the
// accessor. This is required when the access either depends on whether compressed oops
// is being used, or it depends on which GC implementation was chosen (e.g. requires GC
// barriers). The way it works is that a function pointer initially pointing to an
// accessor resolution function gets called for each access. Upon first invocation,
// it resolves which accessor to be used in future invocations and patches the
// function pointer to this new accessor.
template <DecoratorSet decorators, typename T, BarrierType type>
struct RuntimeDispatch: AllStatic {};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_STORE>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_STORE>::type func_t;
static func_t _store_func;
static void store_init(void* addr, T value);
static inline void store(void* addr, T value) {
_store_func(addr, value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_STORE_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_STORE_AT>::type func_t;
static func_t _store_at_func;
static void store_at_init(oop base, ptrdiff_t offset, T value);
static inline void store_at(oop base, ptrdiff_t offset, T value) {
_store_at_func(base, offset, value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_LOAD>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_LOAD>::type func_t;
static func_t _load_func;
static T load_init(void* addr);
static inline T load(void* addr) {
return _load_func(addr);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_LOAD_AT>::type func_t;
static func_t _load_at_func;
static T load_at_init(oop base, ptrdiff_t offset);
static inline T load_at(oop base, ptrdiff_t offset) {
return _load_at_func(base, offset);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG>::type func_t;
static func_t _atomic_cmpxchg_func;
static T atomic_cmpxchg_init(T new_value, void* addr, T compare_value);
static inline T atomic_cmpxchg(T new_value, void* addr, T compare_value) {
return _atomic_cmpxchg_func(new_value, addr, compare_value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::type func_t;
static func_t _atomic_cmpxchg_at_func;
static T atomic_cmpxchg_at_init(T new_value, oop base, ptrdiff_t offset, T compare_value);
static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return _atomic_cmpxchg_at_func(new_value, base, offset, compare_value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG>::type func_t;
static func_t _atomic_xchg_func;
static T atomic_xchg_init(void* addr, T new_value);
static inline T atomic_xchg(void* addr, T new_value) {
return _atomic_xchg_func(addr, new_value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type func_t;
static func_t _atomic_xchg_at_func;
static T atomic_xchg_at_init(oop base, ptrdiff_t offset, T new_value);
static inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
return _atomic_xchg_at_func(base, offset, new_value);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type func_t;
static func_t _arraycopy_func;
static bool arraycopy_init(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length);
static inline bool arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
return _arraycopy_func(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_CLONE>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_CLONE>::type func_t;
static func_t _clone_func;
static void clone_init(oop src, oop dst, size_t size);
static inline void clone(oop src, oop dst, size_t size) {
_clone_func(src, dst, size);
}
};
template <DecoratorSet decorators, typename T>
struct RuntimeDispatch<decorators, T, BARRIER_RESOLVE>: AllStatic {
typedef typename AccessFunction<decorators, T, BARRIER_RESOLVE>::type func_t;
static func_t _resolve_func;
static oop resolve_init(oop obj);
static inline oop resolve(oop obj) {
return _resolve_func(obj);
}
};
// Initialize the function pointers to point to the resolving function.
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_STORE>::type
RuntimeDispatch<decorators, T, BARRIER_STORE>::_store_func = &store_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_STORE_AT>::type
RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::_store_at_func = &store_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_LOAD>::type
RuntimeDispatch<decorators, T, BARRIER_LOAD>::_load_func = &load_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_LOAD_AT>::type
RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::_load_at_func = &load_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::_atomic_cmpxchg_func = &atomic_cmpxchg_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::_atomic_cmpxchg_at_func = &atomic_cmpxchg_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::_atomic_xchg_func = &atomic_xchg_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ATOMIC_XCHG_AT>::type
RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::_atomic_xchg_at_func = &atomic_xchg_at_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_ARRAYCOPY>::type
RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::_arraycopy_func = &arraycopy_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_CLONE>::type
RuntimeDispatch<decorators, T, BARRIER_CLONE>::_clone_func = &clone_init;
template <DecoratorSet decorators, typename T>
typename AccessFunction<decorators, T, BARRIER_RESOLVE>::type
RuntimeDispatch<decorators, T, BARRIER_RESOLVE>::_resolve_func = &resolve_init;
// Step 3: Pre-runtime dispatching.
// The PreRuntimeDispatch class is responsible for filtering the barrier strength
// decorators. That is, for AS_RAW, it hardwires the accesses without a runtime
// dispatch point. Otherwise it goes through a runtime check if hardwiring was
// not possible.
struct PreRuntimeDispatch: AllStatic {
template<DecoratorSet decorators>
struct CanHardwireRaw: public IntegralConstant<
bool,
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value || // primitive access
!HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value || // don't care about compressed oops (oop* address)
HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value> // we can infer we use compressed oops (narrowOop* address)
{};
static const DecoratorSet convert_compressed_oops = INTERNAL_RT_USE_COMPRESSED_OOPS | INTERNAL_CONVERT_COMPRESSED_OOP;
template<DecoratorSet decorators>
static bool is_hardwired_primitive() {
return !HasDecorator<decorators, INTERNAL_BT_BARRIER_ON_PRIMITIVES>::value &&
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value;
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value>::type
store(void* addr, T value) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
Raw::oop_store(addr, value);
} else {
Raw::store(addr, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value>::type
store(void* addr, T value) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value>::type
store(void* addr, T value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
} else {
RuntimeDispatch<decorators, T, BARRIER_STORE>::store(addr, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value>::type
store_at(oop base, ptrdiff_t offset, T value) {
store<decorators>(field_addr(base, offset), value);
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value>::type
store_at(oop base, ptrdiff_t offset, T value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
PreRuntimeDispatch::store_at<expanded_decorators>(base, offset, value);
} else {
RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::store_at(base, offset, value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, T>::type
load(void* addr) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
return Raw::template oop_load<T>(addr);
} else {
return Raw::template load<T>(addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, T>::type
load(void* addr) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
return PreRuntimeDispatch::load<expanded_decorators, T>(addr);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
return PreRuntimeDispatch::load<expanded_decorators, T>(addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
load(void* addr) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::load<expanded_decorators, T>(addr);
} else {
return RuntimeDispatch<decorators, T, BARRIER_LOAD>::load(addr);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value, T>::type
load_at(oop base, ptrdiff_t offset) {
return load<decorators, T>(field_addr(base, offset));
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
load_at(oop base, ptrdiff_t offset) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::load_at<expanded_decorators, T>(base, offset);
} else {
return RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::load_at(base, offset);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, T>::type
atomic_cmpxchg(T new_value, void* addr, T compare_value) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
} else {
return Raw::atomic_cmpxchg(new_value, addr, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, T>::type
atomic_cmpxchg(T new_value, void* addr, T compare_value) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_cmpxchg(T new_value, void* addr, T compare_value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::atomic_cmpxchg(new_value, addr, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return atomic_cmpxchg<decorators>(new_value, field_addr(base, offset), compare_value);
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_cmpxchg_at<expanded_decorators>(new_value, base, offset, compare_value);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::atomic_cmpxchg_at(new_value, base, offset, compare_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, T>::type
atomic_xchg(void* addr, T new_value) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
return Raw::oop_atomic_xchg(addr, new_value);
} else {
return Raw::atomic_xchg(addr, new_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, T>::type
atomic_xchg(void* addr, T new_value) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(addr, new_value);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(addr, new_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_xchg(void* addr, T new_value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(addr, new_value);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::atomic_xchg(addr, new_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
return atomic_xchg<decorators>(field_addr(base, offset), new_value);
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, T>::type
atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(base, offset, new_value);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::atomic_xchg_at(base, offset, new_value);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && CanHardwireRaw<decorators>::value, bool>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
if (HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value) {
return Raw::oop_arraycopy(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
} else {
return Raw::arraycopy(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value && !CanHardwireRaw<decorators>::value, bool>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | convert_compressed_oops;
return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
} else {
const DecoratorSet expanded_decorators = decorators & ~convert_compressed_oops;
return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
}
template <DecoratorSet decorators, typename T>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value, bool>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
if (is_hardwired_primitive<decorators>()) {
const DecoratorSet expanded_decorators = decorators | AS_RAW;
return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
} else {
return RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::arraycopy(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
}
template <DecoratorSet decorators>
inline static typename EnableIf<
HasDecorator<decorators, AS_RAW>::value>::type
clone(oop src, oop dst, size_t size) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
Raw::clone(src, dst, size);
}
template <DecoratorSet decorators>
inline static typename EnableIf<
!HasDecorator<decorators, AS_RAW>::value>::type
clone(oop src, oop dst, size_t size) {
RuntimeDispatch<decorators, oop, BARRIER_CLONE>::clone(src, dst, size);
}
template <DecoratorSet decorators>
inline static typename EnableIf<
HasDecorator<decorators, INTERNAL_BT_TO_SPACE_INVARIANT>::value, oop>::type
resolve(oop obj) {
typedef RawAccessBarrier<decorators & RAW_DECORATOR_MASK> Raw;
return Raw::resolve(obj);
}
template <DecoratorSet decorators>
inline static typename EnableIf<
!HasDecorator<decorators, INTERNAL_BT_TO_SPACE_INVARIANT>::value, oop>::type
resolve(oop obj) {
return RuntimeDispatch<decorators, oop, BARRIER_RESOLVE>::resolve(obj);
}
};
// Step 2: Reduce types.
// Enforce that for non-oop types, T and P have to be strictly the same.
// P is the type of the address and T is the type of the values.
// As for oop types, it is allow to send T in {narrowOop, oop} and
// P in {narrowOop, oop, HeapWord*}. The following rules apply according to
// the subsequent table. (columns are P, rows are T)
// | | HeapWord | oop | narrowOop |
// | oop | rt-comp | hw-none | hw-comp |
// | narrowOop | x | x | hw-none |
//
// x means not allowed
// rt-comp means it must be checked at runtime whether the oop is compressed.
// hw-none means it is statically known the oop will not be compressed.
// hw-comp means it is statically known the oop will be compressed.
template <DecoratorSet decorators, typename T>
inline void store_reduce_types(T* addr, T value) {
PreRuntimeDispatch::store<decorators>(addr, value);
}
template <DecoratorSet decorators>
inline void store_reduce_types(narrowOop* addr, oop value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
template <DecoratorSet decorators>
inline void store_reduce_types(narrowOop* addr, narrowOop value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
template <DecoratorSet decorators>
inline void store_reduce_types(HeapWord* addr, oop value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
PreRuntimeDispatch::store<expanded_decorators>(addr, value);
}
template <DecoratorSet decorators, typename T>
inline T atomic_cmpxchg_reduce_types(T new_value, T* addr, T compare_value) {
return PreRuntimeDispatch::atomic_cmpxchg<decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators>
inline oop atomic_cmpxchg_reduce_types(oop new_value, narrowOop* addr, oop compare_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators>
inline narrowOop atomic_cmpxchg_reduce_types(narrowOop new_value, narrowOop* addr, narrowOop compare_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators>
inline oop atomic_cmpxchg_reduce_types(oop new_value,
HeapWord* addr,
oop compare_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
return PreRuntimeDispatch::atomic_cmpxchg<expanded_decorators>(new_value, addr, compare_value);
}
template <DecoratorSet decorators, typename T>
inline T atomic_xchg_reduce_types(T* addr, T new_value) {
const DecoratorSet expanded_decorators = decorators;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(addr, new_value);
}
template <DecoratorSet decorators>
inline oop atomic_xchg_reduce_types(narrowOop* addr, oop new_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(addr, new_value);
}
template <DecoratorSet decorators>
inline narrowOop atomic_xchg_reduce_types(narrowOop* addr, narrowOop new_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(addr, new_value);
}
template <DecoratorSet decorators>
inline oop atomic_xchg_reduce_types(HeapWord* addr, oop new_value) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
return PreRuntimeDispatch::atomic_xchg<expanded_decorators>(addr, new_value);
}
template <DecoratorSet decorators, typename T>
inline T load_reduce_types(T* addr) {
return PreRuntimeDispatch::load<decorators, T>(addr);
}
template <DecoratorSet decorators, typename T>
inline typename OopOrNarrowOop<T>::type load_reduce_types(narrowOop* addr) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::load<expanded_decorators, typename OopOrNarrowOop<T>::type>(addr);
}
template <DecoratorSet decorators, typename T>
inline oop load_reduce_types(HeapWord* addr) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
return PreRuntimeDispatch::load<expanded_decorators, oop>(addr);
}
template <DecoratorSet decorators, typename T>
inline bool arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
return PreRuntimeDispatch::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
template <DecoratorSet decorators>
inline bool arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, HeapWord* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, HeapWord* dst_raw,
size_t length) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP;
return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
template <DecoratorSet decorators>
inline bool arraycopy_reduce_types(arrayOop src_obj, size_t src_offset_in_bytes, narrowOop* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, narrowOop* dst_raw,
size_t length) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_CONVERT_COMPRESSED_OOP |
INTERNAL_RT_USE_COMPRESSED_OOPS;
return PreRuntimeDispatch::arraycopy<expanded_decorators>(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
// Step 1: Set default decorators. This step remembers if a type was volatile
// and then sets the MO_VOLATILE decorator by default. Otherwise, a default
// memory ordering is set for the access, and the implied decorator rules
// are applied to select sensible defaults for decorators that have not been
// explicitly set. For example, default object referent strength is set to strong.
// This step also decays the types passed in (e.g. getting rid of CV qualifiers
// and references from the types). This step also perform some type verification
// that the passed in types make sense.
template <DecoratorSet decorators, typename T>
static void verify_types(){
// If this fails to compile, then you have sent in something that is
// not recognized as a valid primitive type to a primitive Access function.
STATIC_ASSERT((HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value || // oops have already been validated
(IsPointer<T>::value || IsIntegral<T>::value) ||
IsFloatingPoint<T>::value)); // not allowed primitive type
}
template <DecoratorSet decorators, typename P, typename T>
inline void store(P* addr, T value) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Decay<T>::type DecayedT;
DecayedT decayed_value = value;
// If a volatile address is passed in but no memory ordering decorator,
// set the memory ordering to MO_VOLATILE by default.
const DecoratorSet expanded_decorators = DecoratorFixup<
(IsVolatile<P>::value && !HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_VOLATILE | decorators) : decorators>::value;
store_reduce_types<expanded_decorators>(const_cast<DecayedP*>(addr), decayed_value);
}
template <DecoratorSet decorators, typename T>
inline void store_at(oop base, ptrdiff_t offset, T value) {
verify_types<decorators, T>();
typedef typename Decay<T>::type DecayedT;
DecayedT decayed_value = value;
const DecoratorSet expanded_decorators = DecoratorFixup<decorators |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : DECORATORS_NONE)>::value;
PreRuntimeDispatch::store_at<expanded_decorators>(base, offset, decayed_value);
}
template <DecoratorSet decorators, typename P, typename T>
inline T load(P* addr) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Conditional<HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
typename OopOrNarrowOop<T>::type,
typename Decay<T>::type>::type DecayedT;
// If a volatile address is passed in but no memory ordering decorator,
// set the memory ordering to MO_VOLATILE by default.
const DecoratorSet expanded_decorators = DecoratorFixup<
(IsVolatile<P>::value && !HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_VOLATILE | decorators) : decorators>::value;
return load_reduce_types<expanded_decorators, DecayedT>(const_cast<DecayedP*>(addr));
}
template <DecoratorSet decorators, typename T>
inline T load_at(oop base, ptrdiff_t offset) {
verify_types<decorators, T>();
typedef typename Conditional<HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
typename OopOrNarrowOop<T>::type,
typename Decay<T>::type>::type DecayedT;
// Expand the decorators (figure out sensible defaults)
// Potentially remember if we need compressed oop awareness
const DecoratorSet expanded_decorators = DecoratorFixup<decorators |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : DECORATORS_NONE)>::value;
return PreRuntimeDispatch::load_at<expanded_decorators, DecayedT>(base, offset);
}
template <DecoratorSet decorators, typename P, typename T>
inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
DecayedT compare_decayed_value = compare_value;
const DecoratorSet expanded_decorators = DecoratorFixup<
(!HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_SEQ_CST | decorators) : decorators>::value;
return atomic_cmpxchg_reduce_types<expanded_decorators>(new_decayed_value,
const_cast<DecayedP*>(addr),
compare_decayed_value);
}
template <DecoratorSet decorators, typename T>
inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
verify_types<decorators, T>();
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
DecayedT compare_decayed_value = compare_value;
// Determine default memory ordering
const DecoratorSet expanded_decorators = DecoratorFixup<
(!HasDecorator<decorators, MO_DECORATOR_MASK>::value) ?
(MO_SEQ_CST | decorators) : decorators>::value;
// Potentially remember that we need compressed oop awareness
const DecoratorSet final_decorators = expanded_decorators |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : DECORATORS_NONE);
return PreRuntimeDispatch::atomic_cmpxchg_at<final_decorators>(new_decayed_value, base,
offset, compare_decayed_value);
}
template <DecoratorSet decorators, typename P, typename T>
inline T atomic_xchg(P* addr, T new_value) {
verify_types<decorators, T>();
typedef typename Decay<P>::type DecayedP;
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
// atomic_xchg is only available in SEQ_CST flavour.
const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST>::value;
return atomic_xchg_reduce_types<expanded_decorators>(const_cast<DecayedP*>(addr),
new_decayed_value);
}
template <DecoratorSet decorators, typename T>
inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
verify_types<decorators, T>();
typedef typename Decay<T>::type DecayedT;
DecayedT new_decayed_value = new_value;
// atomic_xchg is only available in SEQ_CST flavour.
const DecoratorSet expanded_decorators = DecoratorFixup<decorators | MO_SEQ_CST |
(HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ?
INTERNAL_CONVERT_COMPRESSED_OOP : DECORATORS_NONE)>::value;
return PreRuntimeDispatch::atomic_xchg_at<expanded_decorators>(base, offset, new_decayed_value);
}
template <DecoratorSet decorators, typename T>
inline bool arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
STATIC_ASSERT((HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value ||
(IsSame<T, void>::value || IsIntegral<T>::value) ||
IsFloatingPoint<T>::value)); // arraycopy allows type erased void elements
typedef typename Decay<T>::type DecayedT;
const DecoratorSet expanded_decorators = DecoratorFixup<decorators | IS_ARRAY | IN_HEAP>::value;
return arraycopy_reduce_types<expanded_decorators>(src_obj, src_offset_in_bytes, const_cast<DecayedT*>(src_raw),
dst_obj, dst_offset_in_bytes, const_cast<DecayedT*>(dst_raw),
length);
}
template <DecoratorSet decorators>
inline void clone(oop src, oop dst, size_t size) {
const DecoratorSet expanded_decorators = DecoratorFixup<decorators>::value;
PreRuntimeDispatch::clone<expanded_decorators>(src, dst, size);
}
template <DecoratorSet decorators>
inline oop resolve(oop obj) {
const DecoratorSet expanded_decorators = DecoratorFixup<decorators>::value;
return PreRuntimeDispatch::resolve<expanded_decorators>(obj);
}
// Infer the type that should be returned from an Access::oop_load.
template <typename P, DecoratorSet decorators>
class OopLoadProxy: public StackObj {
private:
P *const _addr;
public:
OopLoadProxy(P* addr) : _addr(addr) {}
inline operator oop() {
return load<decorators | INTERNAL_VALUE_IS_OOP, P, oop>(_addr);
}
inline operator narrowOop() {
return load<decorators | INTERNAL_VALUE_IS_OOP, P, narrowOop>(_addr);
}
template <typename T>
inline bool operator ==(const T& other) const {
return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) == other;
}
template <typename T>
inline bool operator !=(const T& other) const {
return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) != other;
}
};
// Infer the type that should be returned from an Access::load_at.
template <DecoratorSet decorators>
class LoadAtProxy: public StackObj {
private:
const oop _base;
const ptrdiff_t _offset;
public:
LoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
template <typename T>
inline operator T() const {
return load_at<decorators, T>(_base, _offset);
}
template <typename T>
inline bool operator ==(const T& other) const { return load_at<decorators, T>(_base, _offset) == other; }
template <typename T>
inline bool operator !=(const T& other) const { return load_at<decorators, T>(_base, _offset) != other; }
};
// Infer the type that should be returned from an Access::oop_load_at.
template <DecoratorSet decorators>
class OopLoadAtProxy: public StackObj {
private:
const oop _base;
const ptrdiff_t _offset;
public:
OopLoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
inline operator oop() const {
return load_at<decorators | INTERNAL_VALUE_IS_OOP, oop>(_base, _offset);
}
inline operator narrowOop() const {
return load_at<decorators | INTERNAL_VALUE_IS_OOP, narrowOop>(_base, _offset);
}
template <typename T>
inline bool operator ==(const T& other) const {
return load_at<decorators | INTERNAL_VALUE_IS_OOP, T>(_base, _offset) == other;
}
template <typename T>
inline bool operator !=(const T& other) const {
return load_at<decorators | INTERNAL_VALUE_IS_OOP, T>(_base, _offset) != other;
}
};
}
#endif // SHARE_OOPS_ACCESSBACKEND_HPP