blob: 5dd443f7a09c536faee9c7c4a888eaaecaea9077 [file] [log] [blame]
/*
* Copyright (c) 2017, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_SHARED_MODREFBARRIERSET_INLINE_HPP
#define SHARE_GC_SHARED_MODREFBARRIERSET_INLINE_HPP
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/modRefBarrierSet.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.hpp"
// count is number of array elements being written
void ModRefBarrierSet::write_ref_array(HeapWord* start, size_t count) {
HeapWord* end = (HeapWord*)((char*)start + (count*heapOopSize));
// In the case of compressed oops, start and end may potentially be misaligned;
// so we need to conservatively align the first downward (this is not
// strictly necessary for current uses, but a case of good hygiene and,
// if you will, aesthetics) and the second upward (this is essential for
// current uses) to a HeapWord boundary, so we mark all cards overlapping
// this write. If this evolves in the future to calling a
// logging barrier of narrow oop granularity, like the pre-barrier for G1
// (mentioned here merely by way of example), we will need to change this
// interface, so it is "exactly precise" (if i may be allowed the adverbial
// redundancy for emphasis) and does not include narrow oop slots not
// included in the original write interval.
HeapWord* aligned_start = align_down(start, HeapWordSize);
HeapWord* aligned_end = align_up (end, HeapWordSize);
// If compressed oops were not being used, these should already be aligned
assert(UseCompressedOops || (aligned_start == start && aligned_end == end),
"Expected heap word alignment of start and end");
write_ref_array_work(MemRegion(aligned_start, aligned_end));
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline void ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_store_in_heap(T* addr, oop value) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->template write_ref_field_pre<decorators>(addr);
Raw::oop_store(addr, value);
bs->template write_ref_field_post<decorators>(addr, value);
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline oop ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_atomic_cmpxchg_in_heap(oop new_value, T* addr, oop compare_value) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->template write_ref_field_pre<decorators>(addr);
oop result = Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
if (result == compare_value) {
bs->template write_ref_field_post<decorators>(addr, new_value);
}
return result;
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline oop ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_atomic_xchg_in_heap(T* addr, oop new_value) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->template write_ref_field_pre<decorators>(addr);
oop result = Raw::oop_atomic_xchg(addr, new_value);
bs->template write_ref_field_post<decorators>(addr, new_value);
return result;
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline bool ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_arraycopy_in_heap(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
if (!HasDecorator<decorators, ARRAYCOPY_CHECKCAST>::value) {
// Optimized covariant case
bs->write_ref_array_pre(dst_raw, length,
HasDecorator<decorators, IS_DEST_UNINITIALIZED>::value);
Raw::oop_arraycopy(NULL, 0, src_raw, NULL, 0, dst_raw, length);
bs->write_ref_array((HeapWord*)dst_raw, length);
} else {
assert(dst_obj != NULL, "better have an actual oop");
Klass* bound = objArrayOop(dst_obj)->element_klass();
T* from = const_cast<T*>(src_raw);
T* end = from + length;
for (T* p = dst_raw; from < end; from++, p++) {
T element = *from;
if (oopDesc::is_instanceof_or_null(CompressedOops::decode(element), bound)) {
bs->template write_ref_field_pre<decorators>(p);
*p = element;
} else {
// We must do a barrier to cover the partial copy.
const size_t pd = pointer_delta(p, dst_raw, (size_t)heapOopSize);
// pointer delta is scaled to number of elements (length field in
// objArrayOop) which we assume is 32 bit.
assert(pd == (size_t)(int)pd, "length field overflow");
bs->write_ref_array((HeapWord*)dst_raw, pd);
return false;
}
}
bs->write_ref_array((HeapWord*)dst_raw, length);
}
return true;
}
template <DecoratorSet decorators, typename BarrierSetT>
inline void ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
clone_in_heap(oop src, oop dst, size_t size) {
Raw::clone(src, dst, size);
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->write_region(MemRegion((HeapWord*)(void*)dst, size));
}
#endif // SHARE_GC_SHARED_MODREFBARRIERSET_INLINE_HPP