blob: 59178ca46b06a02fa168689656aa79a77c61815a [file] [log] [blame]
/*
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_RUNTIME_SIGNATURE_HPP
#define SHARE_RUNTIME_SIGNATURE_HPP
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "oops/method.hpp"
// Static routines and parsing loops for processing field and method
// descriptors. In the HotSpot sources we call them "signatures".
//
// A SignatureStream iterates over a Java descriptor (or parts of it).
// The syntax is documented in the Java Virtual Machine Specification,
// section 4.3.
//
// The syntax may be summarized as follows:
//
// MethodType: '(' {FieldType}* ')' (FieldType | 'V')
// FieldType: PrimitiveType | ObjectType | ArrayType
// PrimitiveType: 'B' | 'C' | 'D' | 'F' | 'I' | 'J' | 'S' | 'Z'
// ObjectType: 'L' ClassName ';' | ArrayType
// ArrayType: '[' FieldType
// ClassName: {UnqualifiedName '/'}* UnqualifiedName
// UnqualifiedName: NameChar {NameChar}*
// NameChar: ANY_CHAR_EXCEPT('/' | '.' | ';' | '[')
//
// All of the concrete characters in the above grammar are given
// standard manifest constant names of the form JVM_SIGNATURE_x.
// Executable code uses these constant names in preference to raw
// character constants. Comments and assertion code sometimes use
// the raw character constants for brevity.
//
// The primitive field types (like 'I') correspond 1-1 with type codes
// (like T_INT) which form part of the specification of the 'newarray'
// instruction (JVMS 6.5, section on newarray). These type codes are
// widely used in the HotSpot code. They are joined by ad hoc codes
// like T_OBJECT and T_ARRAY (defined in HotSpot but not in the JVMS)
// so that each "basic type" of field descriptor (or void return type)
// has a corresponding T_x code. Thus, while T_x codes play a very
// minor role in the JVMS, they play a major role in the HotSpot
// sources. There are fewer than 16 such "basic types", so they fit
// nicely into bitfields.
//
// The syntax of ClassName overlaps slightly with the descriptor
// syntaxes. The strings "I" and "(I)V" are both class names
// *and* descriptors. If a class name contains any character other
// than "BCDFIJSZ()V" it cannot be confused with a descriptor.
// Class names inside of descriptors are always contained in an
// "envelope" syntax which starts with 'L' and ends with ';'.
//
// As a confounding factor, array types report their type name strings
// in descriptor format. These name strings are easy to recognize,
// since they begin with '['. For this reason some API points on
// HotSpot look for array descriptors as well as proper class names.
//
// For historical reasons some API points that accept class names and
// array names also look for class names wrapped inside an envelope
// (like "LFoo;") and unwrap them on the fly (to a name like "Foo").
class Signature : AllStatic {
private:
static bool is_valid_array_signature(const Symbol* sig);
public:
// Returns the basic type of a field signature (or T_VOID for "V").
// Assumes the signature is a valid field descriptor.
// Do not apply this function to class names or method signatures.
static BasicType basic_type(const Symbol* signature) {
return basic_type(signature->char_at(0));
}
// Returns T_ILLEGAL for an illegal signature char.
static BasicType basic_type(int ch);
// Assuming it is either a class name or signature,
// determine if it in fact cannot be a class name.
// This means it either starts with '[' or ends with ';'
static bool not_class_name(const Symbol* signature) {
return (signature->starts_with(JVM_SIGNATURE_ARRAY) ||
signature->ends_with(JVM_SIGNATURE_ENDCLASS));
}
// Assuming it is either a class name or signature,
// determine if it in fact is an array descriptor.
static bool is_array(const Symbol* signature) {
return (signature->utf8_length() > 1 &&
signature->char_at(0) == JVM_SIGNATURE_ARRAY &&
is_valid_array_signature(signature));
}
// Assuming it is either a class name or signature,
// determine if it contains a class name plus ';'.
static bool has_envelope(const Symbol* signature) {
return ((signature->utf8_length() > 0) &&
signature->ends_with(JVM_SIGNATURE_ENDCLASS) &&
has_envelope(signature->char_at(0)));
}
// Determine if this signature char introduces an
// envelope, which is a class name plus ';'.
static bool has_envelope(char signature_char) {
return (signature_char == JVM_SIGNATURE_CLASS);
}
// Assuming has_envelope is true, return the symbol
// inside the envelope, by stripping 'L' and ';'.
// Caller is responsible for decrementing the newly created
// Symbol's refcount, use TempNewSymbol.
static Symbol* strip_envelope(const Symbol* signature) {
assert(has_envelope(signature), "precondition");
return SymbolTable::new_symbol((char*) signature->bytes() + 1,
signature->utf8_length() - 2);
}
// Assuming it's either a field or method descriptor, determine
// whether it is in fact a method descriptor:
static bool is_method(const Symbol* signature) {
return signature->starts_with(JVM_SIGNATURE_FUNC);
}
// Assuming it's a method signature, determine if it must
// return void.
static bool is_void_method(const Symbol* signature) {
assert(is_method(signature), "signature is not for a method");
return signature->ends_with(JVM_SIGNATURE_VOID);
}
};
// A SignatureIterator uses a SignatureStream to produce BasicType
// results, discarding class names. This means it can be accelerated
// using a fingerprint mechanism, in many cases, without loss of type
// information. The FingerPrinter class computes and caches this
// reduced information for faster iteration.
class SignatureIterator: public ResourceObj {
public:
typedef uint64_t fingerprint_t;
protected:
Symbol* _signature; // the signature to iterate over
BasicType _return_type;
fingerprint_t _fingerprint;
public:
// Definitions used in generating and iterating the
// bit field form of the signature generated by the
// Fingerprinter.
enum {
fp_static_feature_size = 1,
fp_is_static_bit = 1,
fp_result_feature_size = 4,
fp_result_feature_mask = right_n_bits(fp_result_feature_size),
fp_parameter_feature_size = 4,
fp_parameter_feature_mask = right_n_bits(fp_parameter_feature_size),
fp_parameters_done = 0, // marker for end of parameters (must be zero)
// Parameters take up full wordsize, minus the result and static bit fields.
// Since fp_parameters_done is zero, termination field arises from shifting
// in zero bits, and therefore occupies no extra space.
// The sentinel value is all-zero-bits, which is impossible for a true
// fingerprint, since at least the result field will be non-zero.
fp_max_size_of_parameters = ((BitsPerLong
- (fp_result_feature_size + fp_static_feature_size))
/ fp_parameter_feature_size)
};
static bool fp_is_valid_type(BasicType type, bool for_return_type = false);
// Sentinel values are zero and not-zero (-1).
// No need to protect the sign bit, since every valid return type is non-zero
// (even T_VOID), and there are no valid parameter fields which are 0xF (T_VOID).
static fingerprint_t zero_fingerprint() { return (fingerprint_t)0; }
static fingerprint_t overflow_fingerprint() { return ~(fingerprint_t)0; }
static bool fp_is_valid(fingerprint_t fingerprint) {
return (fingerprint != zero_fingerprint()) && (fingerprint != overflow_fingerprint());
}
// Constructors
SignatureIterator(Symbol* signature, fingerprint_t fingerprint = zero_fingerprint()) {
_signature = signature;
_return_type = T_ILLEGAL; // sentinel value for uninitialized
_fingerprint = zero_fingerprint();
if (fingerprint != _fingerprint) {
set_fingerprint(fingerprint);
}
}
// If the fingerprint is present, we can use an accelerated loop.
void set_fingerprint(fingerprint_t fingerprint);
// Returns the set fingerprint, or zero_fingerprint()
// if none has been set already.
fingerprint_t fingerprint() const { return _fingerprint; }
// Iteration
// Hey look: There are no virtual methods in this class.
// So how is it customized? By calling do_parameters_on
// an object which answers to "do_type(BasicType)".
// By convention, this object is in the subclass
// itself, so the call is "do_parameters_on(this)".
// The effect of this is to inline the parsing loop
// everywhere "do_parameters_on" is called.
// If there is a valid fingerprint in the object,
// an improved loop is called which just unpacks the
// bitfields from the fingerprint. Otherwise, the
// symbol is parsed.
template<typename T> inline void do_parameters_on(T* callback); // iterates over parameters only
BasicType return_type(); // computes the value on the fly if necessary
static bool fp_is_static(fingerprint_t fingerprint) {
assert(fp_is_valid(fingerprint), "invalid fingerprint");
return fingerprint & fp_is_static_bit;
}
static BasicType fp_return_type(fingerprint_t fingerprint) {
assert(fp_is_valid(fingerprint), "invalid fingerprint");
return (BasicType) ((fingerprint >> fp_static_feature_size) & fp_result_feature_mask);
}
static fingerprint_t fp_start_parameters(fingerprint_t fingerprint) {
assert(fp_is_valid(fingerprint), "invalid fingerprint");
return fingerprint >> (fp_static_feature_size + fp_result_feature_size);
}
static BasicType fp_next_parameter(fingerprint_t& mask) {
int result = (mask & fp_parameter_feature_mask);
mask >>= fp_parameter_feature_size;
return (BasicType) result;
}
};
// Specialized SignatureIterators: Used to compute signature specific values.
class SignatureTypeNames : public SignatureIterator {
protected:
virtual void type_name(const char* name) = 0;
friend class SignatureIterator; // so do_parameters_on can call do_type
void do_type(BasicType type) {
switch (type) {
case T_BOOLEAN: type_name("jboolean"); break;
case T_CHAR: type_name("jchar" ); break;
case T_FLOAT: type_name("jfloat" ); break;
case T_DOUBLE: type_name("jdouble" ); break;
case T_BYTE: type_name("jbyte" ); break;
case T_SHORT: type_name("jshort" ); break;
case T_INT: type_name("jint" ); break;
case T_LONG: type_name("jlong" ); break;
case T_VOID: type_name("void" ); break;
case T_ARRAY:
case T_OBJECT: type_name("jobject" ); break;
default: ShouldNotReachHere();
}
}
public:
SignatureTypeNames(Symbol* signature) : SignatureIterator(signature) {}
};
// Specialized SignatureIterator: Used to compute the argument size.
class ArgumentSizeComputer: public SignatureIterator {
private:
int _size;
friend class SignatureIterator; // so do_parameters_on can call do_type
void do_type(BasicType type) { _size += parameter_type_word_count(type); }
public:
ArgumentSizeComputer(Symbol* signature);
int size() { return _size; }
};
class ArgumentCount: public SignatureIterator {
private:
int _size;
friend class SignatureIterator; // so do_parameters_on can call do_type
void do_type(BasicType type) { _size++; }
public:
ArgumentCount(Symbol* signature);
int size() { return _size; }
};
class ReferenceArgumentCount: public SignatureIterator {
private:
int _refs;
friend class SignatureIterator; // so do_parameters_on can call do_type
void do_type(BasicType type) { if (is_reference_type(type)) _refs++; }
public:
ReferenceArgumentCount(Symbol* signature);
int count() { return _refs; }
};
// Specialized SignatureIterator: Used to compute the result type.
class ResultTypeFinder: public SignatureIterator {
public:
BasicType type() { return return_type(); }
ResultTypeFinder(Symbol* signature) : SignatureIterator(signature) { }
};
// Fingerprinter computes a unique ID for a given method. The ID
// is a bitvector characterizing the methods signature (incl. the receiver).
class Fingerprinter: public SignatureIterator {
private:
fingerprint_t _accumulator;
int _param_size;
int _shift_count;
const Method* _method;
void initialize_accumulator() {
_accumulator = 0;
_shift_count = fp_result_feature_size + fp_static_feature_size;
_param_size = 0;
}
// Out-of-line method does it all in constructor:
void compute_fingerprint_and_return_type(bool static_flag = false);
friend class SignatureIterator; // so do_parameters_on can call do_type
void do_type(BasicType type) {
assert(fp_is_valid_type(type), "bad parameter type");
_accumulator |= ((fingerprint_t)type << _shift_count);
_shift_count += fp_parameter_feature_size;
_param_size += (is_double_word_type(type) ? 2 : 1);
}
public:
int size_of_parameters() const { return _param_size; }
// fingerprint() and return_type() are in super class
Fingerprinter(const methodHandle& method)
: SignatureIterator(method->signature()),
_method(method()) {
compute_fingerprint_and_return_type();
}
Fingerprinter(Symbol* signature, bool is_static)
: SignatureIterator(signature),
_method(NULL) {
compute_fingerprint_and_return_type(is_static);
}
};
// Specialized SignatureIterator: Used for native call purposes
class NativeSignatureIterator: public SignatureIterator {
private:
methodHandle _method;
// We need separate JNI and Java offset values because in 64 bit mode,
// the argument offsets are not in sync with the Java stack.
// For example a long takes up 1 "C" stack entry but 2 Java stack entries.
int _offset; // The java stack offset
int _prepended; // number of prepended JNI parameters (1 JNIEnv, plus 1 mirror if static)
int _jni_offset; // the current parameter offset, starting with 0
friend class SignatureIterator; // so do_parameters_on can call do_type
void do_type(BasicType type) {
switch (type) {
case T_BYTE:
case T_SHORT:
case T_INT:
case T_BOOLEAN:
case T_CHAR:
pass_int(); _jni_offset++; _offset++;
break;
case T_FLOAT:
pass_float(); _jni_offset++; _offset++;
break;
case T_DOUBLE: {
int jni_offset = LP64_ONLY(1) NOT_LP64(2);
pass_double(); _jni_offset += jni_offset; _offset += 2;
break;
}
case T_LONG: {
int jni_offset = LP64_ONLY(1) NOT_LP64(2);
pass_long(); _jni_offset += jni_offset; _offset += 2;
break;
}
case T_ARRAY:
case T_OBJECT:
pass_object(); _jni_offset++; _offset++;
break;
default:
ShouldNotReachHere();
}
}
public:
methodHandle method() const { return _method; }
int offset() const { return _offset; }
int jni_offset() const { return _jni_offset + _prepended; }
bool is_static() const { return method()->is_static(); }
virtual void pass_int() = 0;
virtual void pass_long() = 0;
virtual void pass_object() = 0; // objects, arrays, inlines
virtual void pass_float() = 0;
#ifdef _LP64
virtual void pass_double() = 0;
#else
virtual void pass_double() { pass_long(); } // may be same as long
#endif
NativeSignatureIterator(const methodHandle& method) : SignatureIterator(method->signature()) {
_method = method;
_offset = 0;
_jni_offset = 0;
const int JNIEnv_words = 1;
const int mirror_words = 1;
_prepended = !is_static() ? JNIEnv_words : JNIEnv_words + mirror_words;
}
void iterate() { iterate(Fingerprinter(method()).fingerprint()); }
// iterate() calls the 3 virtual methods according to the following invocation syntax:
//
// {pass_int | pass_long | pass_object}
//
// Arguments are handled from left to right (receiver first, if any).
// The offset() values refer to the Java stack offsets but are 0 based and increasing.
// The java_offset() values count down to 0, and refer to the Java TOS.
// The jni_offset() values increase from 1 or 2, and refer to C arguments.
// The method's return type is ignored.
void iterate(fingerprint_t fingerprint) {
set_fingerprint(fingerprint);
if (!is_static()) {
// handle receiver (not handled by iterate because not in signature)
pass_object(); _jni_offset++; _offset++;
}
do_parameters_on(this);
}
};
// This is the core parsing logic for iterating over signatures.
// All of the previous classes use this for doing their work.
class SignatureStream : public StackObj {
private:
const Symbol* _signature;
int _begin;
int _end;
int _limit;
int _array_prefix; // count of '[' before the array element descr
BasicType _type;
int _state;
Symbol* _previous_name; // cache the previously looked up symbol to avoid lookups
GrowableArray<Symbol*>* _names; // symbols created while parsing that need to be dereferenced
Symbol* find_symbol();
enum { _s_field = 0, _s_method = 1, _s_method_return = 3 };
void set_done() {
_state |= -2; // preserve s_method bit
assert(is_done(), "Unable to set state to done");
}
int scan_type(BasicType bt);
public:
bool at_return_type() const { return _state == (int)_s_method_return; }
bool is_done() const { return _state < 0; }
void next();
SignatureStream(const Symbol* signature, bool is_method = true);
~SignatureStream();
bool is_reference() const { return is_reference_type(_type); }
bool is_array() const { return _type == T_ARRAY; }
bool is_primitive() const { return is_java_primitive(_type); }
BasicType type() const { return _type; }
const u1* raw_bytes() const { return _signature->bytes() + _begin; }
int raw_length() const { return _end - _begin; }
int raw_symbol_begin() const { return _begin + (has_envelope() ? 1 : 0); }
int raw_symbol_end() const { return _end - (has_envelope() ? 1 : 0); }
char raw_char_at(int i) const {
assert(i < _limit, "index for raw_char_at is over the limit");
return _signature->char_at(i);
}
// True if there is an embedded class name in this type,
// followed by ';'.
bool has_envelope() const {
if (!Signature::has_envelope(_signature->char_at(_begin)))
return false;
// this should always be true, but let's test it:
assert(_signature->char_at(_end-1) == JVM_SIGNATURE_ENDCLASS, "signature envelope has no semi-colon at end");
return true;
}
// return the symbol for chars in symbol_begin()..symbol_end()
Symbol* as_symbol() {
return find_symbol();
}
// in case you want only the return type:
void skip_to_return_type();
// number of '[' in array prefix
int array_prefix_length() {
return _type == T_ARRAY ? _array_prefix : 0;
}
// In case you want only the array base type,
// reset the stream after skipping some brackets '['.
// (The argument is clipped to array_prefix_length(),
// and if it ends up as zero this call is a nop.
// The default is value skips all brackets '['.)
private:
int skip_whole_array_prefix();
public:
int skip_array_prefix(int max_skip_length) {
if (_type != T_ARRAY) {
return 0;
}
if (_array_prefix > max_skip_length) {
// strip some but not all levels of T_ARRAY
_array_prefix -= max_skip_length;
_begin += max_skip_length;
return max_skip_length;
}
return skip_whole_array_prefix();
}
int skip_array_prefix() {
if (_type != T_ARRAY) {
return 0;
}
return skip_whole_array_prefix();
}
// free-standing lookups (bring your own CL/PD pair)
enum FailureMode { ReturnNull, NCDFError, CachedOrNull };
Klass* as_klass(Handle class_loader, Handle protection_domain, FailureMode failure_mode, TRAPS);
oop as_java_mirror(Handle class_loader, Handle protection_domain, FailureMode failure_mode, TRAPS);
};
// Here is how all the SignatureIterator classes invoke the
// SignatureStream engine to do their parsing.
template<typename T> inline
void SignatureIterator::do_parameters_on(T* callback) {
fingerprint_t unaccumulator = _fingerprint;
// Check for too many arguments, or missing fingerprint:
if (!fp_is_valid(unaccumulator)) {
SignatureStream ss(_signature);
for (; !ss.at_return_type(); ss.next()) {
callback->do_type(ss.type());
}
// while we are here, capture the return type
_return_type = ss.type();
} else {
// Optimized version of do_parameters when fingerprint is known
assert(_return_type != T_ILLEGAL, "return type already captured from fp");
unaccumulator = fp_start_parameters(unaccumulator);
for (BasicType type; (type = fp_next_parameter(unaccumulator)) != (BasicType)fp_parameters_done; ) {
assert(fp_is_valid_type(type), "garbled fingerprint");
callback->do_type(type);
}
}
}
#ifdef ASSERT
class SignatureVerifier : public StackObj {
public:
static bool is_valid_method_signature(Symbol* sig);
static bool is_valid_type_signature(Symbol* sig);
private:
static ssize_t is_valid_type(const char*, ssize_t);
};
#endif
#endif // SHARE_RUNTIME_SIGNATURE_HPP