blob: 8379004f636c0baeaa1a2d1240f30e7d1047357f [file] [log] [blame]
/*
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
#include "gc_implementation/shared/mutableSpace.hpp"
#include "memory/memRegion.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.psgc.inline.hpp"
PSPromotionManager** PSPromotionManager::_manager_array = NULL;
OopStarTaskQueueSet* PSPromotionManager::_stack_array_depth = NULL;
PSOldGen* PSPromotionManager::_old_gen = NULL;
MutableSpace* PSPromotionManager::_young_space = NULL;
void PSPromotionManager::initialize() {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
_old_gen = heap->old_gen();
_young_space = heap->young_gen()->to_space();
assert(_manager_array == NULL, "Attempt to initialize twice");
_manager_array = NEW_C_HEAP_ARRAY(PSPromotionManager*, ParallelGCThreads+1 );
guarantee(_manager_array != NULL, "Could not initialize promotion manager");
_stack_array_depth = new OopStarTaskQueueSet(ParallelGCThreads);
guarantee(_stack_array_depth != NULL, "Cound not initialize promotion manager");
// Create and register the PSPromotionManager(s) for the worker threads.
for(uint i=0; i<ParallelGCThreads; i++) {
_manager_array[i] = new PSPromotionManager();
guarantee(_manager_array[i] != NULL, "Could not create PSPromotionManager");
stack_array_depth()->register_queue(i, _manager_array[i]->claimed_stack_depth());
}
// The VMThread gets its own PSPromotionManager, which is not available
// for work stealing.
_manager_array[ParallelGCThreads] = new PSPromotionManager();
guarantee(_manager_array[ParallelGCThreads] != NULL, "Could not create PSPromotionManager");
}
PSPromotionManager* PSPromotionManager::gc_thread_promotion_manager(int index) {
assert(index >= 0 && index < (int)ParallelGCThreads, "index out of range");
assert(_manager_array != NULL, "Sanity");
return _manager_array[index];
}
PSPromotionManager* PSPromotionManager::vm_thread_promotion_manager() {
assert(_manager_array != NULL, "Sanity");
return _manager_array[ParallelGCThreads];
}
void PSPromotionManager::pre_scavenge() {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
_young_space = heap->young_gen()->to_space();
for(uint i=0; i<ParallelGCThreads+1; i++) {
manager_array(i)->reset();
}
}
void PSPromotionManager::post_scavenge() {
TASKQUEUE_STATS_ONLY(if (PrintGCDetails && ParallelGCVerbose) print_stats());
for (uint i = 0; i < ParallelGCThreads + 1; i++) {
PSPromotionManager* manager = manager_array(i);
assert(manager->claimed_stack_depth()->is_empty(), "should be empty");
manager->flush_labs();
}
}
#if TASKQUEUE_STATS
void
PSPromotionManager::print_taskqueue_stats(uint i) const {
tty->print("%3u ", i);
_claimed_stack_depth.stats.print();
tty->cr();
}
void
PSPromotionManager::print_local_stats(uint i) const {
#define FMT " " SIZE_FORMAT_W(10)
tty->print_cr("%3u" FMT FMT FMT FMT, i, _masked_pushes, _masked_steals,
_arrays_chunked, _array_chunks_processed);
#undef FMT
}
static const char* const pm_stats_hdr[] = {
" --------masked------- arrays array",
"thr push steal chunked chunks",
"--- ---------- ---------- ---------- ----------"
};
void
PSPromotionManager::print_stats() {
tty->print_cr("== GC Tasks Stats, GC %3d",
Universe::heap()->total_collections());
tty->print("thr "); TaskQueueStats::print_header(1); tty->cr();
tty->print("--- "); TaskQueueStats::print_header(2); tty->cr();
for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
manager_array(i)->print_taskqueue_stats(i);
}
const uint hlines = sizeof(pm_stats_hdr) / sizeof(pm_stats_hdr[0]);
for (uint i = 0; i < hlines; ++i) tty->print_cr(pm_stats_hdr[i]);
for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
manager_array(i)->print_local_stats(i);
}
}
void
PSPromotionManager::reset_stats() {
claimed_stack_depth()->stats.reset();
_masked_pushes = _masked_steals = 0;
_arrays_chunked = _array_chunks_processed = 0;
}
#endif // TASKQUEUE_STATS
PSPromotionManager::PSPromotionManager() {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
// We set the old lab's start array.
_old_lab.set_start_array(old_gen()->start_array());
uint queue_size;
claimed_stack_depth()->initialize();
queue_size = claimed_stack_depth()->max_elems();
_totally_drain = (ParallelGCThreads == 1) || (GCDrainStackTargetSize == 0);
if (_totally_drain) {
_target_stack_size = 0;
} else {
// don't let the target stack size to be more than 1/4 of the entries
_target_stack_size = (uint) MIN2((uint) GCDrainStackTargetSize,
(uint) (queue_size / 4));
}
_array_chunk_size = ParGCArrayScanChunk;
// let's choose 1.5x the chunk size
_min_array_size_for_chunking = 3 * _array_chunk_size / 2;
reset();
}
void PSPromotionManager::reset() {
assert(stacks_empty(), "reset of non-empty stack");
// We need to get an assert in here to make sure the labs are always flushed.
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
// Do not prefill the LAB's, save heap wastage!
HeapWord* lab_base = young_space()->top();
_young_lab.initialize(MemRegion(lab_base, (size_t)0));
_young_gen_is_full = false;
lab_base = old_gen()->object_space()->top();
_old_lab.initialize(MemRegion(lab_base, (size_t)0));
_old_gen_is_full = false;
TASKQUEUE_STATS_ONLY(reset_stats());
}
void PSPromotionManager::drain_stacks_depth(bool totally_drain) {
totally_drain = totally_drain || _totally_drain;
#ifdef ASSERT
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
MutableSpace* to_space = heap->young_gen()->to_space();
MutableSpace* old_space = heap->old_gen()->object_space();
MutableSpace* perm_space = heap->perm_gen()->object_space();
#endif /* ASSERT */
OopStarTaskQueue* const tq = claimed_stack_depth();
do {
StarTask p;
// Drain overflow stack first, so other threads can steal from
// claimed stack while we work.
while (tq->pop_overflow(p)) {
process_popped_location_depth(p);
}
if (totally_drain) {
while (tq->pop_local(p)) {
process_popped_location_depth(p);
}
} else {
while (tq->size() > _target_stack_size && tq->pop_local(p)) {
process_popped_location_depth(p);
}
}
} while (totally_drain && !tq->taskqueue_empty() || !tq->overflow_empty());
assert(!totally_drain || tq->taskqueue_empty(), "Sanity");
assert(totally_drain || tq->size() <= _target_stack_size, "Sanity");
assert(tq->overflow_empty(), "Sanity");
}
void PSPromotionManager::flush_labs() {
assert(stacks_empty(), "Attempt to flush lab with live stack");
// If either promotion lab fills up, we can flush the
// lab but not refill it, so check first.
assert(!_young_lab.is_flushed() || _young_gen_is_full, "Sanity");
if (!_young_lab.is_flushed())
_young_lab.flush();
assert(!_old_lab.is_flushed() || _old_gen_is_full, "Sanity");
if (!_old_lab.is_flushed())
_old_lab.flush();
// Let PSScavenge know if we overflowed
if (_young_gen_is_full) {
PSScavenge::set_survivor_overflow(true);
}
}
//
// This method is pretty bulky. It would be nice to split it up
// into smaller submethods, but we need to be careful not to hurt
// performance.
//
oop PSPromotionManager::copy_to_survivor_space(oop o) {
assert(PSScavenge::should_scavenge(&o), "Sanity");
oop new_obj = NULL;
// NOTE! We must be very careful with any methods that access the mark
// in o. There may be multiple threads racing on it, and it may be forwarded
// at any time. Do not use oop methods for accessing the mark!
markOop test_mark = o->mark();
// The same test as "o->is_forwarded()"
if (!test_mark->is_marked()) {
bool new_obj_is_tenured = false;
size_t new_obj_size = o->size();
// Find the objects age, MT safe.
int age = (test_mark->has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
test_mark->displaced_mark_helper()->age() : test_mark->age();
// Try allocating obj in to-space (unless too old)
if (age < PSScavenge::tenuring_threshold()) {
new_obj = (oop) _young_lab.allocate(new_obj_size);
if (new_obj == NULL && !_young_gen_is_full) {
// Do we allocate directly, or flush and refill?
if (new_obj_size > (YoungPLABSize / 2)) {
// Allocate this object directly
new_obj = (oop)young_space()->cas_allocate(new_obj_size);
} else {
// Flush and fill
_young_lab.flush();
HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
if (lab_base != NULL) {
_young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
// Try the young lab allocation again.
new_obj = (oop) _young_lab.allocate(new_obj_size);
} else {
_young_gen_is_full = true;
}
}
}
}
// Otherwise try allocating obj tenured
if (new_obj == NULL) {
#ifndef PRODUCT
if (Universe::heap()->promotion_should_fail()) {
return oop_promotion_failed(o, test_mark);
}
#endif // #ifndef PRODUCT
new_obj = (oop) _old_lab.allocate(new_obj_size);
new_obj_is_tenured = true;
if (new_obj == NULL) {
if (!_old_gen_is_full) {
// Do we allocate directly, or flush and refill?
if (new_obj_size > (OldPLABSize / 2)) {
// Allocate this object directly
new_obj = (oop)old_gen()->cas_allocate(new_obj_size);
} else {
// Flush and fill
_old_lab.flush();
HeapWord* lab_base = old_gen()->cas_allocate(OldPLABSize);
if(lab_base != NULL) {
_old_lab.initialize(MemRegion(lab_base, OldPLABSize));
// Try the old lab allocation again.
new_obj = (oop) _old_lab.allocate(new_obj_size);
}
}
}
// This is the promotion failed test, and code handling.
// The code belongs here for two reasons. It is slightly
// different thatn the code below, and cannot share the
// CAS testing code. Keeping the code here also minimizes
// the impact on the common case fast path code.
if (new_obj == NULL) {
_old_gen_is_full = true;
return oop_promotion_failed(o, test_mark);
}
}
}
assert(new_obj != NULL, "allocation should have succeeded");
// Copy obj
Copy::aligned_disjoint_words((HeapWord*)o, (HeapWord*)new_obj, new_obj_size);
// Now we have to CAS in the header.
if (o->cas_forward_to(new_obj, test_mark)) {
// We won any races, we "own" this object.
assert(new_obj == o->forwardee(), "Sanity");
// Increment age if obj still in new generation. Now that
// we're dealing with a markOop that cannot change, it is
// okay to use the non mt safe oop methods.
if (!new_obj_is_tenured) {
new_obj->incr_age();
assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
}
// Do the size comparison first with new_obj_size, which we
// already have. Hopefully, only a few objects are larger than
// _min_array_size_for_chunking, and most of them will be arrays.
// So, the is->objArray() test would be very infrequent.
if (new_obj_size > _min_array_size_for_chunking &&
new_obj->is_objArray() &&
PSChunkLargeArrays) {
// we'll chunk it
oop* const masked_o = mask_chunked_array_oop(o);
push_depth(masked_o);
TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_masked_pushes);
} else {
// we'll just push its contents
new_obj->push_contents(this);
}
} else {
// We lost, someone else "owns" this object
guarantee(o->is_forwarded(), "Object must be forwarded if the cas failed.");
// Try to deallocate the space. If it was directly allocated we cannot
// deallocate it, so we have to test. If the deallocation fails,
// overwrite with a filler object.
if (new_obj_is_tenured) {
if (!_old_lab.unallocate_object(new_obj)) {
CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
}
} else if (!_young_lab.unallocate_object(new_obj)) {
CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
}
// don't update this before the unallocation!
new_obj = o->forwardee();
}
} else {
assert(o->is_forwarded(), "Sanity");
new_obj = o->forwardee();
}
#ifdef DEBUG
// This code must come after the CAS test, or it will print incorrect
// information.
if (TraceScavenge) {
gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (" SIZE_FORMAT ")}",
PSScavenge::should_scavenge(&new_obj) ? "copying" : "tenuring",
new_obj->blueprint()->internal_name(), o, new_obj, new_obj->size());
}
#endif
return new_obj;
}
template <class T> void PSPromotionManager::process_array_chunk_work(
oop obj,
int start, int end) {
assert(start < end, "invariant");
T* const base = (T*)objArrayOop(obj)->base();
T* p = base + start;
T* const chunk_end = base + end;
while (p < chunk_end) {
if (PSScavenge::should_scavenge(p)) {
claim_or_forward_depth(p);
}
++p;
}
}
void PSPromotionManager::process_array_chunk(oop old) {
assert(PSChunkLargeArrays, "invariant");
assert(old->is_objArray(), "invariant");
assert(old->is_forwarded(), "invariant");
TASKQUEUE_STATS_ONLY(++_array_chunks_processed);
oop const obj = old->forwardee();
int start;
int const end = arrayOop(old)->length();
if (end > (int) _min_array_size_for_chunking) {
// we'll chunk more
start = end - _array_chunk_size;
assert(start > 0, "invariant");
arrayOop(old)->set_length(start);
push_depth(mask_chunked_array_oop(old));
TASKQUEUE_STATS_ONLY(++_masked_pushes);
} else {
// this is the final chunk for this array
start = 0;
int const actual_length = arrayOop(obj)->length();
arrayOop(old)->set_length(actual_length);
}
if (UseCompressedOops) {
process_array_chunk_work<narrowOop>(obj, start, end);
} else {
process_array_chunk_work<oop>(obj, start, end);
}
}
oop PSPromotionManager::oop_promotion_failed(oop obj, markOop obj_mark) {
assert(_old_gen_is_full || PromotionFailureALot, "Sanity");
// Attempt to CAS in the header.
// This tests if the header is still the same as when
// this started. If it is the same (i.e., no forwarding
// pointer has been installed), then this thread owns
// it.
if (obj->cas_forward_to(obj, obj_mark)) {
// We won any races, we "own" this object.
assert(obj == obj->forwardee(), "Sanity");
obj->push_contents(this);
// Save the mark if needed
PSScavenge::oop_promotion_failed(obj, obj_mark);
} else {
// We lost, someone else "owns" this object
guarantee(obj->is_forwarded(), "Object must be forwarded if the cas failed.");
// No unallocation to worry about.
obj = obj->forwardee();
}
#ifdef DEBUG
if (TraceScavenge) {
gclog_or_tty->print_cr("{%s %s 0x%x (%d)}",
"promotion-failure",
obj->blueprint()->internal_name(),
obj, obj->size());
}
#endif
return obj;
}