blob: c0d968aa8f45c2d2d4f59ab89cb16e1f760575fe [file] [log] [blame]
/*
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "memory/space.inline.hpp"
#include "runtime/atomic.hpp"
#include "utilities/copy.hpp"
// Possible sizes for the card counts cache: odd primes that roughly double in size.
// (See jvmtiTagMap.cpp).
int ConcurrentG1Refine::_cc_cache_sizes[] = {
16381, 32771, 76831, 150001, 307261,
614563, 1228891, 2457733, 4915219, 9830479,
19660831, 39321619, 78643219, 157286461, -1
};
ConcurrentG1Refine::ConcurrentG1Refine() :
_card_counts(NULL), _card_epochs(NULL),
_n_card_counts(0), _max_n_card_counts(0),
_cache_size_index(0), _expand_card_counts(false),
_hot_cache(NULL),
_def_use_cache(false), _use_cache(false),
_n_periods(0),
_threads(NULL), _n_threads(0)
{
// Ergomonically select initial concurrent refinement parameters
if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
FLAG_SET_DEFAULT(G1ConcRefinementGreenZone, MAX2<int>(ParallelGCThreads, 1));
}
set_green_zone(G1ConcRefinementGreenZone);
if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
FLAG_SET_DEFAULT(G1ConcRefinementYellowZone, green_zone() * 3);
}
set_yellow_zone(MAX2<int>(G1ConcRefinementYellowZone, green_zone()));
if (FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2);
}
set_red_zone(MAX2<int>(G1ConcRefinementRedZone, yellow_zone()));
_n_worker_threads = thread_num();
// We need one extra thread to do the young gen rset size sampling.
_n_threads = _n_worker_threads + 1;
reset_threshold_step();
_threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads);
int worker_id_offset = (int)DirtyCardQueueSet::num_par_ids();
ConcurrentG1RefineThread *next = NULL;
for (int i = _n_threads - 1; i >= 0; i--) {
ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, worker_id_offset, i);
assert(t != NULL, "Conc refine should have been created");
assert(t->cg1r() == this, "Conc refine thread should refer to this");
_threads[i] = t;
next = t;
}
}
void ConcurrentG1Refine::reset_threshold_step() {
if (FLAG_IS_DEFAULT(G1ConcRefinementThresholdStep)) {
_thread_threshold_step = (yellow_zone() - green_zone()) / (worker_thread_num() + 1);
} else {
_thread_threshold_step = G1ConcRefinementThresholdStep;
}
}
int ConcurrentG1Refine::thread_num() {
return MAX2<int>((G1ConcRefinementThreads > 0) ? G1ConcRefinementThreads : ParallelGCThreads, 1);
}
void ConcurrentG1Refine::init() {
if (G1ConcRSLogCacheSize > 0) {
_g1h = G1CollectedHeap::heap();
_max_n_card_counts =
(unsigned) (_g1h->max_capacity() >> CardTableModRefBS::card_shift);
size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
guarantee(_max_n_card_counts < max_card_num, "card_num representation");
int desired = _max_n_card_counts / InitialCacheFraction;
for (_cache_size_index = 0;
_cc_cache_sizes[_cache_size_index] >= 0; _cache_size_index++) {
if (_cc_cache_sizes[_cache_size_index] >= desired) break;
}
_cache_size_index = MAX2(0, (_cache_size_index - 1));
int initial_size = _cc_cache_sizes[_cache_size_index];
if (initial_size < 0) initial_size = _max_n_card_counts;
// Make sure we don't go bigger than we will ever need
_n_card_counts = MIN2((unsigned) initial_size, _max_n_card_counts);
_card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
_card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
Copy::fill_to_bytes(&_card_counts[0],
_n_card_counts * sizeof(CardCountCacheEntry));
Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
ModRefBarrierSet* bs = _g1h->mr_bs();
guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
_ct_bs = (CardTableModRefBS*)bs;
_ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());
_def_use_cache = true;
_use_cache = true;
_hot_cache_size = (1 << G1ConcRSLogCacheSize);
_hot_cache = NEW_C_HEAP_ARRAY(jbyte*, _hot_cache_size);
_n_hot = 0;
_hot_cache_idx = 0;
// For refining the cards in the hot cache in parallel
int n_workers = (ParallelGCThreads > 0 ?
_g1h->workers()->total_workers() : 1);
_hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
_hot_cache_par_claimed_idx = 0;
}
}
void ConcurrentG1Refine::stop() {
if (_threads != NULL) {
for (int i = 0; i < _n_threads; i++) {
_threads[i]->stop();
}
}
}
void ConcurrentG1Refine::reinitialize_threads() {
reset_threshold_step();
if (_threads != NULL) {
for (int i = 0; i < _n_threads; i++) {
_threads[i]->initialize();
}
}
}
ConcurrentG1Refine::~ConcurrentG1Refine() {
if (G1ConcRSLogCacheSize > 0) {
assert(_card_counts != NULL, "Logic");
FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
assert(_card_epochs != NULL, "Logic");
FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
assert(_hot_cache != NULL, "Logic");
FREE_C_HEAP_ARRAY(jbyte*, _hot_cache);
}
if (_threads != NULL) {
for (int i = 0; i < _n_threads; i++) {
delete _threads[i];
}
FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads);
}
}
void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
if (_threads != NULL) {
for (int i = 0; i < _n_threads; i++) {
tc->do_thread(_threads[i]);
}
}
}
bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) {
HeapWord* start = _ct_bs->addr_for(card_ptr);
HeapRegion* r = _g1h->heap_region_containing(start);
if (r != NULL && r->is_young()) {
return true;
}
// This card is not associated with a heap region
// so can't be young.
return false;
}
jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
unsigned new_card_num = ptr_2_card_num(card_ptr);
unsigned bucket = hash(new_card_num);
assert(0 <= bucket && bucket < _n_card_counts, "Bounds");
CardCountCacheEntry* count_ptr = &_card_counts[bucket];
CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];
// We have to construct a new entry if we haven't updated the counts
// during the current period, or if the count was updated for a
// different card number.
unsigned int new_epoch = (unsigned int) _n_periods;
julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
while (true) {
// Fetch the previous epoch value
julong prev_epoch_entry = epoch_ptr->_value;
julong cas_res;
if (extract_epoch(prev_epoch_entry) != new_epoch) {
// This entry has not yet been updated during this period.
// Note: we update the epoch value atomically to ensure
// that there is only one winner that updates the cached
// card_ptr value even though all the refine threads share
// the same epoch value.
cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
(volatile jlong*)&epoch_ptr->_value,
(jlong) prev_epoch_entry);
if (cas_res == prev_epoch_entry) {
// We have successfully won the race to update the
// epoch and card_num value. Make it look like the
// count and eviction count were previously cleared.
count_ptr->_count = 1;
count_ptr->_evict_count = 0;
*count = 0;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// We did not win the race to update the epoch field, so some other
// thread must have done it. The value that gets returned by CAS
// should be the new epoch value.
assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
// We could 'continue' here or just re-read the previous epoch value
prev_epoch_entry = epoch_ptr->_value;
}
// The epoch entry for card_ptr has been updated during this period.
unsigned old_card_num = extract_card_num(prev_epoch_entry);
// The card count that will be returned to caller
*count = count_ptr->_count;
// Are we updating the count for the same card?
if (new_card_num == old_card_num) {
// Same card - just update the count. We could have more than one
// thread racing to update count for the current card. It should be
// OK not to use a CAS as the only penalty should be some missed
// increments of the count which delays identifying the card as "hot".
if (*count < max_jubyte) count_ptr->_count++;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// Different card - evict old card info
if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
// Trigger a resize the next time we clear
_expand_card_counts = true;
}
cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
(volatile jlong*)&epoch_ptr->_value,
(jlong) prev_epoch_entry);
if (cas_res == prev_epoch_entry) {
// We successfully updated the card num value in the epoch entry
count_ptr->_count = 0; // initialize counter for new card num
jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
// Even though the region containg the card at old_card_num was not
// in the young list when old_card_num was recorded in the epoch
// cache it could have been added to the free list and subsequently
// added to the young list in the intervening time. See CR 6817995.
// We do not deal with this case here - it will be handled in
// HeapRegion::oops_on_card_seq_iterate_careful after it has been
// determined that the region containing the card has been allocated
// to, and it's safe to check the young type of the region.
// We do not want to defer processing of card_ptr in this case
// (we need to refine old_card_ptr and card_ptr)
*defer = false;
return old_card_ptr;
}
// Someone else beat us - try again.
}
}
jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
int count;
jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
assert(cached_ptr != NULL, "bad cached card ptr");
// We've just inserted a card pointer into the card count cache
// and got back the card that we just inserted or (evicted) the
// previous contents of that count slot.
// The card we got back could be in a young region. When the
// returned card (if evicted) was originally inserted, we had
// determined that its containing region was not young. However
// it is possible for the region to be freed during a cleanup
// pause, then reallocated and tagged as young which will result
// in the returned card residing in a young region.
//
// We do not deal with this case here - the change from non-young
// to young could be observed at any time - it will be handled in
// HeapRegion::oops_on_card_seq_iterate_careful after it has been
// determined that the region containing the card has been allocated
// to.
// The card pointer we obtained from card count cache is not hot
// so do not store it in the cache; return it for immediate
// refining.
if (count < G1ConcRSHotCardLimit) {
return cached_ptr;
}
// Otherwise, the pointer we got from the _card_counts cache is hot.
jbyte* res = NULL;
MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
if (_n_hot == _hot_cache_size) {
res = _hot_cache[_hot_cache_idx];
_n_hot--;
}
// Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
_hot_cache[_hot_cache_idx] = cached_ptr;
_hot_cache_idx++;
if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
_n_hot++;
// The card obtained from the hot card cache could be in a young
// region. See above on how this can happen.
return res;
}
void ConcurrentG1Refine::clean_up_cache(int worker_i,
G1RemSet* g1rs,
DirtyCardQueue* into_cset_dcq) {
assert(!use_cache(), "cache should be disabled");
int start_idx;
while ((start_idx = _hot_cache_par_claimed_idx) < _n_hot) { // read once
int end_idx = start_idx + _hot_cache_par_chunk_size;
if (start_idx ==
Atomic::cmpxchg(end_idx, &_hot_cache_par_claimed_idx, start_idx)) {
// The current worker has successfully claimed the chunk [start_idx..end_idx)
end_idx = MIN2(end_idx, _n_hot);
for (int i = start_idx; i < end_idx; i++) {
jbyte* entry = _hot_cache[i];
if (entry != NULL) {
if (g1rs->concurrentRefineOneCard(entry, worker_i, true)) {
// 'entry' contains references that point into the current
// collection set. We need to record 'entry' in the DCQS
// that's used for that purpose.
//
// The only time we care about recording cards that contain
// references that point into the collection set is during
// RSet updating while within an evacuation pause.
// In this case worker_i should be the id of a GC worker thread
assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
assert(worker_i < (int) DirtyCardQueueSet::num_par_ids(), "incorrect worker id");
into_cset_dcq->enqueue(entry);
}
}
}
}
}
}
void ConcurrentG1Refine::expand_card_count_cache() {
if (_n_card_counts < _max_n_card_counts) {
int new_idx = _cache_size_index+1;
int new_size = _cc_cache_sizes[new_idx];
if (new_size < 0) new_size = _max_n_card_counts;
// Make sure we don't go bigger than we will ever need
new_size = MIN2((unsigned) new_size, _max_n_card_counts);
// Expand the card count and card epoch tables
if (new_size > (int)_n_card_counts) {
// We can just free and allocate a new array as we're
// not interested in preserving the contents
assert(_card_counts != NULL, "Logic!");
assert(_card_epochs != NULL, "Logic!");
FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
_n_card_counts = new_size;
_card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
_card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
_cache_size_index = new_idx;
}
}
}
void ConcurrentG1Refine::clear_and_record_card_counts() {
if (G1ConcRSLogCacheSize == 0) return;
#ifndef PRODUCT
double start = os::elapsedTime();
#endif
if (_expand_card_counts) {
expand_card_count_cache();
_expand_card_counts = false;
// Only need to clear the epochs.
Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
}
int this_epoch = (int) _n_periods;
assert((this_epoch+1) <= max_jint, "to many periods");
// Update epoch
_n_periods++;
#ifndef PRODUCT
double elapsed = os::elapsedTime() - start;
_g1h->g1_policy()->record_cc_clear_time(elapsed * 1000.0);
#endif
}
void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
for (int i = 0; i < _n_threads; ++i) {
_threads[i]->print_on(st);
st->cr();
}
}