blob: bb9731f8b4162ec7416ff4890577ede8b1e2a541 [file] [log] [blame]
/*
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1ConcurrentRefine.hpp"
#include "gc/g1/g1ConcurrentRefineThread.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/iterator.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/java.hpp"
#include "runtime/thread.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/pair.hpp"
#include <math.h>
G1ConcurrentRefineThread* G1ConcurrentRefineThreadControl::create_refinement_thread(uint worker_id, bool initializing) {
G1ConcurrentRefineThread* result = NULL;
if (initializing || !InjectGCWorkerCreationFailure) {
result = new G1ConcurrentRefineThread(_cr, worker_id);
}
if (result == NULL || result->osthread() == NULL) {
log_warning(gc)("Failed to create refinement thread %u, no more %s",
worker_id,
result == NULL ? "memory" : "OS threads");
}
return result;
}
G1ConcurrentRefineThreadControl::G1ConcurrentRefineThreadControl() :
_cr(NULL),
_threads(NULL),
_num_max_threads(0)
{
}
G1ConcurrentRefineThreadControl::~G1ConcurrentRefineThreadControl() {
for (uint i = 0; i < _num_max_threads; i++) {
G1ConcurrentRefineThread* t = _threads[i];
if (t != NULL) {
delete t;
}
}
FREE_C_HEAP_ARRAY(G1ConcurrentRefineThread*, _threads);
}
jint G1ConcurrentRefineThreadControl::initialize(G1ConcurrentRefine* cr, uint num_max_threads) {
assert(cr != NULL, "G1ConcurrentRefine must not be NULL");
_cr = cr;
_num_max_threads = num_max_threads;
_threads = NEW_C_HEAP_ARRAY(G1ConcurrentRefineThread*, num_max_threads, mtGC);
for (uint i = 0; i < num_max_threads; i++) {
if (UseDynamicNumberOfGCThreads && i != 0 /* Always start first thread. */) {
_threads[i] = NULL;
} else {
_threads[i] = create_refinement_thread(i, true);
if (_threads[i] == NULL) {
vm_shutdown_during_initialization("Could not allocate refinement threads.");
return JNI_ENOMEM;
}
}
}
if (num_max_threads > 0) {
G1BarrierSet::dirty_card_queue_set().set_primary_refinement_thread(_threads[0]);
}
return JNI_OK;
}
void G1ConcurrentRefineThreadControl::maybe_activate_next(uint cur_worker_id) {
assert(cur_worker_id < _num_max_threads,
"Activating another thread from %u not allowed since there can be at most %u",
cur_worker_id, _num_max_threads);
if (cur_worker_id == (_num_max_threads - 1)) {
// Already the last thread, there is no more thread to activate.
return;
}
uint worker_id = cur_worker_id + 1;
G1ConcurrentRefineThread* thread_to_activate = _threads[worker_id];
if (thread_to_activate == NULL) {
// Still need to create the thread...
_threads[worker_id] = create_refinement_thread(worker_id, false);
thread_to_activate = _threads[worker_id];
}
if (thread_to_activate != NULL) {
thread_to_activate->activate();
}
}
void G1ConcurrentRefineThreadControl::worker_threads_do(ThreadClosure* tc) {
for (uint i = 0; i < _num_max_threads; i++) {
if (_threads[i] != NULL) {
tc->do_thread(_threads[i]);
}
}
}
void G1ConcurrentRefineThreadControl::stop() {
for (uint i = 0; i < _num_max_threads; i++) {
if (_threads[i] != NULL) {
_threads[i]->stop();
}
}
}
// Arbitrary but large limits, to simplify some of the zone calculations.
// The general idea is to allow expressions like
// MIN2(x OP y, max_XXX_zone)
// without needing to check for overflow in "x OP y", because the
// ranges for x and y have been restricted.
STATIC_ASSERT(sizeof(LP64_ONLY(jint) NOT_LP64(jshort)) <= (sizeof(size_t)/2));
const size_t max_yellow_zone = LP64_ONLY(max_jint) NOT_LP64(max_jshort);
const size_t max_green_zone = max_yellow_zone / 2;
const size_t max_red_zone = INT_MAX; // For dcqs.set_max_cards.
STATIC_ASSERT(max_yellow_zone <= max_red_zone);
// Range check assertions for green zone values.
#define assert_zone_constraints_g(green) \
do { \
size_t azc_g_green = (green); \
assert(azc_g_green <= max_green_zone, \
"green exceeds max: " SIZE_FORMAT, azc_g_green); \
} while (0)
// Range check assertions for green and yellow zone values.
#define assert_zone_constraints_gy(green, yellow) \
do { \
size_t azc_gy_green = (green); \
size_t azc_gy_yellow = (yellow); \
assert_zone_constraints_g(azc_gy_green); \
assert(azc_gy_yellow <= max_yellow_zone, \
"yellow exceeds max: " SIZE_FORMAT, azc_gy_yellow); \
assert(azc_gy_green <= azc_gy_yellow, \
"green (" SIZE_FORMAT ") exceeds yellow (" SIZE_FORMAT ")", \
azc_gy_green, azc_gy_yellow); \
} while (0)
// Range check assertions for green, yellow, and red zone values.
#define assert_zone_constraints_gyr(green, yellow, red) \
do { \
size_t azc_gyr_green = (green); \
size_t azc_gyr_yellow = (yellow); \
size_t azc_gyr_red = (red); \
assert_zone_constraints_gy(azc_gyr_green, azc_gyr_yellow); \
assert(azc_gyr_red <= max_red_zone, \
"red exceeds max: " SIZE_FORMAT, azc_gyr_red); \
assert(azc_gyr_yellow <= azc_gyr_red, \
"yellow (" SIZE_FORMAT ") exceeds red (" SIZE_FORMAT ")", \
azc_gyr_yellow, azc_gyr_red); \
} while (0)
// Logging tag sequence for refinement control updates.
#define CTRL_TAGS gc, ergo, refine
// For logging zone values, ensuring consistency of level and tags.
#define LOG_ZONES(...) log_debug( CTRL_TAGS )(__VA_ARGS__)
static size_t buffers_to_cards(size_t value) {
return value * G1UpdateBufferSize;
}
// Package for pair of refinement thread activation and deactivation
// thresholds. The activation and deactivation levels are resp. the first
// and second values of the pair.
typedef Pair<size_t, size_t> Thresholds;
inline size_t activation_level(const Thresholds& t) { return t.first; }
inline size_t deactivation_level(const Thresholds& t) { return t.second; }
static Thresholds calc_thresholds(size_t green_zone,
size_t yellow_zone,
uint worker_id) {
double yellow_size = yellow_zone - green_zone;
double step = yellow_size / G1ConcurrentRefine::max_num_threads();
if (worker_id == 0) {
// Potentially activate worker 0 more aggressively, to keep
// available buffers near green_zone value. When yellow_size is
// large we don't want to allow a full step to accumulate before
// doing any processing, as that might lead to significantly more
// than green_zone buffers to be processed during pause. So limit
// to an extra half buffer per pause-time processing thread.
step = MIN2(step, buffers_to_cards(ParallelGCThreads) / 2.0);
}
size_t activate_offset = static_cast<size_t>(ceil(step * (worker_id + 1)));
size_t deactivate_offset = static_cast<size_t>(floor(step * worker_id));
return Thresholds(green_zone + activate_offset,
green_zone + deactivate_offset);
}
G1ConcurrentRefine::G1ConcurrentRefine(size_t green_zone,
size_t yellow_zone,
size_t red_zone,
size_t min_yellow_zone_size) :
_thread_control(),
_green_zone(green_zone),
_yellow_zone(yellow_zone),
_red_zone(red_zone),
_min_yellow_zone_size(min_yellow_zone_size)
{
assert_zone_constraints_gyr(green_zone, yellow_zone, red_zone);
}
jint G1ConcurrentRefine::initialize() {
return _thread_control.initialize(this, max_num_threads());
}
static size_t calc_min_yellow_zone_size() {
size_t step = buffers_to_cards(G1ConcRefinementThresholdStep);
uint n_workers = G1ConcurrentRefine::max_num_threads();
if ((max_yellow_zone / step) < n_workers) {
return max_yellow_zone;
} else {
return step * n_workers;
}
}
static size_t calc_init_green_zone() {
size_t green = G1ConcRefinementGreenZone;
if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
green = ParallelGCThreads;
}
green = buffers_to_cards(green);
return MIN2(green, max_green_zone);
}
static size_t calc_init_yellow_zone(size_t green, size_t min_size) {
size_t config = buffers_to_cards(G1ConcRefinementYellowZone);
size_t size = 0;
if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
size = green * 2;
} else if (green < config) {
size = config - green;
}
size = MAX2(size, min_size);
size = MIN2(size, max_yellow_zone);
return MIN2(green + size, max_yellow_zone);
}
static size_t calc_init_red_zone(size_t green, size_t yellow) {
size_t size = yellow - green;
if (!FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
size_t config = buffers_to_cards(G1ConcRefinementRedZone);
if (yellow < config) {
size = MAX2(size, config - yellow);
}
}
return MIN2(yellow + size, max_red_zone);
}
G1ConcurrentRefine* G1ConcurrentRefine::create(jint* ecode) {
size_t min_yellow_zone_size = calc_min_yellow_zone_size();
size_t green_zone = calc_init_green_zone();
size_t yellow_zone = calc_init_yellow_zone(green_zone, min_yellow_zone_size);
size_t red_zone = calc_init_red_zone(green_zone, yellow_zone);
LOG_ZONES("Initial Refinement Zones: "
"green: " SIZE_FORMAT ", "
"yellow: " SIZE_FORMAT ", "
"red: " SIZE_FORMAT ", "
"min yellow size: " SIZE_FORMAT,
green_zone, yellow_zone, red_zone, min_yellow_zone_size);
G1ConcurrentRefine* cr = new G1ConcurrentRefine(green_zone,
yellow_zone,
red_zone,
min_yellow_zone_size);
*ecode = cr->initialize();
return cr;
}
void G1ConcurrentRefine::stop() {
_thread_control.stop();
}
G1ConcurrentRefine::~G1ConcurrentRefine() {
}
void G1ConcurrentRefine::threads_do(ThreadClosure *tc) {
_thread_control.worker_threads_do(tc);
}
uint G1ConcurrentRefine::max_num_threads() {
return G1ConcRefinementThreads;
}
static size_t calc_new_green_zone(size_t green,
double logged_cards_scan_time,
size_t processed_logged_cards,
double goal_ms) {
// Adjust green zone based on whether we're meeting the time goal.
// Limit to max_green_zone.
const double inc_k = 1.1, dec_k = 0.9;
if (logged_cards_scan_time > goal_ms) {
if (green > 0) {
green = static_cast<size_t>(green * dec_k);
}
} else if (logged_cards_scan_time < goal_ms &&
processed_logged_cards > green) {
green = static_cast<size_t>(MAX2(green * inc_k, green + 1.0));
green = MIN2(green, max_green_zone);
}
return green;
}
static size_t calc_new_yellow_zone(size_t green, size_t min_yellow_size) {
size_t size = green * 2;
size = MAX2(size, min_yellow_size);
return MIN2(green + size, max_yellow_zone);
}
static size_t calc_new_red_zone(size_t green, size_t yellow) {
return MIN2(yellow + (yellow - green), max_red_zone);
}
void G1ConcurrentRefine::update_zones(double logged_cards_scan_time,
size_t processed_logged_cards,
double goal_ms) {
log_trace( CTRL_TAGS )("Updating Refinement Zones: "
"logged cards scan time: %.3fms, "
"processed cards: " SIZE_FORMAT ", "
"goal time: %.3fms",
logged_cards_scan_time,
processed_logged_cards,
goal_ms);
_green_zone = calc_new_green_zone(_green_zone,
logged_cards_scan_time,
processed_logged_cards,
goal_ms);
_yellow_zone = calc_new_yellow_zone(_green_zone, _min_yellow_zone_size);
_red_zone = calc_new_red_zone(_green_zone, _yellow_zone);
assert_zone_constraints_gyr(_green_zone, _yellow_zone, _red_zone);
LOG_ZONES("Updated Refinement Zones: "
"green: " SIZE_FORMAT ", "
"yellow: " SIZE_FORMAT ", "
"red: " SIZE_FORMAT,
_green_zone, _yellow_zone, _red_zone);
}
void G1ConcurrentRefine::adjust(double logged_cards_scan_time,
size_t processed_logged_cards,
double goal_ms) {
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
if (G1UseAdaptiveConcRefinement) {
update_zones(logged_cards_scan_time, processed_logged_cards, goal_ms);
// Change the barrier params
if (max_num_threads() == 0) {
// Disable dcqs notification when there are no threads to notify.
dcqs.set_process_cards_threshold(G1DirtyCardQueueSet::ProcessCardsThresholdNever);
} else {
// Worker 0 is the primary; wakeup is via dcqs notification.
STATIC_ASSERT(max_yellow_zone <= INT_MAX);
size_t activate = activation_threshold(0);
dcqs.set_process_cards_threshold(activate);
}
dcqs.set_max_cards(red_zone());
}
size_t curr_queue_size = dcqs.num_cards();
if ((dcqs.max_cards() > 0) &&
(curr_queue_size >= yellow_zone())) {
dcqs.set_max_cards_padding(curr_queue_size);
} else {
dcqs.set_max_cards_padding(0);
}
dcqs.notify_if_necessary();
}
G1ConcurrentRefineStats G1ConcurrentRefine::get_and_reset_refinement_stats() {
struct CollectStats : public ThreadClosure {
G1ConcurrentRefineStats _total_stats;
virtual void do_thread(Thread* t) {
G1ConcurrentRefineThread* crt = static_cast<G1ConcurrentRefineThread*>(t);
G1ConcurrentRefineStats& stats = *crt->refinement_stats();
_total_stats += stats;
stats.reset();
}
} collector;
threads_do(&collector);
return collector._total_stats;
}
size_t G1ConcurrentRefine::activation_threshold(uint worker_id) const {
Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, worker_id);
return activation_level(thresholds);
}
size_t G1ConcurrentRefine::deactivation_threshold(uint worker_id) const {
Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, worker_id);
return deactivation_level(thresholds);
}
uint G1ConcurrentRefine::worker_id_offset() {
return G1DirtyCardQueueSet::num_par_ids();
}
void G1ConcurrentRefine::maybe_activate_more_threads(uint worker_id, size_t num_cur_cards) {
if (num_cur_cards > activation_threshold(worker_id + 1)) {
_thread_control.maybe_activate_next(worker_id);
}
}
bool G1ConcurrentRefine::do_refinement_step(uint worker_id,
G1ConcurrentRefineStats* stats) {
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
size_t curr_cards = dcqs.num_cards();
// If the number of the cards falls down into the yellow zone,
// that means that the transition period after the evacuation pause has ended.
if (curr_cards <= yellow_zone()) {
dcqs.discard_max_cards_padding();
}
maybe_activate_more_threads(worker_id, curr_cards);
// Process the next buffer, if there are enough left.
return dcqs.refine_completed_buffer_concurrently(worker_id + worker_id_offset(),
deactivation_threshold(worker_id),
stats);
}