blob: fe21a332e53ed4a4d421774d275527f1d5df77a7 [file] [log] [blame]
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, Red Hat, Inc. and/or its affiliates.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/parallel/parallelArguments.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/shared/adaptiveSizePolicy.hpp"
#include "gc/shared/gcArguments.hpp"
#include "gc/shared/genArguments.hpp"
#include "gc/shared/workerPolicy.hpp"
#include "logging/log.hpp"
#include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/java.hpp"
#include "utilities/defaultStream.hpp"
static const double MaxRamFractionForYoung = 0.8;
size_t ParallelArguments::conservative_max_heap_alignment() {
return compute_heap_alignment();
}
void ParallelArguments::initialize() {
GCArguments::initialize();
assert(UseParallelGC || UseParallelOldGC, "Error");
// Enable ParallelOld unless it was explicitly disabled (cmd line or rc file).
if (FLAG_IS_DEFAULT(UseParallelOldGC)) {
FLAG_SET_DEFAULT(UseParallelOldGC, true);
}
FLAG_SET_DEFAULT(UseParallelGC, true);
// If no heap maximum was requested explicitly, use some reasonable fraction
// of the physical memory, up to a maximum of 1GB.
FLAG_SET_DEFAULT(ParallelGCThreads,
WorkerPolicy::parallel_worker_threads());
if (ParallelGCThreads == 0) {
jio_fprintf(defaultStream::error_stream(),
"The Parallel GC can not be combined with -XX:ParallelGCThreads=0\n");
vm_exit(1);
}
if (UseAdaptiveSizePolicy) {
// We don't want to limit adaptive heap sizing's freedom to adjust the heap
// unless the user actually sets these flags.
if (FLAG_IS_DEFAULT(MinHeapFreeRatio)) {
FLAG_SET_DEFAULT(MinHeapFreeRatio, 0);
}
if (FLAG_IS_DEFAULT(MaxHeapFreeRatio)) {
FLAG_SET_DEFAULT(MaxHeapFreeRatio, 100);
}
}
// If InitialSurvivorRatio or MinSurvivorRatio were not specified, but the
// SurvivorRatio has been set, reset their default values to SurvivorRatio +
// 2. By doing this we make SurvivorRatio also work for Parallel Scavenger.
// See CR 6362902 for details.
if (!FLAG_IS_DEFAULT(SurvivorRatio)) {
if (FLAG_IS_DEFAULT(InitialSurvivorRatio)) {
FLAG_SET_DEFAULT(InitialSurvivorRatio, SurvivorRatio + 2);
}
if (FLAG_IS_DEFAULT(MinSurvivorRatio)) {
FLAG_SET_DEFAULT(MinSurvivorRatio, SurvivorRatio + 2);
}
}
if (UseParallelOldGC) {
// Par compact uses lower default values since they are treated as
// minimums. These are different defaults because of the different
// interpretation and are not ergonomically set.
if (FLAG_IS_DEFAULT(MarkSweepDeadRatio)) {
FLAG_SET_DEFAULT(MarkSweepDeadRatio, 1);
}
}
}
// The alignment used for boundary between young gen and old gen
static size_t default_gen_alignment() {
return 64 * K * HeapWordSize;
}
void ParallelArguments::initialize_alignments() {
SpaceAlignment = GenAlignment = default_gen_alignment();
HeapAlignment = compute_heap_alignment();
}
void ParallelArguments::initialize_heap_flags_and_sizes_one_pass() {
// Do basic sizing work
GenArguments::initialize_heap_flags_and_sizes();
// The survivor ratio's are calculated "raw", unlike the
// default gc, which adds 2 to the ratio value. We need to
// make sure the values are valid before using them.
if (MinSurvivorRatio < 3) {
FLAG_SET_ERGO(uintx, MinSurvivorRatio, 3);
}
if (InitialSurvivorRatio < 3) {
FLAG_SET_ERGO(uintx, InitialSurvivorRatio, 3);
}
}
void ParallelArguments::initialize_heap_flags_and_sizes() {
if (is_heterogeneous_heap()) {
initialize_heterogeneous();
}
initialize_heap_flags_and_sizes_one_pass();
const size_t max_page_sz = os::page_size_for_region_aligned(MaxHeapSize, 8);
const size_t min_pages = 4; // 1 for eden + 1 for each survivor + 1 for old
const size_t min_page_sz = os::page_size_for_region_aligned(MinHeapSize, min_pages);
const size_t page_sz = MIN2(max_page_sz, min_page_sz);
// Can a page size be something else than a power of two?
assert(is_power_of_2((intptr_t)page_sz), "must be a power of 2");
size_t new_alignment = align_up(page_sz, GenAlignment);
if (new_alignment != GenAlignment) {
GenAlignment = new_alignment;
SpaceAlignment = new_alignment;
// Redo everything from the start
initialize_heap_flags_and_sizes_one_pass();
}
}
// Check the available dram memory to limit NewSize and MaxNewSize before
// calling base class initialize_flags().
void ParallelArguments::initialize_heterogeneous() {
FormatBuffer<100> calc_str("");
julong phys_mem;
// If MaxRam is specified, we use that as maximum physical memory available.
if (FLAG_IS_DEFAULT(MaxRAM)) {
phys_mem = os::physical_memory();
calc_str.append("Physical_Memory");
} else {
phys_mem = (julong)MaxRAM;
calc_str.append("MaxRAM");
}
julong reasonable_max = phys_mem;
// If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate
// reasonable max size of young generation.
if (!FLAG_IS_DEFAULT(MaxRAMFraction)) {
reasonable_max = (julong)(phys_mem / MaxRAMFraction);
calc_str.append(" / MaxRAMFraction");
} else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) {
reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100);
calc_str.append(" * MaxRAMPercentage / 100");
} else {
// We use our own fraction to calculate max size of young generation.
reasonable_max = phys_mem * MaxRamFractionForYoung;
calc_str.append(" * %0.2f", MaxRamFractionForYoung);
}
reasonable_max = align_up(reasonable_max, GenAlignment);
if (MaxNewSize > reasonable_max) {
if (FLAG_IS_CMDLINE(MaxNewSize)) {
log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
(size_t)reasonable_max, calc_str.buffer());
} else {
log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). "
"Dram usage can be lowered by setting MaxNewSize to a lower value", (size_t)reasonable_max, calc_str.buffer());
}
MaxNewSize = reasonable_max;
}
if (NewSize > reasonable_max) {
if (FLAG_IS_CMDLINE(NewSize)) {
log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
(size_t)reasonable_max, calc_str.buffer());
}
NewSize = reasonable_max;
}
}
bool ParallelArguments::is_heterogeneous_heap() {
return AllocateOldGenAt != NULL;
}
size_t ParallelArguments::heap_reserved_size_bytes() {
if (!is_heterogeneous_heap() || !UseAdaptiveGCBoundary) {
return MaxHeapSize;
}
// Heterogeneous heap and adaptive size gc boundary
// This is the size that young gen can grow to, when UseAdaptiveGCBoundary is true.
size_t max_yg_size = MaxHeapSize - MinOldSize;
// This is the size that old gen can grow to, when UseAdaptiveGCBoundary is true.
size_t max_old_size = MaxHeapSize - MinNewSize;
return max_yg_size + max_old_size;
}
CollectedHeap* ParallelArguments::create_heap() {
return new ParallelScavengeHeap();
}