blob: 69ad16cebdd6f70328fb4b35f7545ebce884014f [file] [log] [blame]
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, Red Hat, Inc. and/or its affiliates.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1Arguments.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/cardTableRS.hpp"
#include "gc/shared/gcArguments.hpp"
#include "gc/shared/workerPolicy.hpp"
#include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp"
static const double MaxRamFractionForYoung = 0.8;
size_t G1Arguments::MaxMemoryForYoung;
static size_t calculate_heap_alignment(size_t space_alignment) {
size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
return MAX3(card_table_alignment, space_alignment, page_size);
}
void G1Arguments::initialize_alignments() {
// Set up the region size and associated fields.
//
// There is a circular dependency here. We base the region size on the heap
// size, but the heap size should be aligned with the region size. To get
// around this we use the unaligned values for the heap.
HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
HeapRegionRemSet::setup_remset_size();
SpaceAlignment = HeapRegion::GrainBytes;
HeapAlignment = calculate_heap_alignment(SpaceAlignment);
}
size_t G1Arguments::conservative_max_heap_alignment() {
return HeapRegion::max_region_size();
}
void G1Arguments::initialize_verification_types() {
if (strlen(VerifyGCType) > 0) {
const char delimiter[] = " ,\n";
size_t length = strlen(VerifyGCType);
char* type_list = NEW_C_HEAP_ARRAY(char, length + 1, mtInternal);
strncpy(type_list, VerifyGCType, length + 1);
char* save_ptr;
char* token = strtok_r(type_list, delimiter, &save_ptr);
while (token != NULL) {
parse_verification_type(token);
token = strtok_r(NULL, delimiter, &save_ptr);
}
FREE_C_HEAP_ARRAY(char, type_list);
}
}
void G1Arguments::parse_verification_type(const char* type) {
if (strcmp(type, "young-normal") == 0) {
G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyYoungNormal);
} else if (strcmp(type, "concurrent-start") == 0) {
G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyConcurrentStart);
} else if (strcmp(type, "mixed") == 0) {
G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyMixed);
} else if (strcmp(type, "remark") == 0) {
G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyRemark);
} else if (strcmp(type, "cleanup") == 0) {
G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyCleanup);
} else if (strcmp(type, "full") == 0) {
G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyFull);
} else {
log_warning(gc, verify)("VerifyGCType: '%s' is unknown. Available types are: "
"young-normal, concurrent-start, mixed, remark, cleanup and full", type);
}
}
void G1Arguments::initialize() {
GCArguments::initialize();
assert(UseG1GC, "Error");
FLAG_SET_DEFAULT(ParallelGCThreads, WorkerPolicy::parallel_worker_threads());
if (ParallelGCThreads == 0) {
assert(!FLAG_IS_DEFAULT(ParallelGCThreads), "The default value for ParallelGCThreads should not be 0.");
vm_exit_during_initialization("The flag -XX:+UseG1GC can not be combined with -XX:ParallelGCThreads=0", NULL);
}
// When dumping the CDS archive we want to reduce fragmentation by
// triggering a full collection. To get as low fragmentation as
// possible we only use one worker thread.
if (DumpSharedSpaces) {
FLAG_SET_ERGO(uint, ParallelGCThreads, 1);
}
if (FLAG_IS_DEFAULT(G1ConcRefinementThreads)) {
FLAG_SET_ERGO(uint, G1ConcRefinementThreads, ParallelGCThreads);
}
// MarkStackSize will be set (if it hasn't been set by the user)
// when concurrent marking is initialized.
// Its value will be based upon the number of parallel marking threads.
// But we do set the maximum mark stack size here.
if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
FLAG_SET_DEFAULT(MarkStackSizeMax, 128 * TASKQUEUE_SIZE);
}
if (FLAG_IS_DEFAULT(GCTimeRatio) || GCTimeRatio == 0) {
// In G1, we want the default GC overhead goal to be higher than
// it is for PS, or the heap might be expanded too aggressively.
// We set it here to ~8%.
FLAG_SET_DEFAULT(GCTimeRatio, 12);
}
// Below, we might need to calculate the pause time interval based on
// the pause target. When we do so we are going to give G1 maximum
// flexibility and allow it to do pauses when it needs to. So, we'll
// arrange that the pause interval to be pause time target + 1 to
// ensure that a) the pause time target is maximized with respect to
// the pause interval and b) we maintain the invariant that pause
// time target < pause interval. If the user does not want this
// maximum flexibility, they will have to set the pause interval
// explicitly.
if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
// The default pause time target in G1 is 200ms
FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
}
// Then, if the interval parameter was not set, set it according to
// the pause time target (this will also deal with the case when the
// pause time target is the default value).
if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
}
if (FLAG_IS_DEFAULT(ParallelRefProcEnabled) && ParallelGCThreads > 1) {
FLAG_SET_DEFAULT(ParallelRefProcEnabled, true);
}
log_trace(gc)("MarkStackSize: %uk MarkStackSizeMax: %uk", (unsigned int) (MarkStackSize / K), (uint) (MarkStackSizeMax / K));
// By default do not let the target stack size to be more than 1/4 of the entries
if (FLAG_IS_DEFAULT(GCDrainStackTargetSize)) {
FLAG_SET_ERGO(uintx, GCDrainStackTargetSize, MIN2(GCDrainStackTargetSize, (uintx)TASKQUEUE_SIZE / 4));
}
#ifdef COMPILER2
// Enable loop strip mining to offer better pause time guarantees
if (FLAG_IS_DEFAULT(UseCountedLoopSafepoints)) {
FLAG_SET_DEFAULT(UseCountedLoopSafepoints, true);
if (FLAG_IS_DEFAULT(LoopStripMiningIter)) {
FLAG_SET_DEFAULT(LoopStripMiningIter, 1000);
}
}
#endif
initialize_verification_types();
}
static size_t calculate_reasonable_max_memory_for_young(FormatBuffer<100> &calc_str, double max_ram_fraction_for_young) {
julong phys_mem;
// If MaxRam is specified, we use that as maximum physical memory available.
if (FLAG_IS_DEFAULT(MaxRAM)) {
phys_mem = os::physical_memory();
calc_str.append("Physical_Memory");
} else {
phys_mem = (julong)MaxRAM;
calc_str.append("MaxRAM");
}
julong reasonable_max = phys_mem;
// If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate
// reasonable max size of young generation.
if (!FLAG_IS_DEFAULT(MaxRAMFraction)) {
reasonable_max = (julong)(phys_mem / MaxRAMFraction);
calc_str.append(" / MaxRAMFraction");
} else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) {
reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100);
calc_str.append(" * MaxRAMPercentage / 100");
} else {
// We use our own fraction to calculate max size of young generation.
reasonable_max = phys_mem * max_ram_fraction_for_young;
calc_str.append(" * %0.2f", max_ram_fraction_for_young);
}
return (size_t)reasonable_max;
}
void G1Arguments::initialize_heap_flags_and_sizes() {
if (AllocateOldGenAt != NULL) {
initialize_heterogeneous();
}
GCArguments::initialize_heap_flags_and_sizes();
}
void G1Arguments::initialize_heterogeneous() {
FormatBuffer<100> calc_str("");
MaxMemoryForYoung = calculate_reasonable_max_memory_for_young(calc_str, MaxRamFractionForYoung);
if (MaxNewSize > MaxMemoryForYoung) {
if (FLAG_IS_CMDLINE(MaxNewSize)) {
log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
MaxMemoryForYoung, calc_str.buffer());
} else {
log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). "
"Dram usage can be lowered by setting MaxNewSize to a lower value", MaxMemoryForYoung, calc_str.buffer());
}
MaxNewSize = MaxMemoryForYoung;
}
if (NewSize > MaxMemoryForYoung) {
if (FLAG_IS_CMDLINE(NewSize)) {
log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
MaxMemoryForYoung, calc_str.buffer());
}
NewSize = MaxMemoryForYoung;
}
}
CollectedHeap* G1Arguments::create_heap() {
return new G1CollectedHeap();
}
bool G1Arguments::is_heterogeneous_heap() {
return AllocateOldGenAt != NULL;
}
size_t G1Arguments::reasonable_max_memory_for_young() {
return MaxMemoryForYoung;
}
size_t G1Arguments::heap_reserved_size_bytes() {
return (is_heterogeneous_heap() ? 2 : 1) * MaxHeapSize;
}