blob: ff65d68d8c1b837c86c50b09973721c71a644fc1 [file] [log] [blame]
/*
* Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compileLog.hpp"
#include "memory/resourceArea.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/c2compiler.hpp"
#include "opto/callGenerator.hpp"
#include "opto/castnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/convertnode.hpp"
#include "opto/countbitsnode.hpp"
#include "opto/intrinsicnode.hpp"
#include "opto/idealKit.hpp"
#include "opto/mathexactnode.hpp"
#include "opto/movenode.hpp"
#include "opto/mulnode.hpp"
#include "opto/narrowptrnode.hpp"
#include "opto/opaquenode.hpp"
#include "opto/parse.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "prims/nativeLookup.hpp"
#include "prims/unsafe.hpp"
#include "runtime/sharedRuntime.hpp"
#ifdef TRACE_HAVE_INTRINSICS
#include "trace/traceMacros.hpp"
#endif
class LibraryIntrinsic : public InlineCallGenerator {
// Extend the set of intrinsics known to the runtime:
public:
private:
bool _is_virtual;
bool _does_virtual_dispatch;
int8_t _predicates_count; // Intrinsic is predicated by several conditions
int8_t _last_predicate; // Last generated predicate
vmIntrinsics::ID _intrinsic_id;
public:
LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
: InlineCallGenerator(m),
_is_virtual(is_virtual),
_does_virtual_dispatch(does_virtual_dispatch),
_predicates_count((int8_t)predicates_count),
_last_predicate((int8_t)-1),
_intrinsic_id(id)
{
}
virtual bool is_intrinsic() const { return true; }
virtual bool is_virtual() const { return _is_virtual; }
virtual bool is_predicated() const { return _predicates_count > 0; }
virtual int predicates_count() const { return _predicates_count; }
virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; }
virtual JVMState* generate(JVMState* jvms);
virtual Node* generate_predicate(JVMState* jvms, int predicate);
vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
};
// Local helper class for LibraryIntrinsic:
class LibraryCallKit : public GraphKit {
private:
LibraryIntrinsic* _intrinsic; // the library intrinsic being called
Node* _result; // the result node, if any
int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted
const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
public:
LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
: GraphKit(jvms),
_intrinsic(intrinsic),
_result(NULL)
{
// Check if this is a root compile. In that case we don't have a caller.
if (!jvms->has_method()) {
_reexecute_sp = sp();
} else {
// Find out how many arguments the interpreter needs when deoptimizing
// and save the stack pointer value so it can used by uncommon_trap.
// We find the argument count by looking at the declared signature.
bool ignored_will_link;
ciSignature* declared_signature = NULL;
ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
_reexecute_sp = sp() + nargs; // "push" arguments back on stack
}
}
virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
ciMethod* caller() const { return jvms()->method(); }
int bci() const { return jvms()->bci(); }
LibraryIntrinsic* intrinsic() const { return _intrinsic; }
vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
ciMethod* callee() const { return _intrinsic->method(); }
bool try_to_inline(int predicate);
Node* try_to_predicate(int predicate);
void push_result() {
// Push the result onto the stack.
if (!stopped() && result() != NULL) {
BasicType bt = result()->bottom_type()->basic_type();
push_node(bt, result());
}
}
private:
void fatal_unexpected_iid(vmIntrinsics::ID iid) {
fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
}
void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
void set_result(RegionNode* region, PhiNode* value);
Node* result() { return _result; }
virtual int reexecute_sp() { return _reexecute_sp; }
// Helper functions to inline natives
Node* generate_guard(Node* test, RegionNode* region, float true_prob);
Node* generate_slow_guard(Node* test, RegionNode* region);
Node* generate_fair_guard(Node* test, RegionNode* region);
Node* generate_negative_guard(Node* index, RegionNode* region,
// resulting CastII of index:
Node* *pos_index = NULL);
Node* generate_limit_guard(Node* offset, Node* subseq_length,
Node* array_length,
RegionNode* region);
void generate_string_range_check(Node* array, Node* offset,
Node* length, bool char_count);
Node* generate_current_thread(Node* &tls_output);
Node* load_mirror_from_klass(Node* klass);
Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
RegionNode* region, int null_path,
int offset);
Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
RegionNode* region, int null_path) {
int offset = java_lang_Class::klass_offset_in_bytes();
return load_klass_from_mirror_common(mirror, never_see_null,
region, null_path,
offset);
}
Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
RegionNode* region, int null_path) {
int offset = java_lang_Class::array_klass_offset_in_bytes();
return load_klass_from_mirror_common(mirror, never_see_null,
region, null_path,
offset);
}
Node* generate_access_flags_guard(Node* kls,
int modifier_mask, int modifier_bits,
RegionNode* region);
Node* generate_interface_guard(Node* kls, RegionNode* region);
Node* generate_array_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, false, false);
}
Node* generate_non_array_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, false, true);
}
Node* generate_objArray_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, true, false);
}
Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, true, true);
}
Node* generate_array_guard_common(Node* kls, RegionNode* region,
bool obj_array, bool not_array);
Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
bool is_virtual = false, bool is_static = false);
CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
return generate_method_call(method_id, false, true);
}
CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
return generate_method_call(method_id, true, false);
}
Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
bool inline_string_indexOfChar();
bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
bool inline_string_toBytesU();
bool inline_string_getCharsU();
bool inline_string_copy(bool compress);
bool inline_string_char_access(bool is_store);
Node* round_double_node(Node* n);
bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
bool inline_math_native(vmIntrinsics::ID id);
bool inline_math(vmIntrinsics::ID id);
template <typename OverflowOp>
bool inline_math_overflow(Node* arg1, Node* arg2);
void inline_math_mathExact(Node* math, Node* test);
bool inline_math_addExactI(bool is_increment);
bool inline_math_addExactL(bool is_increment);
bool inline_math_multiplyExactI();
bool inline_math_multiplyExactL();
bool inline_math_negateExactI();
bool inline_math_negateExactL();
bool inline_math_subtractExactI(bool is_decrement);
bool inline_math_subtractExactL(bool is_decrement);
bool inline_min_max(vmIntrinsics::ID id);
bool inline_notify(vmIntrinsics::ID id);
Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
// This returns Type::AnyPtr, RawPtr, or OopPtr.
int classify_unsafe_addr(Node* &base, Node* &offset);
Node* make_unsafe_address(Node* base, Node* offset);
// Helper for inline_unsafe_access.
// Generates the guards that check whether the result of
// Unsafe.getObject should be recorded in an SATB log buffer.
void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
static bool klass_needs_init_guard(Node* kls);
bool inline_unsafe_allocate();
bool inline_unsafe_newArray(bool uninitialized);
bool inline_unsafe_copyMemory();
bool inline_native_currentThread();
bool inline_native_time_funcs(address method, const char* funcName);
#ifdef TRACE_HAVE_INTRINSICS
bool inline_native_classID();
bool inline_native_getBufferWriter();
#endif
bool inline_native_isInterrupted();
bool inline_native_Class_query(vmIntrinsics::ID id);
bool inline_native_subtype_check();
bool inline_native_getLength();
bool inline_array_copyOf(bool is_copyOfRange);
bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
bool inline_preconditions_checkIndex();
void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
bool inline_native_clone(bool is_virtual);
bool inline_native_Reflection_getCallerClass();
// Helper function for inlining native object hash method
bool inline_native_hashcode(bool is_virtual, bool is_static);
bool inline_native_getClass();
// Helper functions for inlining arraycopy
bool inline_arraycopy();
AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
RegionNode* slow_region);
JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
uint new_idx);
typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind);
bool inline_unsafe_fence(vmIntrinsics::ID id);
bool inline_onspinwait();
bool inline_fp_conversions(vmIntrinsics::ID id);
bool inline_number_methods(vmIntrinsics::ID id);
bool inline_reference_get();
bool inline_Class_cast();
bool inline_aescrypt_Block(vmIntrinsics::ID id);
bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
Node* inline_counterMode_AESCrypt_predicate();
Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
bool inline_ghash_processBlocks();
bool inline_sha_implCompress(vmIntrinsics::ID id);
bool inline_digestBase_implCompressMB(int predicate);
bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
bool long_state, address stubAddr, const char *stubName,
Node* src_start, Node* ofs, Node* limit);
Node* get_state_from_sha_object(Node *sha_object);
Node* get_state_from_sha5_object(Node *sha_object);
Node* inline_digestBase_implCompressMB_predicate(int predicate);
bool inline_encodeISOArray();
bool inline_updateCRC32();
bool inline_updateBytesCRC32();
bool inline_updateByteBufferCRC32();
Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
bool inline_updateBytesCRC32C();
bool inline_updateDirectByteBufferCRC32C();
bool inline_updateBytesAdler32();
bool inline_updateByteBufferAdler32();
bool inline_multiplyToLen();
bool inline_hasNegatives();
bool inline_squareToLen();
bool inline_mulAdd();
bool inline_montgomeryMultiply();
bool inline_montgomerySquare();
bool inline_vectorizedMismatch();
bool inline_fma(vmIntrinsics::ID id);
bool inline_profileBoolean();
bool inline_isCompileConstant();
};
//---------------------------make_vm_intrinsic----------------------------
CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
vmIntrinsics::ID id = m->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (!m->is_loaded()) {
// Do not attempt to inline unloaded methods.
return NULL;
}
C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
bool is_available = false;
{
// For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
// the compiler must transition to '_thread_in_vm' state because both
// methods access VM-internal data.
VM_ENTRY_MARK;
methodHandle mh(THREAD, m->get_Method());
is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
!C->directive()->is_intrinsic_disabled(mh) &&
!vmIntrinsics::is_disabled_by_flags(mh);
}
if (is_available) {
assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
return new LibraryIntrinsic(m, is_virtual,
vmIntrinsics::predicates_needed(id),
vmIntrinsics::does_virtual_dispatch(id),
(vmIntrinsics::ID) id);
} else {
return NULL;
}
}
//----------------------register_library_intrinsics-----------------------
// Initialize this file's data structures, for each Compile instance.
void Compile::register_library_intrinsics() {
// Nothing to do here.
}
JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
LibraryCallKit kit(jvms, this);
Compile* C = kit.C;
int nodes = C->unique();
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
char buf[1000];
const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
tty->print_cr("Intrinsic %s", str);
}
#endif
ciMethod* callee = kit.callee();
const int bci = kit.bci();
// Try to inline the intrinsic.
if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
kit.try_to_inline(_last_predicate)) {
if (C->print_intrinsics() || C->print_inlining()) {
C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
if (C->log()) {
C->log()->elem("intrinsic id='%s'%s nodes='%d'",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " virtual='1'" : ""),
C->unique() - nodes);
}
// Push the result from the inlined method onto the stack.
kit.push_result();
C->print_inlining_update(this);
return kit.transfer_exceptions_into_jvms();
}
// The intrinsic bailed out
if (C->print_intrinsics() || C->print_inlining()) {
if (jvms->has_method()) {
// Not a root compile.
const char* msg;
if (callee->intrinsic_candidate()) {
msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
} else {
msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
: "failed to inline (intrinsic), method not annotated";
}
C->print_inlining(callee, jvms->depth() - 1, bci, msg);
} else {
// Root compile
tty->print("Did not generate intrinsic %s%s at bci:%d in",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " (virtual)" : ""), bci);
}
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
C->print_inlining_update(this);
return NULL;
}
Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
LibraryCallKit kit(jvms, this);
Compile* C = kit.C;
int nodes = C->unique();
_last_predicate = predicate;
#ifndef PRODUCT
assert(is_predicated() && predicate < predicates_count(), "sanity");
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
char buf[1000];
const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
tty->print_cr("Predicate for intrinsic %s", str);
}
#endif
ciMethod* callee = kit.callee();
const int bci = kit.bci();
Node* slow_ctl = kit.try_to_predicate(predicate);
if (!kit.failing()) {
if (C->print_intrinsics() || C->print_inlining()) {
C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
if (C->log()) {
C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " virtual='1'" : ""),
C->unique() - nodes);
}
return slow_ctl; // Could be NULL if the check folds.
}
// The intrinsic bailed out
if (C->print_intrinsics() || C->print_inlining()) {
if (jvms->has_method()) {
// Not a root compile.
const char* msg = "failed to generate predicate for intrinsic";
C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
} else {
// Root compile
C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " (virtual)" : ""), bci);
}
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
return NULL;
}
bool LibraryCallKit::try_to_inline(int predicate) {
// Handle symbolic names for otherwise undistinguished boolean switches:
const bool is_store = true;
const bool is_compress = true;
const bool is_static = true;
const bool is_volatile = true;
if (!jvms()->has_method()) {
// Root JVMState has a null method.
assert(map()->memory()->Opcode() == Op_Parm, "");
// Insert the memory aliasing node
set_all_memory(reset_memory());
}
assert(merged_memory(), "");
switch (intrinsic_id()) {
case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
case vmIntrinsics::_getClass: return inline_native_getClass();
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dabs:
case vmIntrinsics::_datan2:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id());
case vmIntrinsics::_min:
case vmIntrinsics::_max: return inline_min_max(intrinsic_id());
case vmIntrinsics::_notify:
case vmIntrinsics::_notifyAll:
if (InlineNotify) {
return inline_notify(intrinsic_id());
}
return false;
case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */);
case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */);
case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */);
case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */);
case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */);
case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */);
case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI();
case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL();
case vmIntrinsics::_negateExactI: return inline_math_negateExactI();
case vmIntrinsics::_negateExactL: return inline_math_negateExactL();
case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */);
case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */);
case vmIntrinsics::_arraycopy: return inline_arraycopy();
case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL);
case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU);
case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU);
case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL);
case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL);
case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU);
case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL);
case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL);
case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU);
case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL);
case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar();
case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL);
case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU);
case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU();
case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU();
case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store);
case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store);
case vmIntrinsics::_compressStringC:
case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress);
case vmIntrinsics::_inflateStringC:
case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress);
case vmIntrinsics::_getObject: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false);
case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false);
case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false);
case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false);
case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false);
case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false);
case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false);
case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false);
case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false);
case vmIntrinsics::_putObject: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false);
case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false);
case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false);
case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false);
case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false);
case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false);
case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false);
case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false);
case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false);
case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false);
case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false);
case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false);
case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false);
case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false);
case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false);
case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false);
case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false);
case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false);
case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false);
case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false);
case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false);
case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false);
case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false);
case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false);
case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false);
case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false);
case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false);
case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true);
case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true);
case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true);
case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true);
case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true);
case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true);
case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true);
case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true);
case vmIntrinsics::_getObjectAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false);
case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false);
case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false);
case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false);
case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false);
case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false);
case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false);
case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false);
case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false);
case vmIntrinsics::_putObjectRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false);
case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false);
case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false);
case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false);
case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false);
case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false);
case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false);
case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false);
case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false);
case vmIntrinsics::_getObjectOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false);
case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false);
case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false);
case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false);
case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false);
case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false);
case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false);
case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false);
case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false);
case vmIntrinsics::_putObjectOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false);
case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false);
case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false);
case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false);
case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false);
case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false);
case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false);
case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false);
case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false);
case vmIntrinsics::_compareAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile);
case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile);
case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile);
case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile);
case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile);
case vmIntrinsics::_weakCompareAndSetObjectPlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSetObjectAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSetObjectRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
case vmIntrinsics::_weakCompareAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release);
case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile);
case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release);
case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile);
case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release);
case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile);
case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release);
case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile);
case vmIntrinsics::_compareAndExchangeObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeObjectAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeObjectRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release);
case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release);
case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release);
case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release);
case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release);
case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile);
case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile);
case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile);
case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile);
case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile);
case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile);
case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile);
case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile);
case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile);
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
case vmIntrinsics::_onSpinWait: return inline_onspinwait();
case vmIntrinsics::_currentThread: return inline_native_currentThread();
case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted();
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
case vmIntrinsics::_getClassId: return inline_native_classID();
case vmIntrinsics::_getBufferWriter: return inline_native_getBufferWriter();
#endif
case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
case vmIntrinsics::_getLength: return inline_native_getLength();
case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL);
case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU);
case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
case vmIntrinsics::_newArray: return inline_unsafe_newArray(false);
case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
case vmIntrinsics::_isInstance:
case vmIntrinsics::_getModifiers:
case vmIntrinsics::_isInterface:
case vmIntrinsics::_isArray:
case vmIntrinsics::_isPrimitive:
case vmIntrinsics::_getSuperclass:
case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id());
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_floatToIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_doubleToLongBits:
case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id());
case vmIntrinsics::_numberOfLeadingZeros_i:
case vmIntrinsics::_numberOfLeadingZeros_l:
case vmIntrinsics::_numberOfTrailingZeros_i:
case vmIntrinsics::_numberOfTrailingZeros_l:
case vmIntrinsics::_bitCount_i:
case vmIntrinsics::_bitCount_l:
case vmIntrinsics::_reverseBytes_i:
case vmIntrinsics::_reverseBytes_l:
case vmIntrinsics::_reverseBytes_s:
case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
case vmIntrinsics::_Reference_get: return inline_reference_get();
case vmIntrinsics::_Class_cast: return inline_Class_cast();
case vmIntrinsics::_aescrypt_encryptBlock:
case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
case vmIntrinsics::_counterMode_AESCrypt:
return inline_counterMode_AESCrypt(intrinsic_id());
case vmIntrinsics::_sha_implCompress:
case vmIntrinsics::_sha2_implCompress:
case vmIntrinsics::_sha5_implCompress:
return inline_sha_implCompress(intrinsic_id());
case vmIntrinsics::_digestBase_implCompressMB:
return inline_digestBase_implCompressMB(predicate);
case vmIntrinsics::_multiplyToLen:
return inline_multiplyToLen();
case vmIntrinsics::_squareToLen:
return inline_squareToLen();
case vmIntrinsics::_mulAdd:
return inline_mulAdd();
case vmIntrinsics::_montgomeryMultiply:
return inline_montgomeryMultiply();
case vmIntrinsics::_montgomerySquare:
return inline_montgomerySquare();
case vmIntrinsics::_vectorizedMismatch:
return inline_vectorizedMismatch();
case vmIntrinsics::_ghash_processBlocks:
return inline_ghash_processBlocks();
case vmIntrinsics::_encodeISOArray:
case vmIntrinsics::_encodeByteISOArray:
return inline_encodeISOArray();
case vmIntrinsics::_updateCRC32:
return inline_updateCRC32();
case vmIntrinsics::_updateBytesCRC32:
return inline_updateBytesCRC32();
case vmIntrinsics::_updateByteBufferCRC32:
return inline_updateByteBufferCRC32();
case vmIntrinsics::_updateBytesCRC32C:
return inline_updateBytesCRC32C();
case vmIntrinsics::_updateDirectByteBufferCRC32C:
return inline_updateDirectByteBufferCRC32C();
case vmIntrinsics::_updateBytesAdler32:
return inline_updateBytesAdler32();
case vmIntrinsics::_updateByteBufferAdler32:
return inline_updateByteBufferAdler32();
case vmIntrinsics::_profileBoolean:
return inline_profileBoolean();
case vmIntrinsics::_isCompileConstant:
return inline_isCompileConstant();
case vmIntrinsics::_hasNegatives:
return inline_hasNegatives();
case vmIntrinsics::_fmaD:
case vmIntrinsics::_fmaF:
return inline_fma(intrinsic_id());
default:
// If you get here, it may be that someone has added a new intrinsic
// to the list in vmSymbols.hpp without implementing it here.
#ifndef PRODUCT
if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
}
#endif
return false;
}
}
Node* LibraryCallKit::try_to_predicate(int predicate) {
if (!jvms()->has_method()) {
// Root JVMState has a null method.
assert(map()->memory()->Opcode() == Op_Parm, "");
// Insert the memory aliasing node
set_all_memory(reset_memory());
}
assert(merged_memory(), "");
switch (intrinsic_id()) {
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
return inline_cipherBlockChaining_AESCrypt_predicate(false);
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
return inline_cipherBlockChaining_AESCrypt_predicate(true);
case vmIntrinsics::_counterMode_AESCrypt:
return inline_counterMode_AESCrypt_predicate();
case vmIntrinsics::_digestBase_implCompressMB:
return inline_digestBase_implCompressMB_predicate(predicate);
default:
// If you get here, it may be that someone has added a new intrinsic
// to the list in vmSymbols.hpp without implementing it here.
#ifndef PRODUCT
if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
}
#endif
Node* slow_ctl = control();
set_control(top()); // No fast path instrinsic
return slow_ctl;
}
}
//------------------------------set_result-------------------------------
// Helper function for finishing intrinsics.
void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
record_for_igvn(region);
set_control(_gvn.transform(region));
set_result( _gvn.transform(value));
assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
}
//------------------------------generate_guard---------------------------
// Helper function for generating guarded fast-slow graph structures.
// The given 'test', if true, guards a slow path. If the test fails
// then a fast path can be taken. (We generally hope it fails.)
// In all cases, GraphKit::control() is updated to the fast path.
// The returned value represents the control for the slow path.
// The return value is never 'top'; it is either a valid control
// or NULL if it is obvious that the slow path can never be taken.
// Also, if region and the slow control are not NULL, the slow edge
// is appended to the region.
Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
if (stopped()) {
// Already short circuited.
return NULL;
}
// Build an if node and its projections.
// If test is true we take the slow path, which we assume is uncommon.
if (_gvn.type(test) == TypeInt::ZERO) {
// The slow branch is never taken. No need to build this guard.
return NULL;
}
IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
Node* if_slow = _gvn.transform(new IfTrueNode(iff));
if (if_slow == top()) {
// The slow branch is never taken. No need to build this guard.
return NULL;
}
if (region != NULL)
region->add_req(if_slow);
Node* if_fast = _gvn.transform(new IfFalseNode(iff));
set_control(if_fast);
return if_slow;
}
inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
}
inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
return generate_guard(test, region, PROB_FAIR);
}
inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
Node* *pos_index) {
if (stopped())
return NULL; // already stopped
if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
return NULL; // index is already adequately typed
Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
if (is_neg != NULL && pos_index != NULL) {
// Emulate effect of Parse::adjust_map_after_if.
Node* ccast = new CastIINode(index, TypeInt::POS);
ccast->set_req(0, control());
(*pos_index) = _gvn.transform(ccast);
}
return is_neg;
}
// Make sure that 'position' is a valid limit index, in [0..length].
// There are two equivalent plans for checking this:
// A. (offset + copyLength) unsigned<= arrayLength
// B. offset <= (arrayLength - copyLength)
// We require that all of the values above, except for the sum and
// difference, are already known to be non-negative.
// Plan A is robust in the face of overflow, if offset and copyLength
// are both hugely positive.
//
// Plan B is less direct and intuitive, but it does not overflow at
// all, since the difference of two non-negatives is always
// representable. Whenever Java methods must perform the equivalent
// check they generally use Plan B instead of Plan A.
// For the moment we use Plan A.
inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
Node* subseq_length,
Node* array_length,
RegionNode* region) {
if (stopped())
return NULL; // already stopped
bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
if (zero_offset && subseq_length->eqv_uncast(array_length))
return NULL; // common case of whole-array copy
Node* last = subseq_length;
if (!zero_offset) // last += offset
last = _gvn.transform(new AddINode(last, offset));
Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
return is_over;
}
// Emit range checks for the given String.value byte array
void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
if (stopped()) {
return; // already stopped
}
RegionNode* bailout = new RegionNode(1);
record_for_igvn(bailout);
if (char_count) {
// Convert char count to byte count
count = _gvn.transform(new LShiftINode(count, intcon(1)));
}
// Offset and count must not be negative
generate_negative_guard(offset, bailout);
generate_negative_guard(count, bailout);
// Offset + count must not exceed length of array
generate_limit_guard(offset, count, load_array_length(array), bailout);
if (bailout->req() > 1) {
PreserveJVMState pjvms(this);
set_control(_gvn.transform(bailout));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
}
//--------------------------generate_current_thread--------------------
Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
ciKlass* thread_klass = env()->Thread_klass();
const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
Node* thread = _gvn.transform(new ThreadLocalNode());
Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
tls_output = thread;
return threadObj;
}
//------------------------------make_string_method_node------------------------
// Helper method for String intrinsic functions. This version is called with
// str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
// characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
// containing the lengths of str1 and str2.
Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
Node* result = NULL;
switch (opcode) {
case Op_StrIndexOf:
result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
str1_start, cnt1, str2_start, cnt2, ae);
break;
case Op_StrComp:
result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
str1_start, cnt1, str2_start, cnt2, ae);
break;
case Op_StrEquals:
// We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
// Use the constant length if there is one because optimized match rule may exist.
result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
break;
default:
ShouldNotReachHere();
return NULL;
}
// All these intrinsics have checks.
C->set_has_split_ifs(true); // Has chance for split-if optimization
return _gvn.transform(result);
}
//------------------------------inline_string_compareTo------------------------
bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
Node* arg1 = argument(0);
Node* arg2 = argument(1);
// Get start addr and length of first argument
Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE);
Node* arg1_cnt = load_array_length(arg1);
// Get start addr and length of second argument
Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE);
Node* arg2_cnt = load_array_length(arg2);
Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
set_result(result);
return true;
}
//------------------------------inline_string_equals------------------------
bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
Node* arg1 = argument(0);
Node* arg2 = argument(1);
// paths (plus control) merge
RegionNode* region = new RegionNode(3);
Node* phi = new PhiNode(region, TypeInt::BOOL);
if (!stopped()) {
// Get start addr and length of first argument
Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE);
Node* arg1_cnt = load_array_length(arg1);
// Get start addr and length of second argument
Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE);
Node* arg2_cnt = load_array_length(arg2);
// Check for arg1_cnt != arg2_cnt
Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
Node* if_ne = generate_slow_guard(bol, NULL);
if (if_ne != NULL) {
phi->init_req(2, intcon(0));
region->init_req(2, if_ne);
}
// Check for count == 0 is done by assembler code for StrEquals.
if (!stopped()) {
Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
phi->init_req(1, equals);
region->init_req(1, control());
}
}
// post merge
set_control(_gvn.transform(region));
record_for_igvn(region);
set_result(_gvn.transform(phi));
return true;
}
//------------------------------inline_array_equals----------------------------
bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
Node* arg1 = argument(0);
Node* arg2 = argument(1);
const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
return true;
}
//------------------------------inline_hasNegatives------------------------------
bool LibraryCallKit::inline_hasNegatives() {
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
// no receiver since it is static method
Node* ba = argument(0);
Node* offset = argument(1);
Node* len = argument(2);
// Range checks
generate_string_range_check(ba, offset, len, false);
if (stopped()) {
return true;
}
Node* ba_start = array_element_address(ba, offset, T_BYTE);
Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
set_result(_gvn.transform(result));
return true;
}
bool LibraryCallKit::inline_preconditions_checkIndex() {
Node* index = argument(0);
Node* length = argument(1);
if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
return false;
}
Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
{
BuildCutout unless(this, len_pos_bol, PROB_MAX);
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
}
if (stopped()) {
return false;
}
Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
BoolTest::mask btest = BoolTest::lt;
Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
_gvn.set_type(rc, rc->Value(&_gvn));
if (!rc_bool->is_Con()) {
record_for_igvn(rc);
}
set_control(_gvn.transform(new IfTrueNode(rc)));
{
PreserveJVMState pjvms(this);
set_control(_gvn.transform(new IfFalseNode(rc)));
uncommon_trap(Deoptimization::Reason_range_check,
Deoptimization::Action_make_not_entrant);
}
if (stopped()) {
return false;
}
Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
result->set_req(0, control());
result = _gvn.transform(result);
set_result(result);
replace_in_map(index, result);
return true;
}
//------------------------------inline_string_indexOf------------------------
bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
return false;
}
Node* src = argument(0);
Node* tgt = argument(1);
// Make the merge point
RegionNode* result_rgn = new RegionNode(4);
Node* result_phi = new PhiNode(result_rgn, TypeInt::INT);
// Get start addr and length of source string
Node* src_start = array_element_address(src, intcon(0), T_BYTE);
Node* src_count = load_array_length(src);
// Get start addr and length of substring
Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
Node* tgt_count = load_array_length(tgt);
if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
// Divide src size by 2 if String is UTF16 encoded
src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
}
if (ae == StrIntrinsicNode::UU) {
// Divide substring size by 2 if String is UTF16 encoded
tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
}
Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
if (result != NULL) {
result_phi->init_req(3, result);
result_rgn->init_req(3, control());
}
set_control(_gvn.transform(result_rgn));
record_for_igvn(result_rgn);
set_result(_gvn.transform(result_phi));
return true;
}
//-----------------------------inline_string_indexOf-----------------------
bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
return false;
}
assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
Node* src = argument(0); // byte[]
Node* src_count = argument(1); // char count
Node* tgt = argument(2); // byte[]
Node* tgt_count = argument(3); // char count
Node* from_index = argument(4); // char index
// Multiply byte array index by 2 if String is UTF16 encoded
Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
src_count = _gvn.transform(new SubINode(src_count, from_index));
Node* src_start = array_element_address(src, src_offset, T_BYTE);
Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
// Range checks
generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
if (stopped()) {
return true;
}
RegionNode* region = new RegionNode(5);
Node* phi = new PhiNode(region, TypeInt::INT);
Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
if (result != NULL) {
// The result is index relative to from_index if substring was found, -1 otherwise.
// Generate code which will fold into cmove.
Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
Node* if_lt = generate_slow_guard(bol, NULL);
if (if_lt != NULL) {
// result == -1
phi->init_req(3, result);
region->init_req(3, if_lt);
}
if (!stopped()) {
result = _gvn.transform(new AddINode(result, from_index));
phi->init_req(4, result);
region->init_req(4, control());
}
}
set_control(_gvn.transform(region));
record_for_igvn(region);
set_result(_gvn.transform(phi));
return true;
}
// Create StrIndexOfNode with fast path checks
Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
// Check for substr count > string count
Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
Node* if_gt = generate_slow_guard(bol, NULL);
if (if_gt != NULL) {
phi->init_req(1, intcon(-1));
region->init_req(1, if_gt);
}
if (!stopped()) {
// Check for substr count == 0
cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
Node* if_zero = generate_slow_guard(bol, NULL);
if (if_zero != NULL) {
phi->init_req(2, intcon(0));
region->init_req(2, if_zero);
}
}
if (!stopped()) {
return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
}
return NULL;
}
//-----------------------------inline_string_indexOfChar-----------------------
bool LibraryCallKit::inline_string_indexOfChar() {
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
return false;
}
assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
Node* src = argument(0); // byte[]
Node* tgt = argument(1); // tgt is int ch
Node* from_index = argument(2);
Node* max = argument(3);
Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
Node* src_start = array_element_address(src, src_offset, T_BYTE);
Node* src_count = _gvn.transform(new SubINode(max, from_index));
// Range checks
generate_string_range_check(src, src_offset, src_count, true);
if (stopped()) {
return true;
}
RegionNode* region = new RegionNode(3);
Node* phi = new PhiNode(region, TypeInt::INT);
Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
C->set_has_split_ifs(true); // Has chance for split-if optimization
_gvn.transform(result);
Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
Node* if_lt = generate_slow_guard(bol, NULL);
if (if_lt != NULL) {
// result == -1
phi->init_req(2, result);
region->init_req(2, if_lt);
}
if (!stopped()) {
result = _gvn.transform(new AddINode(result, from_index));
phi->init_req(1, result);
region->init_req(1, control());
}
set_control(_gvn.transform(region));
record_for_igvn(region);
set_result(_gvn.transform(phi));
return true;
}
//---------------------------inline_string_copy---------------------
// compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
// int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
// int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
// compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
// void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
// void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
bool LibraryCallKit::inline_string_copy(bool compress) {
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
int nargs = 5; // 2 oops, 3 ints
assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
Node* src = argument(0);
Node* src_offset = argument(1);
Node* dst = argument(2);
Node* dst_offset = argument(3);
Node* length = argument(4);
// Check for allocation before we add nodes that would confuse
// tightly_coupled_allocation()
AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
// Figure out the size and type of the elements we will be copying.
const Type* src_type = src->Value(&_gvn);
const Type* dst_type = dst->Value(&_gvn);
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
(!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
"Unsupported array types for inline_string_copy");
// Convert char[] offsets to byte[] offsets
bool convert_src = (compress && src_elem == T_BYTE);
bool convert_dst = (!compress && dst_elem == T_BYTE);
if (convert_src) {
src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
} else if (convert_dst) {
dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
}
// Range checks
generate_string_range_check(src, src_offset, length, convert_src);
generate_string_range_check(dst, dst_offset, length, convert_dst);
if (stopped()) {
return true;
}
Node* src_start = array_element_address(src, src_offset, src_elem);
Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
// 'src_start' points to src array + scaled offset
// 'dst_start' points to dst array + scaled offset
Node* count = NULL;
if (compress) {
count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
} else {
inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
}
if (alloc != NULL) {
if (alloc->maybe_set_complete(&_gvn)) {
// "You break it, you buy it."
InitializeNode* init = alloc->initialization();
assert(init->is_complete(), "we just did this");
init->set_complete_with_arraycopy();
assert(dst->is_CheckCastPP(), "sanity");
assert(dst->in(0)->in(0) == init, "dest pinned");
}
// Do not let stores that initialize this object be reordered with
// a subsequent store that would make this object accessible by
// other threads.
// Record what AllocateNode this StoreStore protects so that
// escape analysis can go from the MemBarStoreStoreNode to the
// AllocateNode and eliminate the MemBarStoreStoreNode if possible
// based on the escape status of the AllocateNode.
insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
}
if (compress) {
set_result(_gvn.transform(count));
}
return true;
}
#ifdef _LP64
#define XTOP ,top() /*additional argument*/
#else //_LP64
#define XTOP /*no additional argument*/
#endif //_LP64
//------------------------inline_string_toBytesU--------------------------
// public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
bool LibraryCallKit::inline_string_toBytesU() {
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
// Get the arguments.
Node* value = argument(0);
Node* offset = argument(1);
Node* length = argument(2);
Node* newcopy = NULL;
// Set the original stack and the reexecute bit for the interpreter to reexecute
// the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
// Check if a null path was taken unconditionally.
value = null_check(value);
RegionNode* bailout = new RegionNode(1);
record_for_igvn(bailout);
// Range checks
generate_negative_guard(offset, bailout);
generate_negative_guard(length, bailout);
generate_limit_guard(offset, length, load_array_length(value), bailout);
// Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
if (bailout->req() > 1) {
PreserveJVMState pjvms(this);
set_control(_gvn.transform(bailout));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
if (stopped()) {
return true;
}
Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
newcopy = new_array(klass_node, size, 0); // no arguments to push
AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
// Calculate starting addresses.
Node* src_start = array_element_address(value, offset, T_CHAR);
Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
// Check if src array address is aligned to HeapWordSize (dst is always aligned)
const TypeInt* toffset = gvn().type(offset)->is_int();
bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
// Figure out which arraycopy runtime method to call (disjoint, uninitialized).
const char* copyfunc_name = "arraycopy";
address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::fast_arraycopy_Type(),
copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
src_start, dst_start, ConvI2X(length) XTOP);
// Do not let reads from the cloned object float above the arraycopy.
if (alloc != NULL) {
if (alloc->maybe_set_complete(&_gvn)) {
// "You break it, you buy it."
InitializeNode* init = alloc->initialization();
assert(init->is_complete(), "we just did this");
init->set_complete_with_arraycopy();
assert(newcopy->is_CheckCastPP(), "sanity");
assert(newcopy->in(0)->in(0) == init, "dest pinned");
}
// Do not let stores that initialize this object be reordered with
// a subsequent store that would make this object accessible by
// other threads.
// Record what AllocateNode this StoreStore protects so that
// escape analysis can go from the MemBarStoreStoreNode to the
// AllocateNode and eliminate the MemBarStoreStoreNode if possible
// based on the escape status of the AllocateNode.
insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
} else {
insert_mem_bar(Op_MemBarCPUOrder);
}
} // original reexecute is set back here
C->set_has_split_ifs(true); // Has chance for split-if optimization
if (!stopped()) {
set_result(newcopy);
}
return true;
}
//------------------------inline_string_getCharsU--------------------------
// public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
bool LibraryCallKit::inline_string_getCharsU() {
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
// Get the arguments.
Node* src = argument(0);
Node* src_begin = argument(1);
Node* src_end = argument(2); // exclusive offset (i < src_end)
Node* dst = argument(3);
Node* dst_begin = argument(4);
// Check for allocation before we add nodes that would confuse
// tightly_coupled_allocation()
AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
// Check if a null path was taken unconditionally.
src = null_check(src);
dst = null_check(dst);
if (stopped()) {
return true;
}
// Get length and convert char[] offset to byte[] offset
Node* length = _gvn.transform(new SubINode(src_end, src_begin));
src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
// Range checks
generate_string_range_check(src, src_begin, length, true);
generate_string_range_check(dst, dst_begin, length, false);
if (stopped()) {
return true;
}
if (!stopped()) {
// Calculate starting addresses.
Node* src_start = array_element_address(src, src_begin, T_BYTE);
Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
// Check if array addresses are aligned to HeapWordSize
const TypeInt* tsrc = gvn().type(src_begin)->is_int();
const TypeInt* tdst = gvn().type(dst_begin)->is_int();
bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
// Figure out which arraycopy runtime method to call (disjoint, uninitialized).
const char* copyfunc_name = "arraycopy";
address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::fast_arraycopy_Type(),
copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
src_start, dst_start, ConvI2X(length) XTOP);
// Do not let reads from the cloned object float above the arraycopy.
if (alloc != NULL) {
if (alloc->maybe_set_complete(&_gvn)) {
// "You break it, you buy it."
InitializeNode* init = alloc->initialization();
assert(init->is_complete(), "we just did this");
init->set_complete_with_arraycopy();
assert(dst->is_CheckCastPP(), "sanity");
assert(dst->in(0)->in(0) == init, "dest pinned");
}
// Do not let stores that initialize this object be reordered with
// a subsequent store that would make this object accessible by
// other threads.
// Record what AllocateNode this StoreStore protects so that
// escape analysis can go from the MemBarStoreStoreNode to the
// AllocateNode and eliminate the MemBarStoreStoreNode if possible
// based on the escape status of the AllocateNode.
insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
} else {
insert_mem_bar(Op_MemBarCPUOrder);
}
}
C->set_has_split_ifs(true); // Has chance for split-if optimization
return true;
}
//----------------------inline_string_char_access----------------------------
// Store/Load char to/from byte[] array.
// static void StringUTF16.putChar(byte[] val, int index, int c)
// static char StringUTF16.getChar(byte[] val, int index)
bool LibraryCallKit::inline_string_char_access(bool is_store) {
Node* value = argument(0);
Node* index = argument(1);
Node* ch = is_store ? argument(2) : NULL;
// This intrinsic accesses byte[] array as char[] array. Computing the offsets
// correctly requires matched array shapes.
assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
"sanity: byte[] and char[] bases agree");
assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
"sanity: byte[] and char[] scales agree");
// Bail when getChar over constants is requested: constant folding would
// reject folding mismatched char access over byte[]. A normal inlining for getChar
// Java method would constant fold nicely instead.
if (!is_store && value->is_Con() && index->is_Con()) {
return false;
}
Node* adr = array_element_address(value, index, T_CHAR);
if (adr->is_top()) {
return false;
}
if (is_store) {
(void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
false, false, true /* mismatched */);
} else {
ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
set_result(ch);
}
return true;
}
//--------------------------round_double_node--------------------------------
// Round a double node if necessary.
Node* LibraryCallKit::round_double_node(Node* n) {
if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
n = _gvn.transform(new RoundDoubleNode(0, n));
return n;
}
//------------------------------inline_math-----------------------------------
// public static double Math.abs(double)
// public static double Math.sqrt(double)
// public static double Math.log(double)
// public static double Math.log10(double)
bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
Node* arg = round_double_node(argument(0));
Node* n = NULL;
switch (id) {
case vmIntrinsics::_dabs: n = new AbsDNode( arg); break;
case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break;
default: fatal_unexpected_iid(id); break;
}
set_result(_gvn.transform(n));
return true;
}
//------------------------------runtime_math-----------------------------
bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
"must be (DD)D or (D)D type");
// Inputs
Node* a = round_double_node(argument(0));
Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
const TypePtr* no_memory_effects = NULL;
Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
no_memory_effects,
a, top(), b, b ? top() : NULL);
Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
#ifdef ASSERT
Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
assert(value_top == top(), "second value must be top");
#endif
set_result(value);
return true;
}
//------------------------------inline_math_native-----------------------------
bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
switch (id) {
// These intrinsics are not properly supported on all hardware
case vmIntrinsics::_dsin:
return StubRoutines::dsin() != NULL ?
runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN");
case vmIntrinsics::_dcos:
return StubRoutines::dcos() != NULL ?
runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS");
case vmIntrinsics::_dtan:
return StubRoutines::dtan() != NULL ?
runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
case vmIntrinsics::_dlog:
return StubRoutines::dlog() != NULL ?
runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG");
case vmIntrinsics::_dlog10:
return StubRoutines::dlog10() != NULL ?
runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
// These intrinsics are supported on all hardware
case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false;
case vmIntrinsics::_dexp:
return StubRoutines::dexp() != NULL ?
runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP");
case vmIntrinsics::_dpow:
return StubRoutines::dpow() != NULL ?
runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW");
#undef FN_PTR
// These intrinsics are not yet correctly implemented
case vmIntrinsics::_datan2:
return false;
default:
fatal_unexpected_iid(id);
return false;
}
}
static bool is_simple_name(Node* n) {
return (n->req() == 1 // constant
|| (n->is_Type() && n->as_Type()->type()->singleton())
|| n->is_Proj() // parameter or return value
|| n->is_Phi() // local of some sort
);
}
//----------------------------inline_notify-----------------------------------*
bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
address func;
if (id == vmIntrinsics::_notify) {
func = OptoRuntime::monitor_notify_Java();
} else {
func = OptoRuntime::monitor_notifyAll_Java();
}
Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
make_slow_call_ex(call, env()->Throwable_klass(), false);
return true;
}
//----------------------------inline_min_max-----------------------------------
bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
set_result(generate_min_max(id, argument(0), argument(1)));
return true;
}
void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
Node* fast_path = _gvn.transform( new IfFalseNode(check));
Node* slow_path = _gvn.transform( new IfTrueNode(check) );
{
PreserveJVMState pjvms(this);
PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
set_control(slow_path);
set_i_o(i_o());
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_none);
}
set_control(fast_path);
set_result(math);
}
template <typename OverflowOp>
bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
typedef typename OverflowOp::MathOp MathOp;
MathOp* mathOp = new MathOp(arg1, arg2);
Node* operation = _gvn.transform( mathOp );
Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
inline_math_mathExact(operation, ofcheck);
return true;
}
bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
}
bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
}
bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
}
bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
}
bool LibraryCallKit::inline_math_negateExactI() {
return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
}
bool LibraryCallKit::inline_math_negateExactL() {
return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
}
bool LibraryCallKit::inline_math_multiplyExactI() {
return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
}
bool LibraryCallKit::inline_math_multiplyExactL() {
return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
}
Node*
LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
// These are the candidate return value:
Node* xvalue = x0;
Node* yvalue = y0;
if (xvalue == yvalue) {
return xvalue;
}
bool want_max = (id == vmIntrinsics::_max);
const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
if (txvalue == NULL || tyvalue == NULL) return top();
// This is not really necessary, but it is consistent with a
// hypothetical MaxINode::Value method:
int widen = MAX2(txvalue->_widen, tyvalue->_widen);
// %%% This folding logic should (ideally) be in a different place.
// Some should be inside IfNode, and there to be a more reliable
// transformation of ?: style patterns into cmoves. We also want
// more powerful optimizations around cmove and min/max.
// Try to find a dominating comparison of these guys.
// It can simplify the index computation for Arrays.copyOf
// and similar uses of System.arraycopy.
// First, compute the normalized version of CmpI(x, y).
int cmp_op = Op_CmpI;
Node* xkey = xvalue;
Node* ykey = yvalue;
Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
if (ideal_cmpxy->is_Cmp()) {
// E.g., if we have CmpI(length - offset, count),
// it might idealize to CmpI(length, count + offset)
cmp_op = ideal_cmpxy->Opcode();
xkey = ideal_cmpxy->in(1);
ykey = ideal_cmpxy->in(2);
}
// Start by locating any relevant comparisons.
Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
Node* cmpxy = NULL;
Node* cmpyx = NULL;
for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
Node* cmp = start_from->fast_out(k);
if (cmp->outcnt() > 0 && // must have prior uses
cmp->in(0) == NULL && // must be context-independent
cmp->Opcode() == cmp_op) { // right kind of compare
if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
}
}
const int NCMPS = 2;
Node* cmps[NCMPS] = { cmpxy, cmpyx };
int cmpn;
for (cmpn = 0; cmpn < NCMPS; cmpn++) {
if (cmps[cmpn] != NULL) break; // find a result
}
if (cmpn < NCMPS) {
// Look for a dominating test that tells us the min and max.
int depth = 0; // Limit search depth for speed
Node* dom = control();
for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
if (++depth >= 100) break;
Node* ifproj = dom;
if (!ifproj->is_Proj()) continue;
Node* iff = ifproj->in(0);
if (!iff->is_If()) continue;
Node* bol = iff->in(1);
if (!bol->is_Bool()) continue;
Node* cmp = bol->in(1);
if (cmp == NULL) continue;
for (cmpn = 0; cmpn < NCMPS; cmpn++)
if (cmps[cmpn] == cmp) break;
if (cmpn == NCMPS) continue;
BoolTest::mask btest = bol->as_Bool()->_test._test;
if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
// At this point, we know that 'x btest y' is true.
switch (btest) {
case BoolTest::eq:
// They are proven equal, so we can collapse the min/max.
// Either value is the answer. Choose the simpler.
if (is_simple_name(yvalue) && !is_simple_name(xvalue))
return yvalue;
return xvalue;
case BoolTest::lt: // x < y
case BoolTest::le: // x <= y
return (want_max ? yvalue : xvalue);
case BoolTest::gt: // x > y
case BoolTest::ge: // x >= y
return (want_max ? xvalue : yvalue);
}
}
}
// We failed to find a dominating test.
// Let's pick a test that might GVN with prior tests.
Node* best_bol = NULL;
BoolTest::mask best_btest = BoolTest::illegal;
for (cmpn = 0; cmpn < NCMPS; cmpn++) {
Node* cmp = cmps[cmpn];
if (cmp == NULL) continue;
for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
Node* bol = cmp->fast_out(j);
if (!bol->is_Bool()) continue;
BoolTest::mask btest = bol->as_Bool()->_test._test;
if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
best_bol = bol->as_Bool();
best_btest = btest;
}
}
}
Node* answer_if_true = NULL;
Node* answer_if_false = NULL;
switch (best_btest) {
default:
if (cmpxy == NULL)
cmpxy = ideal_cmpxy;
best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
// and fall through:
case BoolTest::lt: // x < y
case BoolTest::le: // x <= y
answer_if_true = (want_max ? yvalue : xvalue);
answer_if_false = (want_max ? xvalue : yvalue);
break;
case BoolTest::gt: // x > y
case BoolTest::ge: // x >= y
answer_if_true = (want_max ? xvalue : yvalue);
answer_if_false = (want_max ? yvalue : xvalue);
break;
}
jint hi, lo;
if (want_max) {
// We can sharpen the minimum.
hi = MAX2(txvalue->_hi, tyvalue->_hi);
lo = MAX2(txvalue->_lo, tyvalue->_lo);
} else {
// We can sharpen the maximum.
hi = MIN2(txvalue->_hi, tyvalue->_hi);
lo = MIN2(txvalue->_lo, tyvalue->_lo);
}
// Use a flow-free graph structure, to avoid creating excess control edges
// which could hinder other optimizations.
// Since Math.min/max is often used with arraycopy, we want
// tightly_coupled_allocation to be able to see beyond min/max expressions.
Node* cmov = CMoveNode::make(NULL, best_bol,
answer_if_false, answer_if_true,
TypeInt::make(lo, hi, widen));
return _gvn.transform(cmov);
/*
// This is not as desirable as it may seem, since Min and Max
// nodes do not have a full set of optimizations.
// And they would interfere, anyway, with 'if' optimizations
// and with CMoveI canonical forms.
switch (id) {
case vmIntrinsics::_min:
result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
case vmIntrinsics::_max:
result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
default:
ShouldNotReachHere();
}
*/
}
inline int
LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
const TypePtr* base_type = TypePtr::NULL_PTR;
if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
if (base_type == NULL) {
// Unknown type.
return Type::AnyPtr;
} else if (base_type == TypePtr::NULL_PTR) {
// Since this is a NULL+long form, we have to switch to a rawptr.
base = _gvn.transform(new CastX2PNode(offset));
offset = MakeConX(0);
return Type::RawPtr;
} else if (base_type->base() == Type::RawPtr) {
return Type::RawPtr;
} else if (base_type->isa_oopptr()) {
// Base is never null => always a heap address.
if (base_type->ptr() == TypePtr::NotNull) {
return Type::OopPtr;
}
// Offset is small => always a heap address.
const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
if (offset_type != NULL &&
base_type->offset() == 0 && // (should always be?)
offset_type->_lo >= 0 &&
!MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
return Type::OopPtr;
}
// Otherwise, it might either be oop+off or NULL+addr.
return Type::AnyPtr;
} else {
// No information:
return Type::AnyPtr;
}
}
inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
int kind = classify_unsafe_addr(base, offset);
if (kind == Type::RawPtr) {
return basic_plus_adr(top(), base, offset);
} else {
return basic_plus_adr(base, offset);
}
}
//--------------------------inline_number_methods-----------------------------
// inline int Integer.numberOfLeadingZeros(int)
// inline int Long.numberOfLeadingZeros(long)
//
// inline int Integer.numberOfTrailingZeros(int)
// inline int Long.numberOfTrailingZeros(long)
//
// inline int Integer.bitCount(int)
// inline int Long.bitCount(long)
//
// inline char Character.reverseBytes(char)
// inline short Short.reverseBytes(short)
// inline int Integer.reverseBytes(int)
// inline long Long.reverseBytes(long)
bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
Node* arg = argument(0);
Node* n = NULL;
switch (id) {
case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break;
case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break;
case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break;
case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break;
case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break;
case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break;
case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break;
case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break;
case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break;
case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break;
default: fatal_unexpected_iid(id); break;
}
set_result(_gvn.transform(n));
return true;
}
//----------------------------inline_unsafe_access----------------------------
// Helper that guards and inserts a pre-barrier.
void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
Node* pre_val, bool need_mem_bar) {
// We could be accessing the referent field of a reference object. If so, when G1
// is enabled, we need to log the value in the referent field in an SATB buffer.
// This routine performs some compile time filters and generates suitable
// runtime filters that guard the pre-barrier code.
// Also add memory barrier for non volatile load from the referent field
// to prevent commoning of loads across safepoint.
if (!UseG1GC && !need_mem_bar)
return;
// Some compile time checks.
// If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
const TypeX* otype = offset->find_intptr_t_type();
if (otype != NULL && otype->is_con() &&
otype->get_con() != java_lang_ref_Reference::referent_offset) {
// Constant offset but not the reference_offset so just return
return;
}
// We only need to generate the runtime guards for instances.
const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
if (btype != NULL) {
if (btype->isa_aryptr()) {
// Array type so nothing to do
return;
}
const TypeInstPtr* itype = btype->isa_instptr();
if (itype != NULL) {
// Can the klass of base_oop be statically determined to be
// _not_ a sub-class of Reference and _not_ Object?
ciKlass* klass = itype->klass();
if ( klass->is_loaded() &&
!klass->is_subtype_of(env()->Reference_klass()) &&
!env()->Object_klass()->is_subtype_of(klass)) {
return;
}
}
}
// The compile time filters did not reject base_oop/offset so
// we need to generate the following runtime filters
//
// if (offset == java_lang_ref_Reference::_reference_offset) {
// if (instance_of(base, java.lang.ref.Reference)) {
// pre_barrier(_, pre_val, ...);
// }
// }
float likely = PROB_LIKELY( 0.999);
float unlikely = PROB_UNLIKELY(0.999);
IdealKit ideal(this);
#define __ ideal.
Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
__ if_then(offset, BoolTest::eq, referent_off, unlikely); {
// Update graphKit memory and control from IdealKit.
sync_kit(ideal);
Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
// Update IdealKit memory and control from graphKit.
__ sync_kit(this);
Node* one = __ ConI(1);
// is_instof == 0 if base_oop == NULL
__ if_then(is_instof, BoolTest::eq, one, unlikely); {
// Update graphKit from IdeakKit.
sync_kit(ideal);
// Use the pre-barrier to record the value in the referent field
pre_barrier(false /* do_load */,
__ ctrl(),
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
pre_val /* pre_val */,
T_OBJECT);
if (need_mem_bar) {
// Add memory barrier to prevent commoning reads from this field
// across safepoint since GC can change its value.
insert_mem_bar(Op_MemBarCPUOrder);
}
// Update IdealKit from graphKit.
__ sync_kit(this);
} __ end_if(); // _ref_type != ref_none
} __ end_if(); // offset == referent_offset
// Final sync IdealKit and GraphKit.
final_sync(ideal);
#undef __
}
const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
// Attempt to infer a sharper value type from the offset and base type.
ciKlass* sharpened_klass = NULL;
// See if it is an instance field, with an object type.
if (alias_type->field() != NULL) {
if (alias_type->field()->type()->is_klass()) {
sharpened_klass = alias_type->field()->type()->as_klass();
}
}
// See if it is a narrow oop array.
if (adr_type->isa_aryptr()) {
if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
if (elem_type != NULL) {
sharpened_klass = elem_type->klass();
}
}
}
// The sharpened class might be unloaded if there is no class loader
// contraint in place.
if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
#ifndef PRODUCT
if (C->print_intrinsics() || C->print_inlining()) {
tty->print(" from base type: "); adr_type->dump(); tty->cr();
tty->print(" sharpened value: "); tjp->dump(); tty->cr();
}
#endif
// Sharpen the value type.
return tjp;
}
return NULL;
}
bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
if (callee()->is_static()) return false; // caller must have the capability!
guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = callee()->signature();
#ifdef ASSERT
if (!is_store) {
// Object getObject(Object base, int/long offset), etc.
BasicType rtype = sig->return_type()->basic_type();
assert(rtype == type, "getter must return the expected value");
assert(sig->count() == 2, "oop getter has 2 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
} else {
// void putObject(Object base, int/long offset, Object x), etc.
assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
assert(sig->count() == 3, "oop putter has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
assert(vtype == type, "putter must accept the expected value");
}
#endif // ASSERT
}
#endif //PRODUCT
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
Node* receiver = argument(0); // type: oop
// Build address expression.
Node* adr;
Node* heap_base_oop = top();
Node* offset = top();
Node* val;
// The base is either a Java object or a value produced by Unsafe.staticFieldBase
Node* base = argument(1); // type: oop
// The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
offset = argument(2); // type: long
// We currently rely on the cookies produced by Unsafe.xxxFieldOffset
// to be plain byte offsets, which are also the same as those accepted
// by oopDesc::field_base.
assert(Unsafe_field_offset_to_byte_offset(11) == 11,
"fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half!
offset = ConvL2X(offset);
adr = make_unsafe_address(base, offset);
if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
heap_base_oop = base;
} else if (type == T_OBJECT) {
return false; // off-heap oop accesses are not supported
}
// Can base be NULL? Otherwise, always on-heap access.
bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
val = is_store ? argument(4) : NULL;
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
// Try to categorize the address.
Compile::AliasType* alias_type = C->alias_type(adr_type);
assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
if (alias_type->adr_type() == TypeInstPtr::KLASS ||
alias_type->adr_type() == TypeAryPtr::RANGE) {
return false; // not supported
}
bool mismatched = false;
BasicType bt = alias_type->basic_type();
if (bt != T_ILLEGAL) {
assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
if (bt == T_BYTE && adr_type->isa_aryptr()) {
// Alias type doesn't differentiate between byte[] and boolean[]).
// Use address type to get the element type.
bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
}
if (bt == T_ARRAY || bt == T_NARROWOOP) {
// accessing an array field with getObject is not a mismatch
bt = T_OBJECT;
}
if ((bt == T_OBJECT) != (type == T_OBJECT)) {
// Don't intrinsify mismatched object accesses
return false;
}
mismatched = (bt != type);
} else if (alias_type->adr_type()->isa_oopptr()) {
mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
}
assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
// First guess at the value type.
const Type *value_type = Type::get_const_basic_type(type);
// We will need memory barriers unless we can determine a unique
// alias category for this reference. (Note: If for some reason
// the barriers get omitted and the unsafe reference begins to "pollute"
// the alias analysis of the rest of the graph, either Compile::can_alias
// or Compile::must_alias will throw a diagnostic assert.)
bool need_mem_bar = false;
switch (kind) {
case Relaxed:
need_mem_bar = mismatched && !adr_type->isa_aryptr();
break;
case Opaque:
// Opaque uses CPUOrder membars for protection against code movement.
case Acquire:
case Release:
case Volatile:
need_mem_bar = true;
break;
default:
ShouldNotReachHere();
}
// Some accesses require access atomicity for all types, notably longs and doubles.
// When AlwaysAtomicAccesses is enabled, all accesses are atomic.
bool requires_atomic_access = false;
switch (kind) {
case Relaxed:
requires_atomic_access = AlwaysAtomicAccesses;
break;
case Opaque:
// Opaque accesses are atomic.
case Acquire:
case Release:
case Volatile:
requires_atomic_access = true;
break;
default:
ShouldNotReachHere();
}
// Figure out the memory ordering.
// Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
// If we are reading the value of the referent field of a Reference
// object (either by using Unsafe directly or through reflection)
// then, if G1 is enabled, we need to record the referent in an
// SATB log buffer using the pre-barrier mechanism.
// Also we need to add memory barrier to prevent commoning reads
// from this field across safepoint since GC can change its value.
bool need_read_barrier = !is_store &&
offset != top() && heap_base_oop != top();
if (!is_store && type == T_OBJECT) {
const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
if (tjp != NULL) {
value_type = tjp;
}
}
receiver = null_check(receiver);
if (stopped()) {
return true;
}
// Heap pointers get a null-check from the interpreter,
// as a courtesy. However, this is not guaranteed by Unsafe,
// and it is not possible to fully distinguish unintended nulls
// from intended ones in this API.
// We need to emit leading and trailing CPU membars (see below) in
// addition to memory membars for special access modes. This is a little
// too strong, but avoids the need to insert per-alias-type
// volatile membars (for stores; compare Parse::do_put_xxx), which
// we cannot do effectively here because we probably only have a
// rough approximation of type.
switch(kind) {
case Relaxed:
case Opaque:
case Acquire:
break;
case Release:
case Volatile:
if (is_store) {
insert_mem_bar(Op_MemBarRelease);
} else {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
}
}
break;
default:
ShouldNotReachHere();
}
// Memory barrier to prevent normal and 'unsafe' accesses from
// bypassing each other. Happens after null checks, so the
// exception paths do not take memory state from the memory barrier,
// so there's no problems making a strong assert about mixing users
// of safe & unsafe memory.
if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
if (!is_store) {
Node* p = NULL;
// Try to constant fold a load from a constant field
ciField* field = alias_type->field();
if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
// final or stable field
p = make_constant_from_field(field, heap_base_oop);
}
if (p == NULL) {
// To be valid, unsafe loads may depend on other conditions than
// the one that guards them: pin the Load node
p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
// load value
switch (type) {
case T_BOOLEAN:
{
// Normalize the value returned by getBoolean in the following cases
if (mismatched ||
heap_base_oop == top() || // - heap_base_oop is NULL or
(can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
// and the unsafe access is made to large offset
// (i.e., larger than the maximum offset necessary for any
// field access)
) {
IdealKit ideal = IdealKit(this);
#define __ ideal.
IdealVariable normalized_result(ideal);
__ declarations_done();
__ set(normalized_result, p);
__ if_then(p, BoolTest::ne, ideal.ConI(0));
__ set(normalized_result, ideal.ConI(1));
ideal.end_if();
final_sync(ideal);
p = __ value(normalized_result);
#undef __
}
}
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
case T_LONG:
case T_FLOAT:
case T_DOUBLE:
break;
case T_OBJECT:
if (need_read_barrier) {
// We do not require a mem bar inside pre_barrier if need_mem_bar
// is set: the barriers would be emitted by us.
insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
}
break;
case T_ADDRESS:
// Cast to an int type.
p = _gvn.transform(new CastP2XNode(NULL, p));
p = ConvX2UL(p);
break;
default:
fatal("unexpected type %d: %s", type, type2name(type));
break;
}
}
// The load node has the control of the preceding MemBarCPUOrder. All
// following nodes will have the control of the MemBarCPUOrder inserted at
// the end of this method. So, pushing the load onto the stack at a later
// point is fine.
set_result(p);
} else {
// place effect of store into memory
switch (type) {
case T_DOUBLE:
val = dstore_rounding(val);
break;
case T_ADDRESS:
// Repackage the long as a pointer.
val = ConvL2X(val);
val = _gvn.transform(new CastX2PNode(val));
break;
}
if (type == T_OBJECT) {
store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
} else {
store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
}
}
switch(kind) {
case Relaxed:
case Opaque:
case Release:
break;
case Acquire:
case Volatile:
if (!is_store) {
insert_mem_bar(Op_MemBarAcquire);
} else {
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
}
}
break;
default:
ShouldNotReachHere();
}
if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
//----------------------------inline_unsafe_load_store----------------------------
// This method serves a couple of different customers (depending on LoadStoreKind):
//
// LS_cmp_swap:
//
// boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
// boolean compareAndSetInt( Object o, long offset, int expected, int x);
// boolean compareAndSetLong( Object o, long offset, long expected, long x);
//
// LS_cmp_swap_weak:
//
// boolean weakCompareAndSetObject( Object o, long offset, Object expected, Object x);
// boolean weakCompareAndSetObjectPlain( Object o, long offset, Object expected, Object x);
// boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
// boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
//
// boolean weakCompareAndSetInt( Object o, long offset, int expected, int x);
// boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x);
// boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x);
// boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x);
//
// boolean weakCompareAndSetLong( Object o, long offset, long expected, long x);
// boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x);
// boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x);
// boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x);
//
// LS_cmp_exchange:
//
// Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
// Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
//
// Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x);
//
// Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x);
//
// LS_get_add:
//
// int getAndAddInt( Object o, long offset, int delta)
// long getAndAddLong(Object o, long offset, long delta)
//
// LS_get_set:
//
// int getAndSet(Object o, long offset, int newValue)
// long getAndSet(Object o, long offset, long newValue)
// Object getAndSet(Object o, long offset, Object newValue)
//
bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
// This basic scheme here is the same as inline_unsafe_access, but
// differs in enough details that combining them would make the code
// overly confusing. (This is a true fact! I originally combined
// them, but even I was confused by it!) As much code/comments as
// possible are retained from inline_unsafe_access though to make
// the correspondences clearer. - dl
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
BasicType rtype;
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = callee()->signature();
rtype = sig->return_type()->basic_type();
switch(kind) {
case LS_get_add:
case LS_get_set: {
// Check the signatures.
#ifdef ASSERT
assert(rtype == type, "get and set must return the expected type");
assert(sig->count() == 3, "get and set has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
#endif // ASSERT
break;
}
case LS_cmp_swap:
case LS_cmp_swap_weak: {
// Check the signatures.
#ifdef ASSERT
assert(rtype == T_BOOLEAN, "CAS must return boolean");
assert(sig->count() == 4, "CAS has 4 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
#endif // ASSERT
break;
}
case LS_cmp_exchange: {
// Check the signatures.
#ifdef ASSERT
assert(rtype == type, "CAS must return the expected type");
assert(sig->count() == 4, "CAS has 4 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
#endif // ASSERT
break;
}
default:
ShouldNotReachHere();
}
}
#endif //PRODUCT
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
// Get arguments:
Node* receiver = NULL;
Node* base = NULL;
Node* offset = NULL;
Node* oldval = NULL;
Node* newval = NULL;
switch(kind) {
case LS_cmp_swap:
case LS_cmp_swap_weak:
case LS_cmp_exchange: {
const bool two_slot_type = type2size[type] == 2;
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = argument(4); // type: oop, int, or long
newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
break;
}
case LS_get_add:
case LS_get_set: {
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = NULL;
newval = argument(4); // type: oop, int, or long
break;
}
default:
ShouldNotReachHere();
}
// Build field offset expression.
// We currently rely on the cookies produced by Unsafe.xxxFieldOffset
// to be plain byte offsets, which are also the same as those accepted
// by oopDesc::field_base.
assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half of long offsets
offset = ConvL2X(offset);
Node* adr = make_unsafe_address(base, offset);
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
Compile::AliasType* alias_type = C->alias_type(adr_type);
BasicType bt = alias_type->basic_type();
if (bt != T_ILLEGAL &&
((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
// Don't intrinsify mismatched object accesses.
return false;
}
// For CAS, unlike inline_unsafe_access, there seems no point in
// trying to refine types. Just use the coarse types here.
assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
const Type *value_type = Type::get_const_basic_type(type);
switch (kind) {
case LS_get_set:
case LS_cmp_exchange: {
if (type == T_OBJECT) {
const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
if (tjp != NULL) {
value_type = tjp;
}
}
break;
}
case LS_cmp_swap:
case LS_cmp_swap_weak:
case LS_get_add:
break;
default:
ShouldNotReachHere();
}
// Null check receiver.
receiver = null_check(receiver);
if (stopped()) {
return true;
}
int alias_idx = C->get_alias_index(adr_type);
// Memory-model-wise, a LoadStore acts like a little synchronized
// block, so needs barriers on each side. These don't translate
// into actual barriers on most machines, but we still need rest of
// compiler to respect ordering.
switch (access_kind) {
case Relaxed:
case Acquire:
break;
case Release:
insert_mem_bar(Op_MemBarRelease);
break;
case Volatile:
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
} else {
insert_mem_bar(Op_MemBarRelease);
}
break;
default:
ShouldNotReachHere();
}
insert_mem_bar(Op_MemBarCPUOrder);
// Figure out the memory ordering.
MemNode::MemOrd mo = access_kind_to_memord(access_kind);
// 4984716: MemBars must be inserted before this
// memory node in order to avoid a false
// dependency which will confuse the scheduler.
Node *mem = memory(alias_idx);
// For now, we handle only those cases that actually exist: ints,
// longs, and Object. Adding others should be straightforward.
Node* load_store = NULL;
switch(type) {
case T_BYTE:
switch(kind) {
case LS_get_add:
load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
break;
case LS_get_set:
load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
break;
default:
ShouldNotReachHere();
}
break;
case T_SHORT:
switch(kind) {
case LS_get_add:
load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
break;
case LS_get_set:
load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
break;
default:
ShouldNotReachHere();
}
break;
case T_INT:
switch(kind) {
case LS_get_add:
load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
break;
case LS_get_set:
load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
break;
default:
ShouldNotReachHere();
}
break;
case T_LONG:
switch(kind) {
case LS_get_add:
load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
break;
case LS_get_set:
load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
break;
default:
ShouldNotReachHere();
}
break;
case T_OBJECT:
// Transformation of a value which could be NULL pointer (CastPP #NULL)
// could be delayed during Parse (for example, in adjust_map_after_if()).
// Execute transformation here to avoid barrier generation in such case.
if (_gvn.type(newval) == TypePtr::NULL_PTR)
newval = _gvn.makecon(TypePtr::NULL_PTR);
// Reference stores need a store barrier.
switch(kind) {
case LS_get_set: {
// If pre-barrier must execute before the oop store, old value will require do_load here.
if (!can_move_pre_barrier()) {
pre_barrier(true /* do_load*/,
control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
NULL /* pre_val*/,
T_OBJECT);
} // Else move pre_barrier to use load_store value, see below.
break;
}
case LS_cmp_swap_weak:
case LS_cmp_swap:
case LS_cmp_exchange: {
// Same as for newval above:
if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
oldval = _gvn.makecon(TypePtr::NULL_PTR);
}
// The only known value which might get overwritten is oldval.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
oldval /* pre_val */,
T_OBJECT);
break;
}
default:
ShouldNotReachHere();
}
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
switch(kind) {
case LS_get_set:
load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
break;
case LS_cmp_swap_weak: {
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
break;
}
case LS_cmp_swap: {
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
break;
}
case LS_cmp_exchange: {
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
break;
}
default:
ShouldNotReachHere();
}
} else
#endif
switch (kind) {
case LS_get_set:
load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
break;
default:
ShouldNotReachHere();
}
// Emit the post barrier only when the actual store happened. This makes sense
// to check only for LS_cmp_* that can fail to set the value.
// LS_cmp_exchange does not produce any branches by default, so there is no
// boolean result to piggyback on. TODO: When we merge CompareAndSwap with
// CompareAndExchange and move branches here, it would make sense to conditionalize
// post_barriers for LS_cmp_exchange as well.
//
// CAS success path is marked more likely since we anticipate this is a performance
// critical path, while CAS failure path can use the penalty for going through unlikely
// path as backoff. Which is still better than doing a store barrier there.
switch (kind) {
case LS_get_set:
case LS_cmp_exchange: {
post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
break;
}
case LS_cmp_swap_weak:
case LS_cmp_swap: {
IdealKit ideal(this);
ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
sync_kit(ideal);
post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
ideal.sync_kit(this);
} ideal.end_if();
final_sync(ideal);
break;
}
default:
ShouldNotReachHere();
}
break;
default:
fatal("unexpected type %d: %s", type, type2name(type));
break;
}
// SCMemProjNodes represent the memory state of a LoadStore. Their
// main role is to prevent LoadStore nodes from being optimized away
// when their results aren't used.
Node* proj = _gvn.transform(new SCMemProjNode(load_store));
set_memory(proj, alias_idx);
if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
}
#endif
if (can_move_pre_barrier() && kind == LS_get_set) {
// Don't need to load pre_val. The old value is returned by load_store.
// The pre_barrier can execute after the xchg as long as no safepoint
// gets inserted between them.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
load_store /* pre_val */,
T_OBJECT);
}
}
// Add the trailing membar surrounding the access
insert_mem_bar(Op_MemBarCPUOrder);
switch (access_kind) {
case Relaxed:
case Release:
break; // do nothing
case Acquire:
case Volatile:
insert_mem_bar(Op_MemBarAcquire);
// !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
break;
default:
ShouldNotReachHere();
}
assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
set_result(load_store);
return true;
}
MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
MemNode::MemOrd mo = MemNode::unset;
switch(kind) {
case Opaque:
case Relaxed: mo = MemNode::unordered; break;
case Acquire: mo = MemNode::acquire; break;
case Release: mo = MemNode::release; break;
case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
default:
ShouldNotReachHere();
}
guarantee(mo != MemNode::unset, "Should select memory ordering");
return mo;
}
MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
MemNode::MemOrd mo = MemNode::unset;
switch(kind) {
case Opaque:
case Relaxed: mo = MemNode::unordered; break;
case Acquire: mo = MemNode::acquire; break;
case Release: mo = MemNode::release; break;
case Volatile: mo = MemNode::seqcst; break;
default:
ShouldNotReachHere();
}
guarantee(mo != MemNode::unset, "Should select memory ordering");
return mo;
}
bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
// Regardless of form, don't allow previous ld/st to move down,
// then issue acquire, release, or volatile mem_bar.
insert_mem_bar(Op_MemBarCPUOrder);
switch(id) {
case vmIntrinsics::_loadFence:
insert_mem_bar(Op_LoadFence);
return true;
case vmIntrinsics::_storeFence:
insert_mem_bar(Op_StoreFence);
return true;
case vmIntrinsics::_fullFence:
insert_mem_bar(Op_MemBarVolatile);
return true;
default:
fatal_unexpected_iid(id);
return false;
}
}
bool LibraryCallKit::inline_onspinwait() {
insert_mem_bar(Op_OnSpinWait);
return true;
}
bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
if (!kls->is_Con()) {
return true;
}
const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
if (klsptr == NULL) {
return true;
}
ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
// don't need a guard for a klass that is already initialized
return !ik->is_initialized();
}
//----------------------------inline_unsafe_allocate---------------------------
// public native Object Unsafe.allocateInstance(Class<?> cls);
bool LibraryCallKit::inline_unsafe_allocate() {
if (callee()->is_static()) return false; // caller must have the capability!
null_check_receiver(); // null-check, then ignore
Node* cls = null_check(argument(1));
if (stopped()) return true;
Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
kls = null_check(kls);
if (stopped()) return true; // argument was like int.class
Node* test = NULL;
if (LibraryCallKit::klass_needs_init_guard(kls)) {
// Note: The argument might still be an illegal value like
// Serializable.class or Object[].class. The runtime will handle it.
// But we must make an explicit check for initialization.
Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
// Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
// can generate code to load it as unsigned byte.
Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
Node* bits = intcon(InstanceKlass::fully_initialized);
test = _gvn.transform(new SubINode(inst, bits));
// The 'test' is non-zero if we need to take a slow path.
}
Node* obj = new_instance(kls, test);
set_result(obj);
return true;
}
//------------------------inline_native_time_funcs--------------
// inline code for System.currentTimeMillis() and System.nanoTime()
// these have the same type and signature
bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
const TypeFunc* tf = OptoRuntime::void_long_Type();
const TypePtr* no_memory_effects = NULL;
Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
#ifdef ASSERT
Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
assert(value_top == top(), "second value must be top");
#endif
set_result(value);
return true;
}
#ifdef TRACE_HAVE_INTRINSICS
/*
* oop -> myklass
* myklass->trace_id |= USED
* return myklass->trace_id & ~0x3
*/
bool LibraryCallKit::inline_native_classID() {
Node* cls = null_check(argument(0), T_OBJECT);
Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
kls = null_check(kls, T_OBJECT);
ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
Node* insp = basic_plus_adr(kls, in_bytes(offset));
Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
Node* clsused = longcon(0x01l); // set the class bit
Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
#ifdef TRACE_ID_META_BITS
Node* mbits = longcon(~TRACE_ID_META_BITS);
tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
#endif
#ifdef TRACE_ID_CLASS_SHIFT
Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
#endif
set_result(tvalue);
return true;
}
bool LibraryCallKit::inline_native_getBufferWriter() {
Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
);
Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
IfNode* iff_jobj_null =
create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
enum { _normal_path = 1,
_null_path = 2,
PATH_LIMIT };
RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
PhiNode* result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
result_rgn->init_req(_null_path, jobj_is_null);
result_val->init_req(_null_path, null());
Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
result_rgn->init_req(_normal_path, jobj_is_not_null);
Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
result_val->init_req(_normal_path, res);
set_result(result_rgn, result_val);
return true;
}
#endif
//------------------------inline_native_currentThread------------------
bool LibraryCallKit::inline_native_currentThread() {
Node* junk = NULL;
set_result(generate_current_thread(junk));
return true;
}
//------------------------inline_native_isInterrupted------------------
// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
bool LibraryCallKit::inline_native_isInterrupted() {
// Add a fast path to t.isInterrupted(clear_int):
// (t == Thread.current() &&
// (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
// ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
// So, in the common case that the interrupt bit is false,
// we avoid making a call into the VM. Even if the interrupt bit
// is true, if the clear_int argument is false, we avoid the VM call.
// However, if the receiver is not currentThread, we must call the VM,
// because there must be some locking done around the operation.
// We only go to the fast case code if we pass two guards.
// Paths which do not pass are accumulated in the slow_region.
enum {
no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted
no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int
slow_result_path = 3, // slow path: t.isInterrupted(clear_int)
PATH_LIMIT
};
// Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
// out of the function.
insert_mem_bar(Op_MemBarCPUOrder);
RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
PhiNode* result_val = new PhiNode(result_rgn, TypeInt::BOOL);
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
// (a) Receiving thread must be the current thread.
Node* rec_thr = argument(0);
Node* tls_ptr = NULL;
Node* cur_thr = generate_current_thread(tls_ptr);
Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
generate_slow_guard(bol_thr, slow_region);
// (b) Interrupt bit on TLS must be false.
Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
// Set the control input on the field _interrupted read to prevent it floating up.
Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
// First fast path: if (!TLS._interrupted) return false;
Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
result_rgn->init_req(no_int_result_path, false_bit);
result_val->init_req(no_int_result_path, intcon(0));
// drop through to next case
set_control( _gvn.transform(new IfTrueNode(iff_bit)));
#ifndef _WINDOWS
// (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
Node* clr_arg = argument(1);
Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
// Second fast path: ... else if (!clear_int) return true;
Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
result_rgn->init_req(no_clear_result_path, false_arg);
result_val->init_req(no_clear_result_path, intcon(1));
// drop through to next case
set_control( _gvn.transform(new IfTrueNode(iff_arg)));
#else
// To return true on Windows you must read the _interrupted field
// and check the event state i.e. take the slow path.
#endif // _WINDOWS
// (d) Otherwise, go to the slow path.
slow_region->add_req(control());
set_control( _gvn.transform(slow_region));
if (stopped()) {
// There is no slow path.
result_rgn->init_req(slow_result_path, top());
result_val->init_req(slow_result_path, top());
} else {
// non-virtual because it is a private non-static
CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
Node* slow_val = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
Node* fast_io = slow_call->in(TypeFunc::I_O);
Node* fast_mem = slow_call->in(TypeFunc::Memory);
// These two phis are pre-filled with copies of of the fast IO and Memory
PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO);
result_rgn->init_req(slow_result_path, control());
result_io ->init_req(slow_result_path, i_o());
result_mem->init_req(slow_result_path, reset_memory());
result_val->init_req(slow_result_path, slow_val);
set_all_memory(_gvn.transform(result_mem));
set_i_o( _gvn.transform(result_io));
}
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(result_rgn, result_val);
return true;
}
//---------------------------load_mirror_from_klass----------------------------
// Given a klass oop, load its java mirror (a java.lang.Class oop).
Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
}
//-----------------------load_klass_from_mirror_common-------------------------
// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
// and branch to the given path on the region.
// If never_see_null, take an uncommon trap on null, so we can optimistically
// compile for the non-null case.
// If the region is NULL, force never_see_null = true.
Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
bool never_see_null,
RegionNode* region,
int null_path,
int offset) {
if (region == NULL) never_see_null = true;
Node* p = basic_plus_adr(mirror, offset);
const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
Node* null_ctl = top();
kls = null_check_oop(kls, &null_ctl, never_see_null);
if (region != NULL) {
// Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
region->init_req(null_path, null_ctl);
} else {
assert(null_ctl == top(), "no loose ends");
}
return kls;
}
//--------------------(inline_native_Class_query helpers)---------------------
// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
// Fall through if (mods & mask) == bits, take the guard otherwise.
Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
// Branch around if the given klass has the given modifier bit set.
// Like generate_guard, adds a new path onto the region.
Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
Node* mask = intcon(modifier_mask);
Node* bits = intcon(modifier_bits);
Node* mbit = _gvn.transform(new AndINode(mods, mask));
Node* cmp = _gvn.transform(new CmpINode(mbit, bits));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
return generate_fair_guard(bol, region);
}
Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
}
//-------------------------inline_native_Class_query-------------------
bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
const Type* return_type = TypeInt::BOOL;
Node* prim_return_value = top(); // what happens if it's a primitive class?
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
bool expect_prim = false; // most of these guys expect to work on refs
enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
Node* mirror = argument(0);
Node* obj = top();
switch (id) {
case vmIntrinsics::_isInstance:
// nothing is an instance of a primitive type
prim_return_value = intcon(0);
obj = argument(1);
break;
case vmIntrinsics::_getModifiers:
prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
break;
case vmIntrinsics::_isInterface:
prim_return_value = intcon(0);
break;
case vmIntrinsics::_isArray:
prim_return_value = intcon(0);
expect_prim = true; // cf. ObjectStreamClass.getClassSignature
break;
case vmIntrinsics::_isPrimitive:
prim_return_value = intcon(1);
expect_prim = true; // obviously
break;
case vmIntrinsics::_getSuperclass:
prim_return_value = null();
return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
break;
case vmIntrinsics::_getClassAccessFlags:
prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
return_type = TypeInt::INT; // not bool! 6297094
break;
default:
fatal_unexpected_iid(id);
break;
}
const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
if (mirror_con == NULL) return false; // cannot happen?
#ifndef PRODUCT
if (C->print_intrinsics() || C->print_inlining()) {
ciType* k = mirror_con->java_mirror_type();
if (k) {
tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
k->print_name();
tty->cr();
}
}
#endif
// Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
RegionNode* region = new RegionNode(PATH_LIMIT);
record_for_igvn(region);
PhiNode* phi = new PhiNode(region, return_type);
// The mirror will never be null of Reflection.getClassAccessFlags, however
// it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
// if it is. See bug 4774291.
// For Reflection.getClassAccessFlags(), the null check occurs in
// the wrong place; see inline_unsafe_access(), above, for a similar
// situation.
mirror = null_check(mirror);
// If mirror or obj is dead, only null-path is taken.
if (stopped()) return true;
if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
// Now load the mirror's klass metaobject, and null-check it.
// Side-effects region with the control path if the klass is null.
Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
// If kls is null, we have a primitive mirror.
phi->init_req(_prim_path, prim_return_value);
if (stopped()) { set_result(region, phi); return true; }
bool safe_for_replace = (region->in(_prim_path) == top());
Node* p; // handy temp
Node* null_ctl;
// Now that we have the non-null klass, we can perform the real query.
// For constant classes, the query will constant-fold in LoadNode::Value.
Node* query_value = top();
switch (id) {
case vmIntrinsics::_isInstance:
// nothing is an instance of a primitive type
query_value = gen_instanceof(obj, kls, safe_for_replace);
break;
case vmIntrinsics::_getModifiers:
p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
break;
case vmIntrinsics::_isInterface:
// (To verify this code sequence, check the asserts in JVM_IsInterface.)
if (generate_interface_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an interface.
phi->add_req(intcon(1));
// If we fall through, it's a plain class.
query_value = intcon(0);
break;
case vmIntrinsics::_isArray:
// (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
if (generate_array_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an array.
phi->add_req(intcon(1));
// If we fall through, it's a plain class.
query_value = intcon(0);
break;
case vmIntrinsics::_isPrimitive:
query_value = intcon(0); // "normal" path produces false
break;
case vmIntrinsics::_getSuperclass:
// The rules here are somewhat unfortunate, but we can still do better
// with random logic than with a JNI call.
// Interfaces store null or Object as _super, but must report null.
// Arrays store an intermediate super as _super, but must report Object.
// Other types can report the actual _super.
// (To verify this code sequence, check the asserts in JVM_IsInterface.)
if (generate_interface_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an interface.
phi->add_req(null());
if (generate_array_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an array.
phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
// If we fall through, it's a plain class. Get its _super.
p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
null_ctl = top();
kls = null_check_oop(kls, &null_ctl);
if (null_ctl != top()) {
// If the guard is taken, Object.superClass is null (both klass and mirror).
region->add_req(null_ctl);
phi ->add_req(null());
}
if (!stopped()) {
query_value = load_mirror_from_klass(kls);
}
break;
case vmIntrinsics::_getClassAccessFlags:
p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
break;
default:
fatal_unexpected_iid(id);
break;
}
// Fall-through is the normal case of a query to a real class.
phi->init_req(1, query_value);
region->init_req(1, control());
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(region, phi);
return true;
}
//-------------------------inline_Class_cast-------------------
bool LibraryCallKit::inline_Class_cast() {
Node* mirror = argument(0); // Class
Node* obj = argument(1);
const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
if (mirror_con == NULL) {
return false; // dead path (mirror->is_top()).
}
if (obj == NULL || obj->is_top()) {
return false; // dead path
}
const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
// First, see if Class.cast() can be folded statically.
// java_mirror_type() returns non-null for compile-time Class constants.
ciType* tm = mirror_con->java_mirror_type();
if (tm != NULL && tm->is_klass() &&
tp != NULL && tp->klass() != NULL) {
if (!tp->klass()->is_loaded()) {
// Don't use intrinsic when class is not loaded.
return false;
} else {
int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
if (static_res == Compile::SSC_always_true) {
// isInstance() is true - fold the code.
set_result(obj);
return true;
} else if (static_res == Compile::SSC_always_false) {
// Don't use intrinsic, have to throw ClassCastException.
// If the reference is null, the non-intrinsic bytecode will
// be optimized appropriately.
return false;
}
}
}
// Bailout intrinsic and do normal inlining if exception path is frequent.
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
// Generate dynamic checks.
// Class.cast() is java implementation of _checkcast bytecode.
// Do checkcast (Parse::do_checkcast()) optimizations here.
mirror = null_check(mirror);
// If mirror is dead, only null-path is taken.
if (stopped()) {
return true;
}
// Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
RegionNode* region = new RegionNode(PATH_LIMIT);
record_for_igvn(region);
// Now load the mirror's klass metaobject, and null-check it.
// If kls is null, we have a primitive mirror and
// nothing is an instance of a primitive type.
Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
Node* res = top();
if (!stopped()) {
Node* bad_type_ctrl = top();
// Do checkcast optimizations.
res = gen_checkcast(obj, kls, &bad_type_ctrl);
region->init_req(_bad_type_path, bad_type_ctrl);
}
if (region->in(_prim_path) != top() ||
region->in(_bad_type_path) != top()) {
// Let Interpreter throw ClassCastException.
PreserveJVMState pjvms(this);
set_control(_gvn.transform(region));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
if (!stopped()) {
set_result(res);
}
return true;
}
//--------------------------inline_native_subtype_check------------------------
// This intrinsic takes the JNI calls out of the heart of
// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
bool LibraryCallKit::inline_native_subtype_check() {
// Pull both arguments off the stack.
Node* args[2]; // two java.lang.Class mirrors: superc, subc
args[0] = argument(0);
args[1] = argument(1);
Node* klasses[2]; // corresponding Klasses: superk, subk
klasses[0] = klasses[1] = top();
enum {
// A full decision tree on {superc is prim, subc is prim}:
_prim_0_path = 1, // {P,N} => false
// {P,P} & superc!=subc => false
_prim_same_path, // {P,P} & superc==subc => true
_prim_1_path, // {N,P} => false
_ref_subtype_path, // {N,N} & subtype check wins => true
_both_ref_path, // {N,N} & subtype check loses => false
PATH_LIMIT
};
RegionNode* region = new RegionNode(PATH_LIMIT);
Node* phi = new PhiNode(region, TypeInt::BOOL);
record_for_igvn(region);
const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
// First null-check both mirrors and load each mirror's klass metaobject.
int which_arg;
for (which_arg = 0; which_arg <= 1; which_arg++) {
Node* arg = args[which_arg];
arg = null_check(arg);
if (stopped()) break;
args[which_arg] = arg;
Node* p = basic_plus_adr(arg, class_klass_offset);
Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
klasses[which_arg] = _gvn.transform(kls);
}
// Having loaded both klasses, test each for null.
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
for (which_arg = 0; which_arg <= 1; which_arg++) {
Node* kls = klasses[which_arg];
Node* null_ctl = top();
kls = null_check_oop(kls, &null_ctl, never_see_null);
int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
region->init_req(prim_path, null_ctl);
if (stopped()) break;
klasses[which_arg] = kls;
}
if (!stopped()) {
// now we have two reference types, in klasses[0..1]
Node* subk = klasses[1]; // the argument to isAssignableFrom
Node* superk = klasses[0]; // the receiver
region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
// now we have a successful reference subtype check
region->set_req(_ref_subtype_path, control());
}
// If both operands are primitive (both klasses null), then
// we must return true when they are identical primitives.
// It is convenient to test this after the first null klass check.
set_control(region->in(_prim_0_path)); // go back to first null check
if (!stopped()) {
// Since superc is primitive, make a guard for the superc==subc case.
Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
generate_guard(bol_eq, region, PROB_FAIR);
if (region->req() == PATH_LIMIT+1) {
// A guard was added. If the added guard is taken, superc==subc.
region->swap_edges(PATH_LIMIT, _prim_same_path);
region->del_req(PATH_LIMIT);
}
region->set_req(_prim_0_path, control()); // Not equal after all.
}
// these are the only paths that produce 'true':
phi->set_req(_prim_same_path, intcon(1));
phi->set_req(_ref_subtype_path, intcon(1));
// pull together the cases:
assert(region->req() == PATH_LIMIT, "sane region");
for (uint i = 1; i < region->req(); i++) {
Node* ctl = region->in(i);
if (ctl == NULL || ctl == top()) {
region->set_req(i, top());
phi ->set_req(i, top());
} else if (phi->in(i) == NULL) {
phi->set_req(i, intcon(0)); // all other paths produce 'false'
}
}
set_control(_gvn.transform(region));
set_result(_gvn.transform(phi));
return true;
}
//---------------------generate_array_guard_common------------------------
Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
bool obj_array, bool not_array) {
if (stopped()) {
return NULL;
}
// If obj_array/non_array==false/false:
// Branch around if the given klass is in fact an array (either obj or prim).
// If obj_array/non_array==false/true:
// Branch around if the given klass is not an array klass of any kind.
// If obj_array/non_array==true/true:
// Branch around if the kls is not an oop array (kls is int[], String, etc.)
// If obj_array/non_array==true/false:
// Branch around if the kls is an oop array (Object[] or subtype)
//
// Like generate_guard, adds a new path onto the region.
jint layout_con = 0;
Node* layout_val = get_layout_helper(kls, layout_con);
if (layout_val == NULL) {
bool query = (obj_array
? Klass::layout_helper_is_objArray(layout_con)
: Klass::layout_helper_is_array(layout_con));
if (query == not_array) {
return NULL; // never a branch
} else { // always a branch
Node* always_branch = control();
if (region != NULL)
region->add_req(always_branch);
set_control(top());
return always_branch;
}
}
// Now test the correct condition.
jint nval = (obj_array
? (jint)(Klass::_lh_array_tag_type_value
<< Klass::_lh_array_tag_shift)
: Klass::_lh_neutral_value);
Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
// invert the test if we are looking for a non-array
if (not_array) btest = BoolTest(btest).negate();
Node* bol = _gvn.transform(new BoolNode(cmp, btest));
return generate_fair_guard(bol, region);
}
//-----------------------inline_native_newArray--------------------------
// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
// private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
Node* mirror;
Node* count_val;
if (uninitialized) {
mirror = argument(1);
count_val = argument(2);
} else {
mirror = argument(0);
count_val = argument(1);
}
mirror = null_check(mirror);
// If mirror or obj is dead, only null-path is taken.
if (stopped()) return true;
enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
RegionNode* result_reg = new RegionNode(PATH_LIMIT);
PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
result_reg, _slow_path);
Node* normal_ctl = control();
Node* no_array_ctl = result_reg->in(_slow_path);
// Generate code for the slow case. We make a call to newArray().
set_control(no_array_ctl);
if (!stopped()) {
// Either the input type is void.class, or else the
// array klass has not yet been cached. Either the
// ensuing call will throw an exception, or else it
// will cache the array klass for next time.
PreserveJVMState pjvms(this);
CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->set_req(_slow_path, control());
result_val->set_req(_slow_path, slow_result);
result_io ->set_req(_slow_path, i_o());
result_mem->set_req(_slow_path, reset_memory());
}
set_control(normal_ctl);
if (!stopped()) {
// Normal case: The array type has been cached in the java.lang.Class.
// The following call works fine even if the array type is polymorphic.
// It could be a dynamic mix of int[], boolean[], Object[], etc.
Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
result_reg->init_req(_normal_path, control());
result_val->init_req(_normal_path, obj);
result_io ->init_req(_normal_path, i_o());
result_mem->init_req(_normal_path, reset_memory());
if (uninitialized) {
// Mark the allocation so that zeroing is skipped
AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
alloc->maybe_set_complete(&_gvn);
}
}
// Return the combined state.
set_i_o( _gvn.transform(result_io) );
set_all_memory( _gvn.transform(result_mem));
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(result_reg, result_val);
return true;
}
//----------------------inline_native_getLength--------------------------
// public static native int java.lang.reflect.Array.getLength(Object array);
bool LibraryCallKit::inline_native_getLength() {
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
Node* array = null_check(argument(0));
// If array is dead, only null-path is taken.
if (stopped()) return true;
// Deoptimize if it is a non-array.
Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
if (non_array != NULL) {
PreserveJVMState pjvms(this);
set_control(non_array);
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
// If control is dead, only non-array-path is taken.
if (stopped()) return true;
// The works fine even if the array type is polymorphic.
// It could be a dynamic mix of int[], boolean[], Object[], etc.
Node* result = load_array_length(array);
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(result);
return true;
}
//------------------------inline_array_copyOf----------------------------
// public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
// Get the arguments.
Node* original = argument(0);
Node* start = is_copyOfRange? argument(1): intcon(0);
Node* end = is_copyOfRange? argument(2): argument(1);
Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
Node* newcopy = NULL;
// Set the original stack and the reexecute bit for the interpreter to reexecute
// the bytecode that invokes Arrays.copyOf if deoptimization happens.
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
array_type_mirror = null_check(array_type_mirror);
original = null_check(original);
// Check if a null path was taken unconditionally.
if (stopped()) return true;
Node* orig_length = load_array_length(original);
Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
klass_node = null_check(klass_node);
RegionNode* bailout = new RegionNode(1);
record_for_igvn(bailout);
// Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
// Bail out if that is so.
Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
if (not_objArray != NULL) {
// Improve the klass node's type from the new optimistic assumption:
ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
Node* cast = new CastPPNode(klass_node, akls);
cast->init_req(0, control());
klass_node = _gvn.transform(cast);
}
// Bail out if either start or end is negative.
generate_negative_guard(start, bailout, &start);
generate_negative_guard(end, bailout, &end);
Node* length = end;
if (_gvn.type(start) != TypeInt::ZERO) {
length = _gvn.transform(new SubINode(end, start));
}
// Bail out if length is negative.
// Without this the new_array would throw
// NegativeArraySizeException but IllegalArgumentException is what
// should be thrown
generate_negative_guard(length, bailout, &length);
if (bailout->req() > 1) {
PreserveJVMState pjvms(this);
set_control(_gvn.transform(bailout));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
if (!stopped()) {
// How many elements will we copy from the original?
// The answer is MinI(orig_length - start, length).
Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
// Generate a direct call to the right arraycopy function(s).
// We know the copy is disjoint but we might not know if the
// oop stores need checking.
// Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
// This will fail a store-check if x contains any non-nulls.
// ArrayCopyNode:Ideal may transform the ArrayCopyNode to
// loads/stores but it is legal only if we're sure the
// Arrays.copyOf would succeed. So we need all input arguments
// to the copyOf to be validated, including that the copy to the
// new array won't trigger an ArrayStoreException. That subtype
// check can be optimized if we know something on the type of
// the input array from type speculation.
if (_gvn.type(klass_node)->singleton()) {
ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
int test = C->static_subtype_check(superk, subk);
if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
if (t_original->speculative_type() != NULL) {
original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
}
}
}
bool validated = false;
// Reason_class_check rather than Reason_intrinsic because we
// want to intrinsify even if this traps.
if (!too_many_traps(Deoptimization::Reason_class_check)) {
Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
klass_node);
if (not_subtype_ctrl != top()) {
PreserveJVMState pjvms(this);
set_control(not_subtype_ctrl);
uncommon_trap(Deoptimization::Reason_class_check,
Deoptimization::Action_make_not_entrant);
assert(stopped(), "Should be stopped");
}
validated = true;
}
if (!stopped()) {
newcopy = new_array(klass_node, length, 0); // no arguments to push
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
load_object_klass(original), klass_node);
if (!is_copyOfRange) {
ac->set_copyof(validated);
} else {
ac->set_copyofrange(validated);
}
Node* n = _gvn.transform(ac);
if (n == ac) {
ac->connect_outputs(this);
} else {
assert(validated, "shouldn't transform if all arguments not validated");
set_all_memory(n);
}
}
}
} // original reexecute is set back here
C->set_has_split_ifs(true); // Has chance for split-if optimization
if (!stopped()) {
set_result(newcopy);
}
return true;
}
//----------------------generate_virtual_guard---------------------------
// Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
RegionNode* slow_region) {
ciMethod* method = callee();
int vtable_index = method->vtable_index();
assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
"bad index %d", vtable_index);
// Get the Method* out of the appropriate vtable entry.
int entry_offset = in_bytes(Klass::vtable_start_offset()) +
vtable_index*vtableEntry::size_in_bytes() +
vtableEntry::method_offset_in_bytes();
Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
// Compare the target method with the expected method (e.g., Object.hashCode).
const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
Node* native_call = makecon(native_call_addr);
Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call));
Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
return generate_slow_guard(test_native, slow_region);
}
//-----------------------generate_method_call----------------------------
// Use generate_method_call to make a slow-call to the real
// method if the fast path fails. An alternative would be to
// use a stub like OptoRuntime::slow_arraycopy_Java.
// This only works for expanding the current library call,
// not another intrinsic. (E.g., don't use this for making an
// arraycopy call inside of the copyOf intrinsic.)
CallJavaNode*
LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
// When compiling the intrinsic method itself, do not use this technique.
guarantee(callee() != C->method(), "cannot make slow-call to self");
ciMethod* method = callee();
// ensure the JVMS we have will be correct for this call
guarantee(method_id == method->intrinsic_id(), "must match");
const TypeFunc* tf = TypeFunc::make(method);
CallJavaNode* slow_call;
if (is_static) {
assert(!is_virtual, "");
slow_call = new CallStaticJavaNode(C, tf,
SharedRuntime::get_resolve_static_call_stub(),
method, bci());
} else if (is_virtual) {
null_check_receiver();
int vtable_index = Method::invalid_vtable_index;
if (UseInlineCaches) {
// Suppress the vtable call
} else {
// hashCode and clone are not a miranda methods,
// so the vtable index is fixed.
// No need to use the linkResolver to get it.
vtable_index = method->vtable_index();
assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
"bad index %d", vtable_index);
}
slow_call = new CallDynamicJavaNode(tf,
SharedRuntime::get_resolve_virtual_call_stub(),
method, vtable_index, bci());
} else { // neither virtual nor static: opt_virtual
null_check_receiver();
slow_call = new CallStaticJavaNode(C, tf,
SharedRuntime::get_resolve_opt_virtual_call_stub(),
method, bci());
slow_call->set_optimized_virtual(true);
}
set_arguments_for_java_call(slow_call);
set_edges_for_java_call(slow_call);
return slow_call;
}
/**
* Build special case code for calls to hashCode on an object. This call may
* be virtual (invokevirtual) or bound (invokespecial). For each case we generate
* slightly different code.
*/
bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
assert(is_static == callee()->is_static(), "correct intrinsic selection");
assert(!(is_virtual && is_static), "either virtual, special, or static");
enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
RegionNode* result_reg = new RegionNode(PATH_LIMIT);
PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT);
PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
Node* obj = NULL;
if (!is_static) {
// Check for hashing null object
obj = null_check_receiver();
if (stopped()) return true; // unconditionally null
result_reg->init_req(_null_path, top());
result_val->init_req(_null_path, top());
} else {
// Do a null check, and return zero if null.
// System.identityHashCode(null) == 0
obj = argument(0);
Node* null_ctl = top();
obj = null_check_oop(obj, &null_ctl);
result_reg->init_req(_null_path, null_ctl);
result_val->init_req(_null_path, _gvn.intcon(0));
}
// Unconditionally null? Then return right away.
if (stopped()) {
set_control( result_reg->in(_null_path));
if (!stopped())
set_result(result_val->in(_null_path));
return true;
}
// We only go to the fast case code if we pass a number of guards. The
// paths which do not pass are accumulated in the slow_region.
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
// If this is a virtual call, we generate a funny guard. We pull out
// the vtable entry corresponding to hashCode() from the target object.
// If the target method which we are calling happens to be the native
// Object hashCode() method, we pass the guard. We do not need this
// guard for non-virtual calls -- the caller is known to be the native
// Object hashCode().
if (is_virtual) {
// After null check, get the object's klass.
Node* obj_klass = load_object_klass(obj);
generate_virtual_guard(obj_klass, slow_region);
}
// Get the header out of the object, use LoadMarkNode when available
Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
// The control of the load must be NULL. Otherwise, the load can move before
// the null check after castPP removal.
Node* no_ctrl = NULL;
Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
// Test the header to see if it is unlocked.
Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
generate_slow_guard(test_unlocked, slow_region);
// Get the hash value and check to see that it has been properly assigned.
// We depend on hash_mask being at most 32 bits and avoid the use of
// hash_mask_in_place because it could be larger than 32 bits in a 64-bit
// vm: see markOop.hpp.
Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
// This hack lets the hash bits live anywhere in the mark object now, as long
// as the shift drops the relevant bits into the low 32 bits. Note that
// Java spec says that HashCode is an int so there's no point in capturing
// an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
hshifted_header = ConvX2I(hshifted_header);
Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask));
Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val));
Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
generate_slow_guard(test_assigned, slow_region);
Node* init_mem = reset_memory();
// fill in the rest of the null path:
result_io ->init_req(_null_path, i_o());
result_mem->init_req(_null_path, init_mem);
result_val->init_req(_fast_path, hash_val);
result_reg->init_req(_fast_path, control());
result_io ->init_req(_fast_path, i_o());
result_mem->init_req(_fast_path, init_mem);
// Generate code for the slow case. We make a call to hashCode().
set_control(_gvn.transform(slow_region));
if (!stopped()) {
// No need for PreserveJVMState, because we're using up the present state.
set_all_memory(init_mem);
vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->init_req(_slow_path, control());
result_val->init_req(_slow_path, slow_result);
result_io ->set_req(_slow_path, i_o());
result_mem ->set_req(_slow_path, reset_memory());
}
// Return the combined state.
set_i_o( _gvn.transform(result_io) );
set_all_memory( _gvn.transform(result_mem));
set_result(result_reg, result_val);
return true;
}
//---------------------------inline_native_getClass----------------------------
// public final native Class<?> java.lang.Object.getClass();
//
// Build special case code for calls to getClass on an object.
bool LibraryCallKit::inline_native_getClass() {
Node* obj = null_check_receiver();
if (stopped()) return true;
set_result(load_mirror_from_klass(load_object_klass(obj)));
return true;
}
//-----------------inline_native_Reflection_getCallerClass---------------------
// public static native Class<?> sun.reflect.Reflection.getCallerClass();
//
// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
//
// NOTE: This code must perform the same logic as JVM_GetCallerClass
// in that it must skip particular security frames and checks for
// caller sensitive methods.
bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
}
#endif
if (!jvms()->has_method()) {
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Bailing out because intrinsic was inlined at top level");
}
#endif
return false;
}
// Walk back up the JVM state to find the caller at the required
// depth.
JVMState* caller_jvms = jvms();
// Cf. JVM_GetCallerClass
// NOTE: Start the loop at depth 1 because the current JVM state does
// not include the Reflection.getCallerClass() frame.
for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
ciMethod* m = caller_jvms->method();
switch (n) {
case 0:
fatal("current JVM state does not include the Reflection.getCallerClass frame");
break;
case 1:
// Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
if (!m->caller_sensitive()) {
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n);
}
#endif
return false; // bail-out; let JVM_GetCallerClass do the work
}
break;
default:
if (!m->is_ignored_by_security_stack_walk()) {
// We have reached the desired frame; return the holder class.
// Acquire method holder as java.lang.Class and push as constant.
ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
ciInstance* caller_mirror = caller_klass->java_mirror();
set_result(makecon(TypeInstPtr::make(caller_mirror)));
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
tty->print_cr(" JVM state at this point:");
for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
ciMethod* m = jvms()->of_depth(i)->method();
tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
}
}
#endif
return true;
}
break;
}
}
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
tty->print_cr(" JVM state at this point:");
for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
ciMethod* m = jvms()->of_depth(i)->method();
tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
}
}
#endif
return false; // bail-out; let JVM_GetCallerClass do the work
}
bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
Node* arg = argument(0);
Node* result = NULL;
switch (id) {
case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break;
case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break;
case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break;
case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break;
case vmIntrinsics::_doubleToLongBits: {
// two paths (plus control) merge in a wood
RegionNode *r = new RegionNode(3);
Node *phi = new PhiNode(r, TypeLong::LONG);
Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
// Build the boolean node
Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
// Branch either way.
// NaN case is less traveled, which makes all the difference.
IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
Node *opt_isnan = _gvn.transform(ifisnan);
assert( opt_isnan->is_If(), "Expect an IfNode");
IfNode *opt_ifisnan = (IfNode*)opt_isnan;
Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
set_control(iftrue);
static const jlong nan_bits = CONST64(0x7ff8000000000000);
Node *slow_result = longcon(nan_bits); // return NaN
phi->init_req(1, _gvn.transform( slow_result ));
r->init_req(1, iftrue);
// Else fall through
Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
set_control(iffalse);
phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
r->init_req(2, iffalse);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
C->set_has_split_ifs(true); // Has chance for split-if optimization
result = phi;
assert(result->bottom_type()->isa_long(), "must be");
break;
}
case vmIntrinsics::_floatToIntBits: {
// two paths (plus control) merge in a wood
RegionNode *r = new RegionNode(3);
Node *phi = new PhiNode(r, TypeInt::INT);
Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
// Build the boolean node
Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
// Branch either way.
// NaN case is less traveled, which makes all the difference.
IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
Node *opt_isnan = _gvn.transform(ifisnan);
assert( opt_isnan->is_If(), "Expect an IfNode");
IfNode *opt_ifisnan = (IfNode*)opt_isnan;
Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
set_control(iftrue);
static const jint nan_bits = 0x7fc00000;
Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
phi->init_req(1, _gvn.transform( slow_result ));
r->init_req(1, iftrue);
// Else fall through
Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
set_control(iffalse);
phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
r->init_req(2, iffalse);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
C->set_has_split_ifs(true); // Has chance for split-if optimization
result = phi;
assert(result->bottom_type()->isa_int(), "must be");
break;
}
default:
fatal_unexpected_iid(id);
break;
}
set_result(_gvn.transform(result));
return true;
}
//----------------------inline_unsafe_copyMemory-------------------------
// public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
bool LibraryCallKit::inline_unsafe_copyMemory() {
if (callee()->is_static()) return false; // caller must have the capability!
null_check_receiver(); // null-check receiver
if (stopped()) return true;
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
Node* src_ptr = argument(1); // type: oop
Node* src_off = ConvL2X(argument(2)); // type: long
Node* dst_ptr = argument(4); // type: oop
Node* dst_off = ConvL2X(argument(5)); // type: long
Node* size = ConvL2X(argument(7)); // type: long
assert(Unsafe_field_offset_to_byte_offset(11) == 11,
"fieldOffset must be byte-scaled");
Node* src = make_unsafe_address(src_ptr, src_off);
Node* dst = make_unsafe_address(dst_ptr, dst_off);
// Conservatively insert a memory barrier on all memory slices.
// Do not let writes of the copy source or destination float below the copy.
insert_mem_bar(Op_MemBarCPUOrder);
// Call it. Note that the length argument is not scaled.
make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::fast_arraycopy_Type(),
StubRoutines::unsafe_arraycopy(),
"unsafe_arraycopy",
TypeRawPtr::BOTTOM,
src, dst, size XTOP);
// Do not let reads of the copy destination float above the copy.
insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
//------------------------clone_coping-----------------------------------
// Helper function for inline_native_clone.
void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
assert(obj_size != NULL, "");
Node* raw_obj = alloc_obj->in(1);
assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
AllocateNode* alloc = NULL;
if (ReduceBulkZeroing) {
// We will be completely responsible for initializing this object -
// mark Initialize node as complete.
alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
// The object was just allocated - there should be no any stores!
guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
// Mark as complete_with_arraycopy so that on AllocateNode
// expansion, we know this AllocateNode is initialized by an array
// copy and a StoreStore barrier exists after the array copy.
alloc->initialization()->set_complete_with_arraycopy();
}
// Copy the fastest available way.
// TODO: generate fields copies for small objects instead.
Node* src = obj;
Node* dest = alloc_obj;
Node* size = _gvn.transform(obj_size);
// Exclude the header but include array length to copy by 8 bytes words.
// Can't use base_offset_in_bytes(bt) since basic type is unknown.
int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
instanceOopDesc::base_offset_in_bytes();
// base_off:
// 8 - 32-bit VM
// 12 - 64-bit VM, compressed klass
// 16 - 64-bit VM, normal klass
if (base_off % BytesPerLong != 0) {
assert(UseCompressedClassPointers, "");
if (is_array) {
// Exclude length to copy by 8 bytes words.
base_off += sizeof(int);
} else {
// Include klass to copy by 8 bytes words.
base_off = instanceOopDesc::klass_offset_in_bytes();
}
assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
}
src = basic_plus_adr(src, base_off);
dest = basic_plus_adr(dest, base_off);
// Compute the length also, if needed:
Node* countx = size;
countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
ac->set_clonebasic();
Node* n = _gvn.transform(ac);
if (n == ac) {
set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
} else {
set_all_memory(n);
}
// If necessary, emit some card marks afterwards. (Non-arrays only.)
if (card_mark) {
assert(!is_array, "");
// Put in store barrier for any and all oops we are sticking
// into this object. (We could avoid this if we could prove
// that the object type contains no oop fields at all.)
Node* no_particular_value = NULL;
Node* no_particular_field = NULL;
int raw_adr_idx = Compile::AliasIdxRaw;
post_barrier(control(),
memory(raw_adr_type),
alloc_obj,
no_particular_field,
raw_adr_idx,
no_particular_value,
T_OBJECT,
false);
}
// Do not let reads from the cloned object float above the arraycopy.
if (alloc != NULL) {
// Do not let stores that initialize this object be reordered with
// a subsequent store that would make this object accessible by
// other threads.
// Record what AllocateNode this StoreStore protects so that
// escape analysis can go from the MemBarStoreStoreNode to the
// AllocateNode and eliminate the MemBarStoreStoreNode if possible
// based on the escape status of the AllocateNode.
insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
} else {
insert_mem_bar(Op_MemBarCPUOrder);
}
}
//------------------------inline_native_clone----------------------------
// protected native Object java.lang.Object.clone();
//
// Here are the simple edge cases:
// null receiver => normal trap
// virtual and clone was overridden => slow path to out-of-line clone
// not cloneable or finalizer => slow path to out-of-line Object.clone
//
// The general case has two steps, allocation and copying.
// Allocation has two cases, and uses GraphKit::new_instance or new_array.
//
// Copying also has two cases, oop arrays and everything else.
// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
// Everything else uses the tight inline loop supplied by CopyArrayNode.
//
// These steps fold up nicely if and when the cloned object's klass
// can be sharply typed as an object array, a type array, or an instance.
//
bool LibraryCallKit::inline_native_clone(bool is_virtual) {
PhiNode* result_val;
// Set the reexecute bit for the interpreter to reexecute
// the bytecode that invokes Object.clone if deoptimization happens.
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
Node* obj = null_check_receiver();
if (stopped()) return true;
const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
// If we are going to clone an instance, we need its exact type to
// know the number and types of fields to convert the clone to
// loads/stores. Maybe a speculative type can help us.
if (!obj_type->klass_is_exact() &&
obj_type->speculative_type() != NULL &&
obj_type->speculative_type()->is_instance_klass()) {
ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
!spec_ik->has_injected_fields()) {
ciKlass* k = obj_type->klass();
if (!k->is_instance_klass() ||
k->as_instance_klass()->is_interface() ||
k->as_instance_klass()->has_subklass()) {
obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
}
}
}
Node* obj_klass = load_object_klass(obj);
const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
const TypeOopPtr* toop = ((tklass != NULL)
? tklass->as_instance_type()
: TypeInstPtr::NOTNULL);
// Conservatively insert a memory barrier on all memory slices.
// Do not let writes into the original float below the clone.
insert_mem_bar(Op_MemBarCPUOrder);
// paths into result_reg:
enum {
_slow_path = 1, // out-of-line call to clone method (virtual or not)
_objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
_array_path, // plain array allocation, plus arrayof_long_arraycopy
_instance_path, // plain instance allocation, plus arrayof_long_arraycopy
PATH_LIMIT
};
RegionNode* result_reg = new RegionNode(PATH_LIMIT);
result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
record_for_igvn(result_reg);
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
int raw_adr_idx = Compile::AliasIdxRaw;
Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
if (array_ctl != NULL) {
// It's an array.
PreserveJVMState pjvms(this);
set_control(array_ctl);
Node* obj_length = load_array_length(obj);
Node* obj_size = NULL;
Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push
if (!use_ReduceInitialCardMarks()) {
// If it is an oop array, it requires very special treatment,
// because card marking is required on each card of the array.
Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
if (is_obja != NULL) {
PreserveJVMState pjvms2(this);
set_control(is_obja);
// Generate a direct call to the right arraycopy function(s).
Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
ac->set_cloneoop();
Node* n = _gvn.transform(ac);
assert(n == ac, "cannot disappear");
ac->connect_outputs(this);
result_reg->init_req(_objArray_path, control());
result_val->init_req(_objArray_path, alloc_obj);
result_i_o ->set_req(_objArray_path, i_o());
result_mem ->set_req(_objArray_path, reset_memory());
}
}
// Otherwise, there are no card marks to worry about.
// (We can dispense with card marks if we know the allocation
// comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
// causes the non-eden paths to take compensating steps to
// simulate a fresh allocation, so that no further
// card marks are required in compiled code to initialize
// the object.)
if (!stopped()) {
copy_to_clone(obj, alloc_obj, obj_size, true, false);
// Present the results of the copy.
result_reg->init_req(_array_path, control());
result_val->init_req(_array_path, alloc_obj);
result_i_o ->set_req(_array_path, i_o());
result_mem ->set_req(_array_path, reset_memory());
}
}
// We only go to the instance fast case code if we pass a number of guards.
// The paths which do not pass are accumulated in the slow_region.
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
if (!stopped()) {
// It's an instance (we did array above). Make the slow-path tests.
// If this is a virtual call, we generate a funny guard. We grab
// the vtable entry corresponding to clone() from the target object.
// If the target method which we are calling happens to be the
// Object clone() method, we pass the guard. We do not need this
// guard for non-virtual calls; the caller is known to be the native
// Object clone().
if (is_virtual) {
generate_virtual_guard(obj_klass, slow_region);
}
// The object must be easily cloneable and must not have a finalizer.
// Both of these conditions may be checked in a single test.
// We could optimize the test further, but we don't care.
generate_access_flags_guard(obj_klass,
// Test both conditions:
JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
// Must be cloneable but not finalizer:
JVM_ACC_IS_CLONEABLE_FAST,
slow_region);
}
if (!stopped()) {
// It's an instance, and it passed the slow-path tests.
PreserveJVMState pjvms(this);
Node* obj_size = NULL;
// Need to deoptimize on exception from allocation since Object.clone intrinsic
// is reexecuted if deoptimization occurs and there could be problems when merging
// exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
// Present the results of the slow call.
result_reg->init_req(_instance_path, control());
result_val->init_req(_instance_path, alloc_obj);
result_i_o ->set_req(_instance_path, i_o());
result_mem ->set_req(_instance_path, reset_memory());
}
// Generate code for the slow case. We make a call to clone().
set_control(_gvn.transform(slow_region));
if (!stopped()) {
PreserveJVMState pjvms(this);
CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->init_req(_slow_path, control());
result_val->init_req(_slow_path, slow_result);
result_i_o ->set_req(_slow_path, i_o());
result_mem ->set_req(_slow_path, reset_memory());
}
// Return the combined state.
set_control( _gvn.transform(result_reg));
set_i_o( _gvn.transform(result_i_o));
set_all_memory( _gvn.transform(result_mem));
} // original reexecute is set back here
set_result(_gvn.transform(result_val));
return true;
}
// If we have a tighly coupled allocation, the arraycopy may take care
// of the array initialization. If one of the guards we insert between
// the allocation and the arraycopy causes a deoptimization, an
// unitialized array will escape the compiled method. To prevent that
// we set the JVM state for uncommon traps between the allocation and
// the arraycopy to the state before the allocation so, in case of
// deoptimization, we'll reexecute the allocation and the
// initialization.
JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
if (alloc != NULL) {
ciMethod* trap_method = alloc->jvms()->method();
int trap_bci = alloc->jvms()->bci();
if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
// Make sure there's no store between the allocation and the
// arraycopy otherwise visible side effects could be rexecuted
// in case of deoptimization and cause incorrect execution.
bool no_interfering_store = true;
Node* mem = alloc->in(TypeFunc::Memory);
if (mem->is_MergeMem()) {
for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
Node* n = mms.memory();
if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
assert(n->is_Store(), "what else?");
no_interfering_store = false;
break;
}
}
} else {
for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
Node* n = mms.memory();
if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
assert(n->is_Store(), "what else?");
no_interfering_store = false;
break;
}
}
}
if (no_interfering_store) {
JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
uint size = alloc->req();
SafePointNode* sfpt = new SafePointNode(size, old_jvms);
old_jvms->set_map(sfpt);
for (uint i = 0; i < size; i++) {
sfpt->init_req(i, alloc->in(i));
}
// re-push array length for deoptimization
sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
old_jvms->set_sp(old_jvms->sp()+1);
old_jvms->set_monoff(old_jvms->monoff()+1);
old_jvms->set_scloff(old_jvms->scloff()+1);
old_jvms->set_endoff(old_jvms->endoff()+1);
old_jvms->set_should_reexecute(true);
sfpt->set_i_o(map()->i_o());
sfpt->set_memory(map()->memory());
sfpt->set_control(map()->control());
JVMState* saved_jvms = jvms();
saved_reexecute_sp = _reexecute_sp;
set_jvms(sfpt->jvms());
_reexecute_sp = jvms()->sp();
return saved_jvms;
}
}
}
return NULL;
}
// In case of a deoptimization, we restart execution at the
// allocation, allocating a new array. We would leave an uninitialized
// array in the heap that GCs wouldn't expect. Move the allocation
// after the traps so we don't allocate the array if we
// deoptimize. This is possible because tightly_coupled_allocation()
// guarantees there's no observer of the allocated array at this point
// and the control flow is simple enough.
void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
int saved_reexecute_sp, uint new_idx) {
if (saved_jvms != NULL && !stopped()) {
assert(alloc != NULL, "only with a tightly coupled allocation");
// restore JVM state to the state at the arraycopy
saved_jvms->map()->set_control(map()->control());
assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
// If we've improved the types of some nodes (null check) while
// emitting the guards, propagate them to the current state
map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
set_jvms(saved_jvms);
_reexecute_sp = saved_reexecute_sp;
// Remove the allocation from above the guards
CallProjections callprojs;
alloc->extract_projections(&callprojs, true);
InitializeNode* init = alloc->initialization();
Node* alloc_mem = alloc->in(TypeFunc::Memory);
C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
// move the allocation here (after the guards)
_gvn.hash_delete(alloc);
alloc->set_req(TypeFunc::Control, control());
alloc->set_req(TypeFunc::I_O, i_o());
Node *mem = reset_memory();
set_all_memory(mem);
alloc->set_req(TypeFunc::Memory, mem);
set_control(init->proj_out(TypeFunc::Control));
set_i_o(callprojs.fallthrough_ioproj);
// Update memory as done in GraphKit::set_output_for_allocation()
const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
if (ary_type->isa_aryptr() && length_type != NULL) {
ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
}
const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
int elemidx = C->get_alias_index(telemref);
set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
set_memory(init->proj_out(TypeFunc::Memory), elemidx);
Node* allocx = _gvn.transform(alloc);
assert(allocx == alloc, "where has the allocation gone?");
assert(dest->is_CheckCastPP(), "not an allocation result?");
_gvn.hash_delete(dest);
dest->set_req(0, control());
Node* destx = _gvn.transform(dest);
assert(destx == dest, "where has the allocation result gone?");
}
}
//------------------------------inline_arraycopy-----------------------
// public static native void java.lang.System.arraycopy(Object src, int srcPos,
// Object dest, int destPos,
// int length);
bool LibraryCallKit::inline_arraycopy() {
// Get the arguments.
Node* src = argument(0); // type: oop
Node* src_offset = argument(1); // type: int
Node* dest = argument(2); // type: oop
Node* dest_offset = argument(3); // type: int
Node* length = argument(4); // type: int
uint new_idx = C->unique();
// Check for allocation before we add nodes that would confuse
// tightly_coupled_allocation()
AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
int saved_reexecute_sp = -1;
JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
// See arraycopy_restore_alloc_state() comment
// if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
// if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
// if saved_jvms == NULL and alloc != NULL, we can't emit any guards
bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
// The following tests must be performed
// (1) src and dest are arrays.
// (2) src and dest arrays must have elements of the same BasicType
// (3) src and dest must not be null.
// (4) src_offset must not be negative.
// (5) dest_offset must not be negative.
// (6) length must not be negative.
// (7) src_offset + length must not exceed length of src.
// (8) dest_offset + length must not exceed length of dest.
// (9) each element of an oop array must be assignable
// (3) src and dest must not be null.
// always do this here because we need the JVM state for uncommon traps
Node* null_ctl = top();
src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
assert(null_ctl->is_top(), "no null control here");
dest = null_check(dest, T_ARRAY);
if (!can_emit_guards) {
// if saved_jvms == NULL and alloc != NULL, we don't emit any
// guards but the arraycopy node could still take advantage of a
// tightly allocated allocation. tightly_coupled_allocation() is
// called again to make sure it takes the null check above into
// account: the null check is mandatory and if it caused an
// uncommon trap to be emitted then the allocation can't be
// considered tightly coupled in this context.
alloc = tightly_coupled_allocation(dest, NULL);
}
bool validated = false;
const Type* src_type = _gvn.type(src);
const Type* dest_type = _gvn.type(dest);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
// Do we have the type of src?
bool has_src = (top_src != NULL && top_src->klass() != NULL);
// Do we have the type of dest?
bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
// Is the type for src from speculation?
bool src_spec = false;
// Is the type for dest from speculation?
bool dest_spec = false;
if ((!has_src || !has_dest) && can_emit_guards) {
// We don't have sufficient type information, let's see if
// speculative types can help. We need to have types for both src
// and dest so that it pays off.
// Do we already have or could we have type information for src
bool could_have_src = has_src;
// Do we already have or could we have type information for dest
bool could_have_dest = has_dest;
ciKlass* src_k = NULL;
if (!has_src) {
src_k = src_type->speculative_type_not_null();
if (src_k != NULL && src_k->is_array_klass()) {
could_have_src = true;
}
}
ciKlass* dest_k = NULL;
if (!has_dest) {
dest_k = dest_type->speculative_type_not_null();
if (dest_k != NULL && dest_k->is_array_klass()) {
could_have_dest = true;
}
}
if (could_have_src && could_have_dest) {
// This is going to pay off so emit the required guards
if (!has_src) {
src = maybe_cast_profiled_obj(src, src_k, true);
src_type = _gvn.type(src);
top_src = src_type->isa_aryptr();
has_src = (top_src != NULL && top_src->klass() != NULL);
src_spec = true;
}
if (!has_dest) {
dest = maybe_cast_profiled_obj(dest, dest_k, true);
dest_type = _gvn.type(dest);
top_dest = dest_type->isa_aryptr();
has_dest = (top_dest != NULL && top_dest->klass() != NULL);
dest_spec = true;
}
}
}
if (has_src && has_dest && can_emit_guards) {
BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem == T_ARRAY) src_elem = T_OBJECT;
if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
if (src_elem == dest_elem && src_elem == T_OBJECT) {
// If both arrays are object arrays then having the exact types
// for both will remove the need for a subtype check at runtime
// before the call and may make it possible to pick a faster copy
// routine (without a subtype check on every element)
// Do we have the exact type of src?
bool could_have_src = src_spec;
// Do we have the exact type of dest?
bool could_have_dest = dest_spec;
ciKlass* src_k = top_src->klass();
ciKlass* dest_k = top_dest->klass();
if (!src_spec) {
src_k = src_type->speculative_type_not_null();
if (src_k != NULL && src_k->is_array_klass()) {
could_have_src = true;
}
}
if (!dest_spec) {
dest_k = dest_type->speculative_type_not_null();
if (dest_k != NULL && dest_k->is_array_klass()) {
could_have_dest = true;
}
}
if (could_have_src && could_have_dest) {
// If we can have both exact types, emit the missing guards
if (could_have_src && !src_spec) {
src = maybe_cast_profiled_obj(src, src_k, true);
}
if (could_have_dest && !dest_spec) {
dest = maybe_cast_profiled_obj(dest, dest_k, true);
}
}
}
}
ciMethod* trap_method = method();
int trap_bci = bci();
if (saved_jvms != NULL) {
trap_method = alloc->jvms()->method();
trap_bci = alloc->jvms()->bci();
}
bool negative_length_guard_generated = false;
if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
can_emit_guards &&
!src->is_top() && !dest->is_top()) {
// validate arguments: enables transformation the ArrayCopyNode
validated = true;
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
// (1) src and dest are arrays.
generate_non_array_guard(load_object_klass(src), slow_region);
generate_non_array_guard(load_object_klass(dest), slow_region);
// (2) src and dest arrays must have elements of the same BasicType
// done at macro expansion or at Ideal transformation time
// (4) src_offset must not be negative.
generate_negative_guard(src_offset, slow_region);
// (5) dest_offset must not be negative.
generate_negative_guard(dest_offset, slow_region);
// (7) src_offset + length must not exceed length of src.
generate_limit_guard(src_offset, length,
load_array_length(src),
slow_region);
// (8) dest_offset + length must not exceed length of dest.
generate_limit_guard(dest_offset, length,
load_array_length(dest),
slow_region);
// (6) length must not be negative.
// This is also checked in generate_arraycopy() during macro expansion, but
// we also have to check it here for the case where the ArrayCopyNode will
// be eliminated by Escape Analysis.
if (EliminateAllocations) {
generate_negative_guard(length, slow_region);
negative_length_guard_generated = true;
}
// (9) each element of an oop array must be assignable
Node* src_klass = load_object_klass(src);
Node* dest_klass = load_object_klass(dest);
Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
if (not_subtype_ctrl != top()) {
PreserveJVMState pjvms(this);
set_control(not_subtype_ctrl);
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
assert(stopped(), "Should be stopped");
}
{
PreserveJVMState pjvms(this);
set_control(_gvn.transform(slow_region));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
assert(stopped(), "Should be stopped");
}
const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
}
arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
if (stopped()) {
return true;
}
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
// Create LoadRange and LoadKlass nodes for use during macro expansion here
// so the compiler has a chance to eliminate them: during macro expansion,
// we have to set their control (CastPP nodes are eliminated).
load_object_klass(src), load_object_klass(dest),
load_array_length(src), load_array_length(dest));
ac->set_arraycopy(validated);
Node* n = _gvn.transform(ac);
if (n == ac) {
ac->connect_outputs(this);
} else {
assert(validated, "shouldn't transform if all arguments not validated");
set_all_memory(n);
}
return true;
}
// Helper function which determines if an arraycopy immediately follows
// an allocation, with no intervening tests or other escapes for the object.
AllocateArrayNode*
LibraryCallKit::tightly_coupled_allocation(Node* ptr,
RegionNode* slow_region) {
if (stopped()) return NULL; // no fast path
if (C->AliasLevel() == 0) return NULL; // no MergeMems around
AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
if (alloc == NULL) return NULL;
Node* rawmem = memory(Compile::AliasIdxRaw);
// Is the allocation's memory state untouched?
if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
// Bail out if there have been raw-memory effects since the allocation.
// (Example: There might have been a call or safepoint.)
return NULL;
}
rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
return NULL;
}
// There must be no unexpected observers of this allocation.
for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
Node* obs = ptr->fast_out(i);
if (obs != this->map()) {
return NULL;
}
}
// This arraycopy must unconditionally follow the allocation of the ptr.
Node* alloc_ctl = ptr->in(0);
assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
Node* ctl = control();
while (ctl != alloc_ctl) {
// There may be guards which feed into the slow_region.
// Any other control flow means that we might not get a chance
// to finish initializing the allocated object.
if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
IfNode* iff = ctl->in(0)->as_If();
Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
ctl = iff->in(0); // This test feeds the known slow_region.
continue;
}
// One more try: Various low-level checks bottom out in
// uncommon traps. If the debug-info of the trap omits
// any reference to the allocation, as we've already
// observed, then there can be no objection to the trap.
bool found_trap = false;
for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
Node* obs = not_ctl->fast_out(j);
if (obs->in(0) == not_ctl && obs->is_Call() &&
(obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
found_trap = true; break;
}
}
if (found_trap) {
ctl = iff->in(0); // This test feeds a harmless uncommon trap.
continue;
}
}
return NULL;
}
// If we get this far, we have an allocation which immediately
// precedes the arraycopy, and we can take over zeroing the new object.
// The arraycopy will finish the initialization, and provide
// a new control state to which we will anchor the destination pointer.
return alloc;
}
//-------------inline_encodeISOArray-----------------------------------
// encode char[] to byte[] in ISO_8859_1
bool LibraryCallKit::inline_encodeISOArray() {
assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
// no receiver since it is static method
Node *src = argument(0);
Node *src_offset = argument(1);
Node *dst = argument(2);
Node *dst_offset = argument(3);
Node *length = argument(4);
const Type* src_type = src->Value(&_gvn);
const Type* dst_type = dst->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dst_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL ||
top_dest == NULL || top_dest->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
return false;
}
Node* src_start = array_element_address(src, src_offset, T_CHAR);
Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
// 'src_start' points to src array + scaled offset
// 'dst_start' points to dst array + scaled offset
const TypeAryPtr* mtype = TypeAryPtr::BYTES;
Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
enc = _gvn.transform(enc);
Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
set_memory(res_mem, mtype);
set_result(enc);
return true;
}
//-------------inline_multiplyToLen-----------------------------------
bool LibraryCallKit::inline_multiplyToLen() {
assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
address stubAddr = StubRoutines::multiplyToLen();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
const char* stubName = "multiplyToLen";
assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
// no receiver because it is a static method
Node* x = argument(0);
Node* xlen = argument(1);
Node* y = argument(2);
Node* ylen = argument(3);
Node* z = argument(4);
const Type* x_type = x->Value(&_gvn);
const Type* y_type = y->Value(&_gvn);
const TypeAryPtr* top_x = x_type->isa_aryptr();
const TypeAryPtr* top_y = y_type->isa_aryptr();
if (top_x == NULL || top_x->klass() == NULL ||
top_y == NULL || top_y->klass() == NULL) {
// failed array check
return false;
}
BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (x_elem != T_INT || y_elem != T_INT) {
return false;
}
// Set the original stack and the reexecute bit for the interpreter to reexecute
// the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
// on the return from z array allocation in runtime.
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
Node* x_start = array_element_address(x, intcon(0), x_elem);
Node* y_start = array_element_address(y, intcon(0), y_elem);
// 'x_start' points to x array + scaled xlen
// 'y_start' points to y array + scaled ylen
// Allocate the result array
Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
ciKlass* klass = ciTypeArrayKlass::make(T_INT);
Node* klass_node = makecon(TypeKlassPtr::make(klass));
IdealKit ideal(this);
#define __ ideal.
Node* one = __ ConI(1);
Node* zero = __ ConI(0);
IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done();
__ set(need_alloc, zero);
__ set(z_alloc, z);
__ if_then(z, BoolTest::eq, null()); {
__ increment (need_alloc, one);
} __ else_(); {
// Update graphKit memory and control from IdealKit.
sync_kit(ideal);
Node* zlen_arg = load_array_length(z);
// Update IdealKit memory and control from graphKit.
__ sync_kit(this);
__ if_then(zlen_arg, BoolTest::lt, zlen); {
__ increment (need_alloc, one);
} __ end_if();
} __ end_if();
__ if_then(__ value(need_alloc), BoolTest::ne, zero); {
// Update graphKit memory and control from IdealKit.
sync_kit(ideal);
Node * narr = new_array(klass_node, zlen, 1);
// Update IdealKit memory and control from graphKit.
__ sync_kit(this);
__ set(z_alloc, narr);
} __ end_if();
sync_kit(ideal);
z = __ value(z_alloc);
// Can't use TypeAryPtr::INTS which uses Bottom offset.
_gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
// Final sync IdealKit and GraphKit.
final_sync(ideal);
#undef __
Node* z_start = array_element_address(z, intcon(0), T_INT);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::multiplyToLen_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
x_start, xlen, y_start, ylen, z_start, zlen);
} // original reexecute is set back here
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(z);
return true;
}
//-------------inline_squareToLen------------------------------------
bool LibraryCallKit::inline_squareToLen() {
assert(UseSquareToLenIntrinsic, "not implemented on this platform");
address stubAddr = StubRoutines::squareToLen();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
const char* stubName = "squareToLen";
assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
Node* x = argument(0);
Node* len = argument(1);
Node* z = argument(2);
Node* zlen = argument(3);
const Type* x_type = x->Value(&_gvn);
const Type* z_type = z->Value(&_gvn);
const TypeAryPtr* top_x = x_type->isa_aryptr();
const TypeAryPtr* top_z = z_type->isa_aryptr();
if (top_x == NULL || top_x->klass() == NULL ||
top_z == NULL || top_z->klass() == NULL) {
// failed array check
return false;
}
BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (x_elem != T_INT || z_elem != T_INT) {
return false;
}
Node* x_start = array_element_address(x, intcon(0), x_elem);
Node* z_start = array_element_address(z, intcon(0), z_elem);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::squareToLen_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
x_start, len, z_start, zlen);
set_result(z);
return true;
}
//-------------inline_mulAdd------------------------------------------
bool LibraryCallKit::inline_mulAdd() {
assert(UseMulAddIntrinsic, "not implemented on this platform");
address stubAddr = StubRoutines::mulAdd();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
const char* stubName = "mulAdd";
assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
Node* out = argument(0);
Node* in = argument(1);
Node* offset = argument(2);
Node* len = argument(3);
Node* k = argument(4);
const Type* out_type = out->Value(&_gvn);
const Type* in_type = in->Value(&_gvn);
const TypeAryPtr* top_out = out_type->isa_aryptr();
const TypeAryPtr* top_in = in_type->isa_aryptr();
if (top_out == NULL || top_out->klass() == NULL ||
top_in == NULL || top_in->klass() == NULL) {
// failed array check
return false;
}
BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (out_elem != T_INT || in_elem != T_INT) {
return false;
}
Node* outlen = load_array_length(out);
Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
Node* out_start = array_element_address(out, intcon(0), out_elem);
Node* in_start = array_element_address(in, intcon(0), in_elem);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::mulAdd_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
out_start,in_start, new_offset, len, k);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//-------------inline_montgomeryMultiply-----------------------------------
bool LibraryCallKit::inline_montgomeryMultiply() {
address stubAddr = StubRoutines::montgomeryMultiply();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
const char* stubName = "montgomery_multiply";
assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
Node* a = argument(0);
Node* b = argument(1);
Node* n = argument(2);
Node* len = argument(3);
Node* inv = argument(4);
Node* m = argument(6);
const Type* a_type = a->Value(&_gvn);
const TypeAryPtr* top_a = a_type->isa_aryptr();
const Type* b_type = b->Value(&_gvn);
const TypeAryPtr* top_b = b_type->isa_aryptr();
const Type* n_type = a->Value(&_gvn);
const TypeAryPtr* top_n = n_type->isa_aryptr();
const Type* m_type = a->Value(&_gvn);
const TypeAryPtr* top_m = m_type->isa_aryptr();
if (top_a == NULL || top_a->klass() == NULL ||
top_b == NULL || top_b->klass() == NULL ||
top_n == NULL || top_n->klass() == NULL ||
top_m == NULL || top_m->klass() == NULL) {
// failed array check
return false;
}
BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
return false;
}
// Make the call
{
Node* a_start = array_element_address(a, intcon(0), a_elem);
Node* b_start = array_element_address(b, intcon(0), b_elem);
Node* n_start = array_element_address(n, intcon(0), n_elem);
Node* m_start = array_element_address(m, intcon(0), m_elem);
Node* call = make_runtime_call(RC_LEAF,
OptoRuntime::montgomeryMultiply_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
a_start, b_start, n_start, len, inv, top(),
m_start);
set_result(m);
}
return true;
}
bool LibraryCallKit::inline_montgomerySquare() {
address stubAddr = StubRoutines::montgomerySquare();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
const char* stubName = "montgomery_square";
assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
Node* a = argument(0);
Node* n = argument(1);
Node* len = argument(2);
Node* inv = argument(3);
Node* m = argument(5);
const Type* a_type = a->Value(&_gvn);
const TypeAryPtr* top_a = a_type->isa_aryptr();
const Type* n_type = a->Value(&_gvn);
const TypeAryPtr* top_n = n_type->isa_aryptr();
const Type* m_type = a->Value(&_gvn);
const TypeAryPtr* top_m = m_type->isa_aryptr();
if (top_a == NULL || top_a->klass() == NULL ||
top_n == NULL || top_n->klass() == NULL ||
top_m == NULL || top_m->klass() == NULL) {
// failed array check
return false;
}
BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
return false;
}
// Make the call
{
Node* a_start = array_element_address(a, intcon(0), a_elem);
Node* n_start = array_element_address(n, intcon(0), n_elem);
Node* m_start = array_element_address(m, intcon(0), m_elem);
Node* call = make_runtime_call(RC_LEAF,
OptoRuntime::montgomerySquare_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
a_start, n_start, len, inv, top(),
m_start);
set_result(m);
}
return true;
}
//-------------inline_vectorizedMismatch------------------------------
bool LibraryCallKit::inline_vectorizedMismatch() {
assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
address stubAddr = StubRoutines::vectorizedMismatch();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
const char* stubName = "vectorizedMismatch";
int size_l = callee()->signature()->size();
assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
Node* obja = argument(0);
Node* aoffset = argument(1);
Node* objb = argument(3);
Node* boffset = argument(4);
Node* length = argument(6);
Node* scale = argument(7);
const Type* a_type = obja->Value(&_gvn);
const Type* b_type = objb->Value(&_gvn);
const TypeAryPtr* top_a = a_type->isa_aryptr();
const TypeAryPtr* top_b = b_type->isa_aryptr();
if (top_a == NULL || top_a->klass() == NULL ||
top_b == NULL || top_b->klass() == NULL) {
// failed array check
return false;
}
Node* call;
jvms()->set_should_reexecute(true);
Node* obja_adr = make_unsafe_address(obja, aoffset);
Node* objb_adr = make_unsafe_address(objb, boffset);
call = make_runtime_call(RC_LEAF,
OptoRuntime::vectorizedMismatch_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
obja_adr, objb_adr, length, scale);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
/**
* Calculate CRC32 for byte.
* int java.util.zip.CRC32.update(int crc, int b)
*/
bool LibraryCallKit::inline_updateCRC32() {
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
assert(callee()->signature()->size() == 2, "update has 2 parameters");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* b = argument(1); // type: int
/*
* int c = ~ crc;
* b = timesXtoThe32[(b ^ c) & 0xFF];
* b = b ^ (c >>> 8);
* crc = ~b;
*/
Node* M1 = intcon(-1);
crc = _gvn.transform(new XorINode(crc, M1));
Node* result = _gvn.transform(new XorINode(crc, b));
result = _gvn.transform(new AndINode(result, intcon(0xFF)));
Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
result = _gvn.transform(new XorINode(crc, result));
result = _gvn.transform(new XorINode(result, M1));
set_result(result);
return true;
}
/**
* Calculate CRC32 for byte[] array.
* int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
*/
bool LibraryCallKit::inline_updateBytesCRC32() {
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: oop
Node* offset = argument(2); // type: int
Node* length = argument(3); // type: int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + scaled offset
Node* src_start = array_element_address(src, offset, src_elem);
// We assume that range check is done by caller.
// TODO: generate range check (offset+length < src.length) in debug VM.
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32();
const char *stubName = "updateBytesCRC32";
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
/**
* Calculate CRC32 for ByteBuffer.
* int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
*/
bool LibraryCallKit::inline_updateByteBufferCRC32() {
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: long
Node* offset = argument(3); // type: int
Node* length = argument(4); // type: int
src = ConvL2X(src); // adjust Java long to machine word
Node* base = _gvn.transform(new CastX2PNode(src));
offset = ConvI2X(offset);
// 'src_start' points to src array + scaled offset
Node* src_start = basic_plus_adr(top(), base, offset);
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32();
const char *stubName = "updateBytesCRC32";
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------get_table_from_crc32c_class-----------------------
Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
assert (table != NULL, "wrong version of java.util.zip.CRC32C");
return table;
}
//------------------------------inline_updateBytesCRC32C-----------------------
//
// Calculate CRC32C for byte[] array.
// int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
//
bool LibraryCallKit::inline_updateBytesCRC32C() {
assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
// no receiver since it is a static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: oop
Node* offset = argument(2); // type: int
Node* end = argument(3); // type: int
Node* length = _gvn.transform(new SubINode(end, offset));
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + scaled offset
Node* src_start = array_element_address(src, offset, src_elem);
// static final int[] byteTable in class CRC32C
Node* table = get_table_from_crc32c_class(callee()->holder());
Node* table_start = array_element_address(table, intcon(0), T_INT);
// We assume that range check is done by caller.
// TODO: generate range check (offset+length < src.length) in debug VM.
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32C();
const char *stubName = "updateBytesCRC32C";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length, table_start);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------inline_updateDirectByteBufferCRC32C-----------------------
//
// Calculate CRC32C for DirectByteBuffer.
// int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
//
bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
// no receiver since it is a static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: long
Node* offset = argument(3); // type: int
Node* end = argument(4); // type: int
Node* length = _gvn.transform(new SubINode(end, offset));
src = ConvL2X(src); // adjust Java long to machine word
Node* base = _gvn.transform(new CastX2PNode(src));
offset = ConvI2X(offset);
// 'src_start' points to src array + scaled offset
Node* src_start = basic_plus_adr(top(), base, offset);
// static final int[] byteTable in class CRC32C
Node* table = get_table_from_crc32c_class(callee()->holder());
Node* table_start = array_element_address(table, intcon(0), T_INT);
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32C();
const char *stubName = "updateBytesCRC32C";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length, table_start);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------inline_updateBytesAdler32----------------------
//
// Calculate Adler32 checksum for byte[] array.
// int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
//
bool LibraryCallKit::inline_updateBytesAdler32() {
assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: oop
Node* offset = argument(2); // type: int
Node* length = argument(3); // type: int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + scaled offset
Node* src_start = array_element_address(src, offset, src_elem);
// We assume that range check is done by caller.
// TODO: generate range check (offset+length < src.length) in debug VM.
// Call the stub.
address stubAddr = StubRoutines::updateBytesAdler32();
const char *stubName = "updateBytesAdler32";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------inline_updateByteBufferAdler32---------------
//
// Calculate Adler32 checksum for DirectByteBuffer.
// int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
//
bool LibraryCallKit::inline_updateByteBufferAdler32() {
assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: long
Node* offset = argument(3); // type: int
Node* length = argument(4); // type: int
src = ConvL2X(src); // adjust Java long to machine word
Node* base = _gvn.transform(new CastX2PNode(src));
offset = ConvI2X(offset);
// 'src_start' points to src array + scaled offset
Node* src_start = basic_plus_adr(top(), base, offset);
// Call the stub.
address stubAddr = StubRoutines::updateBytesAdler32();
const char *stubName = "updateBytesAdler32";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//----------------------------inline_reference_get----------------------------
// public T java.lang.ref.Reference.get();
bool LibraryCallKit::inline_reference_get() {
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "should have already been set");
// Get the argument:
Node* reference_obj = null_check_receiver();
if (stopped()) return true;
Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
ciInstanceKlass* klass = env()->Object_klass();
const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
Node* no_ctrl = NULL;
Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
// Use the pre-barrier to record the value in the referent field
pre_barrier(false /* do_load */,
control(),
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
result /* pre_val */,
T_OBJECT);
// Add memory barrier to prevent commoning reads from this field
// across safepoint since GC can change its value.
insert_mem_bar(Op_MemBarCPUOrder);
set_result(result);
return true;
}
Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
bool is_exact=true, bool is_static=false,
ciInstanceKlass * fromKls=NULL) {
if (fromKls == NULL) {
const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
assert(tinst != NULL, "obj is null");
assert(tinst->klass()->is_loaded(), "obj is not loaded");
assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
fromKls = tinst->klass()->as_instance_klass();
} else {
assert(is_static, "only for static field access");
}
ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
ciSymbol::make(fieldTypeString),
is_static);
assert (field != NULL, "undefined field");
if (field == NULL) return (Node *) NULL;
if (is_static) {
const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
fromObj = makecon(tip);
}
// Next code copied from Parse::do_get_xxx():
// Compute address and memory type.
int offset = field->offset_in_bytes();
bool is_vol = field->is_volatile();
ciType* field_klass = field->type();
assert(field_klass->is_loaded(), "should be loaded");
const TypePtr* adr_type = C->alias_type(field)->adr_type();
Node *adr = basic_plus_adr(fromObj, fromObj, offset);
BasicType bt = field->layout_type();
// Build the resultant type of the load
const Type *type;
if (bt == T_OBJECT) {
type = TypeOopPtr::make_from_klass(field_klass->as_klass());
} else {
type = Type::get_const_basic_type(bt);
}
if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
insert_mem_bar(Op_MemBarVolatile); // StoreLoad barrier
}
// Build the load.
MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
// If reference is volatile, prevent following memory ops from
// floating up past the volatile read. Also prevents commoning
// another volatile read.
if (is_vol) {
// Memory barrier includes bogus read of value to force load BEFORE membar
insert_mem_bar(Op_MemBarAcquire, loadedField);
}
return loadedField;
}
Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
bool is_exact = true, bool is_static = false,
ciInstanceKlass * fromKls = NULL) {
if (fromKls == NULL) {
const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
assert(tinst != NULL, "obj is null");
assert(tinst->klass()->is_loaded(), "obj is not loaded");
assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
fromKls = tinst->klass()->as_instance_klass();
}
else {
assert(is_static, "only for static field access");
}
ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
ciSymbol::make(fieldTypeString),
is_static);
assert(field != NULL, "undefined field");
assert(!field->is_volatile(), "not defined for volatile fields");
if (is_static) {
const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
fromObj = makecon(tip);
}
// Next code copied from Parse::do_get_xxx():
// Compute address and memory type.
int offset = field->offset_in_bytes();
Node *adr = basic_plus_adr(fromObj, fromObj, offset);
return adr;
}
//------------------------------inline_aescrypt_Block-----------------------
bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
address stubAddr = NULL;
const char *stubName;
assert(UseAES, "need AES instruction support");
switch(id) {
case vmIntrinsics::_aescrypt_encryptBlock:
stubAddr = StubRoutines::aescrypt_encryptBlock();
stubName = "aescrypt_encryptBlock";
break;
case vmIntrinsics::_aescrypt_decryptBlock:
stubAddr = StubRoutines::aescrypt_decryptBlock();
stubName = "aescrypt_decryptBlock";
break;
}
if (stubAddr == NULL) return false;
Node* aescrypt_object = argument(0);
Node* src = argument(1);
Node* src_offset = argument(2);
Node* dest = argument(3);
Node* dest_offset = argument(4);
// (1) src and dest are arrays.
const Type* src_type = src->Value(&_gvn);
const Type* dest_type = dest->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
// for the quick and dirty code we will skip all the checks.
// we are just trying to get the call to be generated.
Node* src_start = src;
Node* dest_start = dest;
if (src_offset != NULL || dest_offset != NULL) {
assert(src_offset != NULL && dest_offset != NULL, "");
src_start = array_element_address(src, src_offset, T_BYTE);
dest_start = array_element_address(dest, dest_offset, T_BYTE);
}
// now need to get the start of its expanded key array
// this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
if (k_start == NULL) return false;
if (Matcher::pass_original_key_for_aes()) {
// on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
// compatibility issues between Java key expansion and SPARC crypto instructions
Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
if (original_k_start == NULL) return false;
// Call the stub.
make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start, original_k_start);
} else {
// Call the stub.
make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start);
}
return true;
}
//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
address stubAddr = NULL;
const char *stubName = NULL;
assert(UseAES, "need AES instruction support");
switch(id) {
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
stubName = "cipherBlockChaining_encryptAESCrypt";
break;
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
stubName = "cipherBlockChaining_decryptAESCrypt";
break;
}
if (stubAddr == NULL) return false;
Node* cipherBlockChaining_object = argument(0);
Node* src = argument(1);
Node* src_offset = argument(2);
Node* len = argument(3);
Node* dest = argument(4);
Node* dest_offset = argument(5);
// (1) src and dest are arrays.
const Type* src_type = src->Value(&_gvn);
const Type* dest_type = dest->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
assert (top_src != NULL && top_src->klass() != NULL
&& top_dest != NULL && top_dest->klass() != NULL, "args are strange");
// checks are the responsibility of the caller
Node* src_start = src;
Node* dest_start = dest;
if (src_offset != NULL || dest_offset != NULL) {
assert(src_offset != NULL && dest_offset != NULL, "");
src_start = array_element_address(src, src_offset, T_BYTE);
dest_start = array_element_address(dest, dest_offset, T_BYTE);
}
// if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
// (because of the predicated logic executed earlier).
// so we cast it here safely.
// this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
if (embeddedCipherObj == NULL) return false;
// cast it to what we know it will be at runtime
const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
assert(tinst != NULL, "CBC obj is null");
assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
const TypeOopPtr* xtype = aklass->as_instance_type();
Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
aescrypt_object = _gvn.transform(aescrypt_object);
// we need to get the start of the aescrypt_object's expanded key array
Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
if (k_start == NULL) return false;
// similarly, get the start address of the r vector
Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
if (objRvec == NULL) return false;
Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
Node* cbcCrypt;
if (Matcher::pass_original_key_for_aes()) {
// on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
// compatibility issues between Java key expansion and SPARC crypto instructions
Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
if (original_k_start == NULL) return false;
// Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::cipherBlockChaining_aescrypt_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start, r_start, len, original_k_start);
} else {
// Call the stub, passing src_start, dest_start, k_start, r_start and src_len
cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::cipherBlockChaining_aescrypt_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start, r_start, len);
}
// return cipher length (int)
Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
set_result(retvalue);
return true;
}
//------------------------------inline_counterMode_AESCrypt-----------------------
bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
assert(UseAES, "need AES instruction support");
if (!UseAESCTRIntrinsics) return false;
address stubAddr = NULL;
const char *stubName = NULL;
if (id == vmIntrinsics::_counterMode_AESCrypt) {
stubAddr = StubRoutines::counterMode_AESCrypt();
stubName = "counterMode_AESCrypt";
}
if (stubAddr == NULL) return false;
Node* counterMode_object = argument(0);
Node* src = argument(1);
Node* src_offset = argument(2);
Node* len = argument(3);
Node* dest = argument(4);
Node* dest_offset = argument(5);
// (1) src and dest are arrays.
const Type* src_type = src->Value(&_gvn);
const Type* dest_type = dest->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
assert(top_src != NULL && top_src->klass() != NULL &&
top_dest != NULL && top_dest->klass() != NULL, "args are strange");
// checks are the responsibility of the caller
Node* src_start = src;
Node* dest_start = dest;
if (src_offset != NULL || dest_offset != NULL) {
assert(src_offset != NULL && dest_offset != NULL, "");
src_start = array_element_address(src, src_offset, T_BYTE);
dest_start = array_element_address(dest, dest_offset, T_BYTE);
}
// if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
// (because of the predicated logic executed earlier).
// so we cast it here safely.
// this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
if (embeddedCipherObj == NULL) return false;
// cast it to what we know it will be at runtime
const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
assert(tinst != NULL, "CTR obj is null");
assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
const TypeOopPtr* xtype = aklass->as_instance_type();
Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
aescrypt_object = _gvn.transform(aescrypt_object);
// we need to get the start of the aescrypt_object's expanded key array
Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
if (k_start == NULL) return false;
// similarly, get the start address of the r vector
Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
if (obj_counter == NULL) return false;
Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
if (saved_encCounter == NULL) return false;
Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
Node* ctrCrypt;
if (Matcher::pass_original_key_for_aes()) {
// no SPARC version for AES/CTR intrinsics now.
return false;
}
// Call the stub, passing src_start, dest_start, k_start, r_start and src_len
ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::counterMode_aescrypt_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
// return cipher length (int)
Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
set_result(retvalue);
return true;
}
//------------------------------get_key_start_from_aescrypt_object-----------------------
Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
#if defined(PPC64) || defined(S390)
// MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
// Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
// However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
// The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
if (objSessionK == NULL) {
return (Node *) NULL;
}
Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
#else
Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
#endif // PPC64
assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
if (objAESCryptKey == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the K array
Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
return k_start;
}
//------------------------------get_original_key_start_from_aescrypt_object-----------------------
Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
if (objAESCryptKey == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the lastKey array
Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
return original_k_start;
}
//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
// Return node representing slow path of predicate check.
// the pseudo code we want to emulate with this predicate is:
// for encryption:
// if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
// for decryption:
// if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
// note cipher==plain is more conservative than the original java code but that's OK
//
Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
// The receiver was checked for NULL already.
Node* objCBC = argument(0);
// Load embeddedCipher field of CipherBlockChaining object.
Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
// get AESCrypt klass for instanceOf check
// AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
// will have same classloader as CipherBlockChaining object
const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
assert(tinst != NULL, "CBCobj is null");
assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
// we want to do an instanceof comparison against the AESCrypt class
ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
if (!klass_AESCrypt->is_loaded()) {
// if AESCrypt is not even loaded, we never take the intrinsic fast path
Node* ctrl = control();
set_control(top()); // no regular fast path
return ctrl;
}
ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
// for encryption, we are done
if (!decrypting)
return instof_false; // even if it is NULL
// for decryption, we need to add a further check to avoid
// taking the intrinsic path when cipher and plain are the same
// see the original java code for why.
RegionNode* region = new RegionNode(3);
region->init_req(1, instof_false);
Node* src = argument(1);
Node* dest = argument(4);
Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
region->init_req(2, src_dest_conjoint);
record_for_igvn(region);
return _gvn.transform(region);
}
//----------------------------inline_counterMode_AESCrypt_predicate----------------------------
// Return node representing slow path of predicate check.
// the pseudo code we want to emulate with this predicate is:
// for encryption:
// if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
// for decryption:
// if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
// note cipher==plain is more conservative than the original java code but that's OK
//
Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
// The receiver was checked for NULL already.
Node* objCTR = argument(0);
// Load embeddedCipher field of CipherBlockChaining object.
Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
// get AESCrypt klass for instanceOf check
// AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
// will have same classloader as CipherBlockChaining object
const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
assert(tinst != NULL, "CTRobj is null");
assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
// we want to do an instanceof comparison against the AESCrypt class
ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
if (!klass_AESCrypt->is_loaded()) {
// if AESCrypt is not even loaded, we never take the intrinsic fast path
Node* ctrl = control();
set_control(top()); // no regular fast path
return ctrl;
}
ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
return instof_false; // even if it is NULL
}
//------------------------------inline_ghash_processBlocks
bool LibraryCallKit::inline_ghash_processBlocks() {
address stubAddr;
const char *stubName;
assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
stubAddr = StubRoutines::ghash_processBlocks();
stubName = "ghash_processBlocks";
Node* data = argument(0);
Node* offset = argument(1);
Node* len = argument(2);
Node* state = argument(3);
Node* subkeyH = argument(4);
Node* state_start = array_element_address(state, intcon(0), T_LONG);
assert(state_start, "state is NULL");
Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG);
assert(subkeyH_start, "subkeyH is NULL");
Node* data_start = array_element_address(data, offset, T_BYTE);
assert(data_start, "data is NULL");
Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::ghash_processBlocks_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
state_start, subkeyH_start, data_start, len);
return true;
}
//------------------------------inline_sha_implCompress-----------------------
//
// Calculate SHA (i.e., SHA-1) for single-block byte[] array.
// void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
//
// Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
// void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
//
// Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
// void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
//
bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
Node* sha_obj = argument(0);
Node* src = argument(1); // type oop
Node* ofs = argument(2); // type int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + offset
Node* src_start = array_element_address(src, ofs, src_elem);
Node* state = NULL;
address stubAddr;
const char *stubName;
switch(id) {
case vmIntrinsics::_sha_implCompress:
assert(UseSHA1Intrinsics, "need SHA1 instruction support");
state = get_state_from_sha_object(sha_obj);
stubAddr = StubRoutines::sha1_implCompress();
stubName = "sha1_implCompress";
break;
case vmIntrinsics::_sha2_implCompress:
assert(UseSHA256Intrinsics, "need SHA256 instruction support");
state = get_state_from_sha_object(sha_obj);
stubAddr = StubRoutines::sha256_implCompress();
stubName = "sha256_implCompress";
break;
case vmIntrinsics::_sha5_implCompress:
assert(UseSHA512Intrinsics, "need SHA512 instruction support");
state = get_state_from_sha5_object(sha_obj);
stubAddr = StubRoutines::sha512_implCompress();
stubName = "sha512_implCompress";
break;
default:
fatal_unexpected_iid(id);
return false;
}
if (state == NULL) return false;
// Call the stub.
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, state);
return true;
}
//------------------------------inline_digestBase_implCompressMB-----------------------
//
// Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
//
bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
"need SHA1/SHA256/SHA512 instruction support");
assert((uint)predicate < 3, "sanity");
assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
Node* src = argument(1); // byte[] array
Node* ofs = argument(2); // type int
Node* limit = argument(3); // type int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + offset
Node* src_start = array_element_address(src, ofs, src_elem);
const char* klass_SHA_name = NULL;
const char* stub_name = NULL;
address stub_addr = NULL;
bool long_state = false;
switch (predicate) {
case 0:
if (UseSHA1Intrinsics) {
klass_SHA_name = "sun/security/provider/SHA";
stub_name = "sha1_implCompressMB";
stub_addr = StubRoutines::sha1_implCompressMB();
}
break;
case 1:
if (UseSHA256Intrinsics) {
klass_SHA_name = "sun/security/provider/SHA2";
stub_name = "sha256_implCompressMB";
stub_addr = StubRoutines::sha256_implCompressMB();
}
break;
case 2:
if (UseSHA512Intrinsics) {
klass_SHA_name = "sun/security/provider/SHA5";
stub_name = "sha512_implCompressMB";
stub_addr = StubRoutines::sha512_implCompressMB();
long_state = true;
}
break;
default:
fatal("unknown SHA intrinsic predicate: %d", predicate);
}
if (klass_SHA_name != NULL) {
// get DigestBase klass to lookup for SHA klass
const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
assert(tinst != NULL, "digestBase_obj is not instance???");
assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
}
return false;
}
//------------------------------inline_sha_implCompressMB-----------------------
bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
bool long_state, address stubAddr, const char *stubName,
Node* src_start, Node* ofs, Node* limit) {
const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
const TypeOopPtr* xtype = aklass->as_instance_type();
Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
sha_obj = _gvn.transform(sha_obj);
Node* state;
if (long_state) {
state = get_state_from_sha5_object(sha_obj);
} else {
state = get_state_from_sha_object(sha_obj);
}
if (state == NULL) return false;
// Call the stub.
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::digestBase_implCompressMB_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, state, ofs, limit);
// return ofs (int)
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------get_state_from_sha_object-----------------------
Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
if (sha_state == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the state array
Node* state = array_element_address(sha_state, intcon(0), T_INT);
return state;
}
//------------------------------get_state_from_sha5_object-----------------------
Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
if (sha_state == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the state array
Node* state = array_element_address(sha_state, intcon(0), T_LONG);
return state;
}
//----------------------------inline_digestBase_implCompressMB_predicate----------------------------
// Return node representing slow path of predicate check.
// the pseudo code we want to emulate with this predicate is:
// if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
//
Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
"need SHA1/SHA256/SHA512 instruction support");
assert((uint)predicate < 3, "sanity");
// The receiver was checked for NULL already.
Node* digestBaseObj = argument(0);
// get DigestBase klass for instanceOf check
const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
assert(tinst != NULL, "digestBaseObj is null");
assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
const char* klass_SHA_name = NULL;
switch (predicate) {
case 0:
if (UseSHA1Intrinsics) {
// we want to do an instanceof comparison against the SHA class
klass_SHA_name = "sun/security/provider/SHA";
}
break;
case 1:
if (UseSHA256Intrinsics) {
// we want to do an instanceof comparison against the SHA2 class
klass_SHA_name = "sun/security/provider/SHA2";
}
break;
case 2:
if (UseSHA512Intrinsics) {
// we want to do an instanceof comparison against the SHA5 class
klass_SHA_name = "sun/security/provider/SHA5";
}
break;
default:
fatal("unknown SHA intrinsic predicate: %d", predicate);
}
ciKlass* klass_SHA = NULL;
if (klass_SHA_name != NULL) {
klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
}
if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
// if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
Node* ctrl = control();
set_control(top()); // no intrinsic path
return ctrl;
}
ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
return instof_false; // even if it is NULL
}
//-------------inline_fma-----------------------------------
bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
Node *a = NULL;
Node *b = NULL;
Node *c = NULL;
Node* result = NULL;
switch (id) {
case vmIntrinsics::_fmaD:
assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
// no receiver since it is static method
a = round_double_node(argument(0));
b = round_double_node(argument(2));
c = round_double_node(argument(4));
result = _gvn.transform(new FmaDNode(control(), a, b, c));
break;
case vmIntrinsics::_fmaF:
assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
a = argument(0);
b = argument(1);
c = argument(2);
result = _gvn.transform(new FmaFNode(control(), a, b, c));
break;
default:
fatal_unexpected_iid(id); break;
}
set_result(result);
return true;
}
bool LibraryCallKit::inline_profileBoolean() {
Node* counts = argument(1);
const TypeAryPtr* ary = NULL;
ciArray* aobj = NULL;
if (counts->is_Con()
&& (ary = counts->bottom_type()->isa_aryptr()) != NULL
&& (aobj = ary->const_oop()->as_array()) != NULL
&& (aobj->length() == 2)) {
// Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
jint false_cnt = aobj->element_value(0).as_int();
jint true_cnt = aobj->element_value(1).as_int();
if (C->log() != NULL) {
C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
false_cnt, true_cnt);
}
if (false_cnt + true_cnt == 0) {
// According to profile, never executed.
uncommon_trap_exact(Deoptimization::Reason_intrinsic,
Deoptimization::Action_reinterpret);
return true;
}
// result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
// is a number of each value occurrences.
Node* result = argument(0);
if (false_cnt == 0 || true_cnt == 0) {
// According to profile, one value has been never seen.
int expected_val = (false_cnt == 0) ? 1 : 0;
Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val)));
Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
Node* fast_path = _gvn.transform(new IfTrueNode(check));
Node* slow_path = _gvn.transform(new IfFalseNode(check));
{ // Slow path: uncommon trap for never seen value and then reexecute
// MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
// the value has been seen at least once.
PreserveJVMState pjvms(this);
PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
set_control(slow_path);
set_i_o(i_o());
uncommon_trap_exact(Deoptimization::Reason_intrinsic,
Deoptimization::Action_reinterpret);
}
// The guard for never seen value enables sharpening of the result and
// returning a constant. It allows to eliminate branches on the same value
// later on.
set_control(fast_path);
result = intcon(expected_val);
}
// Stop profiling.
// MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
// By replacing method body with profile data (represented as ProfileBooleanNode
// on IR level) we effectively disable profiling.
// It enables full speed execution once optimized code is generated.
Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
C->record_for_igvn(profile);
set_result(profile);
return true;
} else {
// Continue profiling.
// Profile data isn't available at the moment. So, execute method's bytecode version.
// Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
// is compiled and counters aren't available since corresponding MethodHandle
// isn't a compile-time constant.
return false;
}
}
bool LibraryCallKit::inline_isCompileConstant() {
Node* n = argument(0);
set_result(n->is_Con() ? intcon(1) : intcon(0));
return true;
}