blob: 680af27436f07157056a0fe2a1819bbf11cf5ce0 [file] [log] [blame]
/*
* Copyright (c) 2009, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.nodes.calc;
import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_1;
import static org.graalvm.compiler.nodeinfo.NodeSize.SIZE_1;
import java.io.Serializable;
import java.util.function.Function;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp;
import org.graalvm.compiler.core.common.type.Stamp;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.graph.Graph;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.iterators.NodePredicate;
import org.graalvm.compiler.graph.spi.Canonicalizable;
import org.graalvm.compiler.graph.spi.CanonicalizerTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.ArithmeticOperation;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.StructuredGraph;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.ValuePhiNode;
import org.graalvm.compiler.nodes.spi.ArithmeticLIRLowerable;
import org.graalvm.compiler.nodes.spi.NodeValueMap;
import jdk.vm.ci.meta.Constant;
@NodeInfo(cycles = CYCLES_1, size = SIZE_1)
public abstract class BinaryArithmeticNode<OP> extends BinaryNode implements ArithmeticOperation, ArithmeticLIRLowerable, Canonicalizable.Binary<ValueNode> {
@SuppressWarnings("rawtypes") public static final NodeClass<BinaryArithmeticNode> TYPE = NodeClass.create(BinaryArithmeticNode.class);
protected interface SerializableBinaryFunction<T> extends Function<ArithmeticOpTable, BinaryOp<T>>, Serializable {
}
protected final SerializableBinaryFunction<OP> getOp;
protected BinaryArithmeticNode(NodeClass<? extends BinaryArithmeticNode<OP>> c, SerializableBinaryFunction<OP> getOp, ValueNode x, ValueNode y) {
super(c, getOp.apply(ArithmeticOpTable.forStamp(x.stamp())).foldStamp(x.stamp(), y.stamp()), x, y);
this.getOp = getOp;
}
protected final BinaryOp<OP> getOp(ValueNode forX, ValueNode forY) {
ArithmeticOpTable table = ArithmeticOpTable.forStamp(forX.stamp());
assert table.equals(ArithmeticOpTable.forStamp(forY.stamp()));
return getOp.apply(table);
}
@Override
public final BinaryOp<OP> getArithmeticOp() {
return getOp(getX(), getY());
}
public boolean isAssociative() {
return getArithmeticOp().isAssociative();
}
@Override
public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) {
ValueNode result = tryConstantFold(getOp(forX, forY), forX, forY, stamp());
if (result != null) {
return result;
}
return this;
}
public static <OP> ConstantNode tryConstantFold(BinaryOp<OP> op, ValueNode forX, ValueNode forY, Stamp stamp) {
if (forX.isConstant() && forY.isConstant()) {
Constant ret = op.foldConstant(forX.asConstant(), forY.asConstant());
return ConstantNode.forPrimitive(stamp, ret);
}
return null;
}
@Override
public Stamp foldStamp(Stamp stampX, Stamp stampY) {
assert stampX.isCompatible(x.stamp()) && stampY.isCompatible(y.stamp());
return getArithmeticOp().foldStamp(stampX, stampY);
}
public static AddNode add(StructuredGraph graph, ValueNode v1, ValueNode v2) {
return graph.unique(new AddNode(v1, v2));
}
public static AddNode add(ValueNode v1, ValueNode v2) {
return new AddNode(v1, v2);
}
public static MulNode mul(StructuredGraph graph, ValueNode v1, ValueNode v2) {
return graph.unique(new MulNode(v1, v2));
}
public static MulNode mul(ValueNode v1, ValueNode v2) {
return new MulNode(v1, v2);
}
public static SubNode sub(StructuredGraph graph, ValueNode v1, ValueNode v2) {
return graph.unique(new SubNode(v1, v2));
}
public static SubNode sub(ValueNode v1, ValueNode v2) {
return new SubNode(v1, v2);
}
private enum ReassociateMatch {
x,
y;
public ValueNode getValue(BinaryNode binary) {
switch (this) {
case x:
return binary.getX();
case y:
return binary.getY();
default:
throw GraalError.shouldNotReachHere();
}
}
public ValueNode getOtherValue(BinaryNode binary) {
switch (this) {
case x:
return binary.getY();
case y:
return binary.getX();
default:
throw GraalError.shouldNotReachHere();
}
}
}
private static ReassociateMatch findReassociate(BinaryNode binary, NodePredicate criterion) {
boolean resultX = criterion.apply(binary.getX());
boolean resultY = criterion.apply(binary.getY());
if (resultX && !resultY) {
return ReassociateMatch.x;
}
if (!resultX && resultY) {
return ReassociateMatch.y;
}
return null;
}
//@formatter:off
/*
* In reassociate, complexity comes from the handling of IntegerSub (non commutative) which can
* be mixed with IntegerAdd. It first tries to find m1, m2 which match the criterion :
* (a o m2) o m1
* (m2 o a) o m1
* m1 o (a o m2)
* m1 o (m2 o a)
* It then produces 4 boolean for the -/+ cases:
* invertA : should the final expression be like *-a (rather than a+*)
* aSub : should the final expression be like a-* (rather than a+*)
* invertM1 : should the final expression contain -m1
* invertM2 : should the final expression contain -m2
*
*/
//@formatter:on
/**
* Tries to re-associate values which satisfy the criterion. For example with a constantness
* criterion: {@code (a + 2) + 1 => a + (1 + 2)}
* <p>
* This method accepts only {@linkplain BinaryOp#isAssociative() associative} operations such as
* +, -, *, &amp;, | and ^
*
* @param forY
* @param forX
*/
public static BinaryArithmeticNode<?> reassociate(BinaryArithmeticNode<?> node, NodePredicate criterion, ValueNode forX, ValueNode forY) {
assert node.getOp(forX, forY).isAssociative();
ReassociateMatch match1 = findReassociate(node, criterion);
if (match1 == null) {
return node;
}
ValueNode otherValue = match1.getOtherValue(node);
boolean addSub = false;
boolean subAdd = false;
if (otherValue.getClass() != node.getClass()) {
if (node instanceof AddNode && otherValue instanceof SubNode) {
addSub = true;
} else if (node instanceof SubNode && otherValue instanceof AddNode) {
subAdd = true;
} else {
return node;
}
}
BinaryNode other = (BinaryNode) otherValue;
ReassociateMatch match2 = findReassociate(other, criterion);
if (match2 == null) {
return node;
}
boolean invertA = false;
boolean aSub = false;
boolean invertM1 = false;
boolean invertM2 = false;
if (addSub) {
invertM2 = match2 == ReassociateMatch.y;
invertA = !invertM2;
} else if (subAdd) {
invertA = invertM2 = match1 == ReassociateMatch.x;
invertM1 = !invertM2;
} else if (node instanceof SubNode && other instanceof SubNode) {
invertA = match1 == ReassociateMatch.x ^ match2 == ReassociateMatch.x;
aSub = match1 == ReassociateMatch.y && match2 == ReassociateMatch.y;
invertM1 = match1 == ReassociateMatch.y && match2 == ReassociateMatch.x;
invertM2 = match1 == ReassociateMatch.x && match2 == ReassociateMatch.x;
}
assert !(invertM1 && invertM2) && !(invertA && aSub);
ValueNode m1 = match1.getValue(node);
ValueNode m2 = match2.getValue(other);
ValueNode a = match2.getOtherValue(other);
if (node instanceof AddNode || node instanceof SubNode) {
BinaryNode associated;
if (invertM1) {
associated = BinaryArithmeticNode.sub(m2, m1);
} else if (invertM2) {
associated = BinaryArithmeticNode.sub(m1, m2);
} else {
associated = BinaryArithmeticNode.add(m1, m2);
}
if (invertA) {
return BinaryArithmeticNode.sub(associated, a);
}
if (aSub) {
return BinaryArithmeticNode.sub(a, associated);
}
return BinaryArithmeticNode.add(a, associated);
} else if (node instanceof MulNode) {
return BinaryArithmeticNode.mul(a, AddNode.mul(m1, m2));
} else if (node instanceof AndNode) {
return new AndNode(a, new AndNode(m1, m2));
} else if (node instanceof OrNode) {
return new OrNode(a, new OrNode(m1, m2));
} else if (node instanceof XorNode) {
return new XorNode(a, new XorNode(m1, m2));
} else {
throw GraalError.shouldNotReachHere();
}
}
/**
* Ensure a canonical ordering of inputs for commutative nodes to improve GVN results. Order the
* inputs by increasing {@link Node#id} and call {@link Graph#findDuplicate(Node)} on the node
* if it's currently in a graph. It's assumed that if there was a constant on the left it's been
* moved to the right by other code and that ordering is left alone.
*
* @return the original node or another node with the same input ordering
*/
@SuppressWarnings("deprecation")
public BinaryNode maybeCommuteInputs() {
assert this instanceof BinaryCommutative;
if (!y.isConstant() && x.getId() > y.getId()) {
ValueNode tmp = x;
x = y;
y = tmp;
if (graph() != null) {
// See if this node already exists
BinaryNode duplicate = graph().findDuplicate(this);
if (duplicate != null) {
return duplicate;
}
}
}
return this;
}
/**
* Determines if it would be better to swap the inputs in order to produce better assembly code.
* First we try to pick a value which is dead after this use. If both values are dead at this
* use then we try pick an induction variable phi to encourage the phi to live in a single
* register.
*
* @param nodeValueMap
* @return true if inputs should be swapped, false otherwise
*/
protected boolean shouldSwapInputs(NodeValueMap nodeValueMap) {
final boolean xHasOtherUsages = getX().hasUsagesOtherThan(this, nodeValueMap);
final boolean yHasOtherUsages = getY().hasUsagesOtherThan(this, nodeValueMap);
if (!getY().isConstant() && !yHasOtherUsages) {
if (xHasOtherUsages == yHasOtherUsages) {
return getY() instanceof ValuePhiNode && getY().inputs().contains(this);
} else {
return true;
}
}
return false;
}
}