blob: 27c9d6658ef3a837c17471573506320e13fae6c8 [file] [log] [blame]
/*
* Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.loop;
import static org.graalvm.compiler.graph.Node.newIdentityMap;
import java.util.Collection;
import java.util.Collections;
import java.util.LinkedList;
import java.util.Map;
import java.util.Queue;
import org.graalvm.compiler.core.common.calc.Condition;
import org.graalvm.compiler.core.common.cfg.Loop;
import org.graalvm.compiler.core.common.type.IntegerStamp;
import org.graalvm.compiler.debug.Debug;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeBitMap;
import org.graalvm.compiler.graph.iterators.NodePredicate;
import org.graalvm.compiler.loop.InductionVariable.Direction;
import org.graalvm.compiler.nodes.AbstractBeginNode;
import org.graalvm.compiler.nodes.AbstractEndNode;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.FixedGuardNode;
import org.graalvm.compiler.nodes.FixedNode;
import org.graalvm.compiler.nodes.FixedWithNextNode;
import org.graalvm.compiler.nodes.FrameState;
import org.graalvm.compiler.nodes.FullInfopointNode;
import org.graalvm.compiler.nodes.IfNode;
import org.graalvm.compiler.nodes.LogicNode;
import org.graalvm.compiler.nodes.LoopBeginNode;
import org.graalvm.compiler.nodes.LoopExitNode;
import org.graalvm.compiler.nodes.PhiNode;
import org.graalvm.compiler.nodes.PiNode;
import org.graalvm.compiler.nodes.StructuredGraph;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.ValuePhiNode;
import org.graalvm.compiler.nodes.calc.AddNode;
import org.graalvm.compiler.nodes.calc.BinaryArithmeticNode;
import org.graalvm.compiler.nodes.calc.CompareNode;
import org.graalvm.compiler.nodes.calc.IntegerBelowNode;
import org.graalvm.compiler.nodes.calc.IntegerEqualsNode;
import org.graalvm.compiler.nodes.calc.IntegerLessThanNode;
import org.graalvm.compiler.nodes.calc.LeftShiftNode;
import org.graalvm.compiler.nodes.calc.MulNode;
import org.graalvm.compiler.nodes.calc.NegateNode;
import org.graalvm.compiler.nodes.calc.SignExtendNode;
import org.graalvm.compiler.nodes.calc.SubNode;
import org.graalvm.compiler.nodes.calc.ZeroExtendNode;
import org.graalvm.compiler.nodes.cfg.Block;
import org.graalvm.compiler.nodes.cfg.ControlFlowGraph;
import org.graalvm.compiler.nodes.debug.ControlFlowAnchorNode;
import org.graalvm.compiler.nodes.extended.ValueAnchorNode;
import org.graalvm.compiler.nodes.util.GraphUtil;
import jdk.vm.ci.code.BytecodeFrame;
public class LoopEx {
private final Loop<Block> loop;
private LoopFragmentInside inside;
private LoopFragmentWhole whole;
private CountedLoopInfo counted;
private LoopsData data;
private Map<Node, InductionVariable> ivs;
LoopEx(Loop<Block> loop, LoopsData data) {
this.loop = loop;
this.data = data;
}
public Loop<Block> loop() {
return loop;
}
public LoopFragmentInside inside() {
if (inside == null) {
inside = new LoopFragmentInside(this);
}
return inside;
}
public LoopFragmentWhole whole() {
if (whole == null) {
whole = new LoopFragmentWhole(this);
}
return whole;
}
public void invalidateFragments() {
inside = null;
whole = null;
}
@SuppressWarnings("unused")
public LoopFragmentInsideFrom insideFrom(FixedNode point) {
// TODO (gd)
return null;
}
@SuppressWarnings("unused")
public LoopFragmentInsideBefore insideBefore(FixedNode point) {
// TODO (gd)
return null;
}
public boolean isOutsideLoop(Node n) {
return !whole().contains(n);
}
public LoopBeginNode loopBegin() {
return (LoopBeginNode) loop().getHeader().getBeginNode();
}
public FixedNode predecessor() {
return (FixedNode) loopBegin().forwardEnd().predecessor();
}
public FixedNode entryPoint() {
return loopBegin().forwardEnd();
}
public boolean isCounted() {
return counted != null;
}
public CountedLoopInfo counted() {
return counted;
}
public LoopEx parent() {
if (loop.getParent() == null) {
return null;
}
return data.loop(loop.getParent());
}
public int size() {
return whole().nodes().count();
}
@Override
public String toString() {
return (isCounted() ? "CountedLoop [" + counted() + "] " : "Loop ") + "(depth=" + loop().getDepth() + ") " + loopBegin();
}
private class InvariantPredicate implements NodePredicate {
@Override
public boolean apply(Node n) {
return isOutsideLoop(n);
}
}
public void reassociateInvariants() {
InvariantPredicate invariant = new InvariantPredicate();
StructuredGraph graph = loopBegin().graph();
for (BinaryArithmeticNode<?> binary : whole().nodes().filter(BinaryArithmeticNode.class)) {
if (!binary.isAssociative()) {
continue;
}
BinaryArithmeticNode<?> result = BinaryArithmeticNode.reassociate(binary, invariant, binary.getX(), binary.getY());
if (result != binary) {
if (Debug.isLogEnabled()) {
Debug.log("%s : Reassociated %s into %s", graph.method().format("%H::%n"), binary, result);
}
if (!result.isAlive()) {
assert !result.isDeleted();
result = graph.addOrUniqueWithInputs(result);
}
binary.replaceAtUsages(result);
GraphUtil.killWithUnusedFloatingInputs(binary);
}
}
}
public boolean detectCounted() {
LoopBeginNode loopBegin = loopBegin();
FixedNode next = loopBegin.next();
while (next instanceof FixedGuardNode || next instanceof ValueAnchorNode || next instanceof FullInfopointNode) {
next = ((FixedWithNextNode) next).next();
}
if (next instanceof IfNode) {
IfNode ifNode = (IfNode) next;
boolean negated = false;
if (!loopBegin.isLoopExit(ifNode.falseSuccessor())) {
if (!loopBegin.isLoopExit(ifNode.trueSuccessor())) {
return false;
}
negated = true;
}
LogicNode ifTest = ifNode.condition();
if (!(ifTest instanceof IntegerLessThanNode) && !(ifTest instanceof IntegerEqualsNode)) {
if (ifTest instanceof IntegerBelowNode) {
Debug.log("Ignored potential Counted loop at %s with |<|", loopBegin);
}
return false;
}
CompareNode lessThan = (CompareNode) ifTest;
Condition condition = null;
InductionVariable iv = null;
ValueNode limit = null;
if (isOutsideLoop(lessThan.getX())) {
iv = getInductionVariables().get(lessThan.getY());
if (iv != null) {
condition = lessThan.condition().mirror();
limit = lessThan.getX();
}
} else if (isOutsideLoop(lessThan.getY())) {
iv = getInductionVariables().get(lessThan.getX());
if (iv != null) {
condition = lessThan.condition();
limit = lessThan.getY();
}
}
if (condition == null) {
return false;
}
if (negated) {
condition = condition.negate();
}
boolean oneOff = false;
switch (condition) {
case EQ:
return false;
case NE: {
if (!iv.isConstantStride() || Math.abs(iv.constantStride()) != 1) {
return false;
}
IntegerStamp initStamp = (IntegerStamp) iv.initNode().stamp();
IntegerStamp limitStamp = (IntegerStamp) limit.stamp();
if (iv.direction() == Direction.Up) {
if (initStamp.upperBound() > limitStamp.lowerBound()) {
return false;
}
} else if (iv.direction() == Direction.Down) {
if (initStamp.lowerBound() < limitStamp.upperBound()) {
return false;
}
} else {
return false;
}
break;
}
case LE:
oneOff = true;
if (iv.direction() != Direction.Up) {
return false;
}
break;
case LT:
if (iv.direction() != Direction.Up) {
return false;
}
break;
case GE:
oneOff = true;
if (iv.direction() != Direction.Down) {
return false;
}
break;
case GT:
if (iv.direction() != Direction.Down) {
return false;
}
break;
default:
throw GraalError.shouldNotReachHere();
}
counted = new CountedLoopInfo(this, iv, limit, oneOff, negated ? ifNode.falseSuccessor() : ifNode.trueSuccessor());
return true;
}
return false;
}
public LoopsData loopsData() {
return data;
}
public void nodesInLoopBranch(NodeBitMap branchNodes, AbstractBeginNode branch) {
Collection<AbstractBeginNode> blocks = new LinkedList<>();
Collection<LoopExitNode> exits = new LinkedList<>();
Queue<Block> work = new LinkedList<>();
ControlFlowGraph cfg = loopsData().getCFG();
work.add(cfg.blockFor(branch));
while (!work.isEmpty()) {
Block b = work.remove();
if (loop().getExits().contains(b)) {
exits.add((LoopExitNode) b.getBeginNode());
} else {
blocks.add(b.getBeginNode());
for (Block d : b.getDominated()) {
if (loop.getBlocks().contains(d)) {
work.add(d);
}
}
}
}
LoopFragment.computeNodes(branchNodes, branch.graph(), blocks, exits);
}
public Map<Node, InductionVariable> getInductionVariables() {
if (ivs == null) {
ivs = findInductionVariables(this);
}
return ivs;
}
/**
* Collect all the basic induction variables for the loop and the find any induction variables
* which are derived from the basic ones.
*
* @param loop
* @return a map from node to induction variable
*/
private static Map<Node, InductionVariable> findInductionVariables(LoopEx loop) {
Map<Node, InductionVariable> ivs = newIdentityMap();
Queue<InductionVariable> scanQueue = new LinkedList<>();
LoopBeginNode loopBegin = loop.loopBegin();
AbstractEndNode forwardEnd = loopBegin.forwardEnd();
for (PhiNode phi : loopBegin.phis().filter(ValuePhiNode.class)) {
ValueNode backValue = phi.singleBackValue();
if (backValue == PhiNode.MULTIPLE_VALUES) {
continue;
}
ValueNode stride = addSub(loop, backValue, phi);
if (stride != null) {
BasicInductionVariable biv = new BasicInductionVariable(loop, (ValuePhiNode) phi, phi.valueAt(forwardEnd), stride, (BinaryArithmeticNode<?>) backValue);
ivs.put(phi, biv);
scanQueue.add(biv);
}
}
while (!scanQueue.isEmpty()) {
InductionVariable baseIv = scanQueue.remove();
ValueNode baseIvNode = baseIv.valueNode();
for (ValueNode op : baseIvNode.usages().filter(ValueNode.class)) {
if (loop.isOutsideLoop(op)) {
continue;
}
if (op.usages().count() == 1 && op.usages().first() == baseIvNode) {
/*
* This is just the base induction variable increment with no other uses so
* don't bother reporting it.
*/
continue;
}
InductionVariable iv = null;
ValueNode offset = addSub(loop, op, baseIvNode);
ValueNode scale;
if (offset != null) {
iv = new DerivedOffsetInductionVariable(loop, baseIv, offset, (BinaryArithmeticNode<?>) op);
} else if (op instanceof NegateNode) {
iv = new DerivedScaledInductionVariable(loop, baseIv, (NegateNode) op);
} else if ((scale = mul(loop, op, baseIvNode)) != null) {
iv = new DerivedScaledInductionVariable(loop, baseIv, scale, op);
} else {
boolean isValidConvert = op instanceof PiNode || op instanceof SignExtendNode;
if (!isValidConvert && op instanceof ZeroExtendNode) {
IntegerStamp inputStamp = (IntegerStamp) ((ZeroExtendNode) op).getValue().stamp();
isValidConvert = inputStamp.isPositive();
}
if (isValidConvert) {
iv = new DerivedConvertedInductionVariable(loop, baseIv, op.stamp(), op);
}
}
if (iv != null) {
ivs.put(op, iv);
scanQueue.offer(iv);
}
}
}
return Collections.unmodifiableMap(ivs);
}
private static ValueNode addSub(LoopEx loop, ValueNode op, ValueNode base) {
if (op.stamp() instanceof IntegerStamp && (op instanceof AddNode || op instanceof SubNode)) {
BinaryArithmeticNode<?> aritOp = (BinaryArithmeticNode<?>) op;
if (aritOp.getX() == base && loop.isOutsideLoop(aritOp.getY())) {
return aritOp.getY();
} else if (aritOp.getY() == base && loop.isOutsideLoop(aritOp.getX())) {
return aritOp.getX();
}
}
return null;
}
private static ValueNode mul(LoopEx loop, ValueNode op, ValueNode base) {
if (op instanceof MulNode) {
MulNode mul = (MulNode) op;
if (mul.getX() == base && loop.isOutsideLoop(mul.getY())) {
return mul.getY();
} else if (mul.getY() == base && loop.isOutsideLoop(mul.getX())) {
return mul.getX();
}
}
if (op instanceof LeftShiftNode) {
LeftShiftNode shift = (LeftShiftNode) op;
if (shift.getX() == base && shift.getY().isConstant()) {
return ConstantNode.forIntegerStamp(base.stamp(), 1 << shift.getY().asJavaConstant().asInt(), base.graph());
}
}
return null;
}
/**
* Deletes any nodes created within the scope of this object that have no usages.
*/
public void deleteUnusedNodes() {
if (ivs != null) {
for (InductionVariable iv : ivs.values()) {
iv.deleteUnusedNodes();
}
}
}
/**
* @return true if all nodes in the loop can be duplicated.
*/
public boolean canDuplicateLoop() {
for (Node node : inside().nodes()) {
if (node instanceof ControlFlowAnchorNode) {
return false;
}
if (node instanceof FrameState) {
FrameState frameState = (FrameState) node;
if (frameState.bci == BytecodeFrame.AFTER_EXCEPTION_BCI || frameState.bci == BytecodeFrame.UNWIND_BCI) {
return false;
}
}
}
return true;
}
}