blob: a8f5f1f4a585c5f85e80ebb974f71849201c8157 [file] [log] [blame]
/*
* Copyright (c) 2015, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.lir.alloc.lsra;
import static org.graalvm.compiler.core.common.GraalOptions.DetailedAsserts;
import java.util.BitSet;
import java.util.List;
import org.graalvm.compiler.core.common.cfg.AbstractBlockBase;
import org.graalvm.compiler.debug.Debug;
import org.graalvm.compiler.debug.Indent;
import org.graalvm.compiler.lir.LIRInstruction;
import org.graalvm.compiler.lir.StandardOp;
import org.graalvm.compiler.lir.gen.LIRGenerationResult;
import org.graalvm.compiler.lir.phases.AllocationPhase;
import jdk.vm.ci.code.TargetDescription;
/**
* Phase 6: resolve data flow
*
* Insert moves at edges between blocks if intervals have been split.
*/
public class LinearScanResolveDataFlowPhase extends AllocationPhase {
protected final LinearScan allocator;
protected LinearScanResolveDataFlowPhase(LinearScan allocator) {
this.allocator = allocator;
}
@Override
protected void run(TargetDescription target, LIRGenerationResult lirGenRes, AllocationContext context) {
resolveDataFlow();
allocator.printIntervals("After resolve data flow");
}
protected void resolveCollectMappings(AbstractBlockBase<?> fromBlock, AbstractBlockBase<?> toBlock, AbstractBlockBase<?> midBlock, MoveResolver moveResolver) {
assert moveResolver.checkEmpty();
assert midBlock == null ||
(midBlock.getPredecessorCount() == 1 && midBlock.getSuccessorCount() == 1 && midBlock.getPredecessors()[0].equals(fromBlock) && midBlock.getSuccessors()[0].equals(
toBlock));
int toBlockFirstInstructionId = allocator.getFirstLirInstructionId(toBlock);
int fromBlockLastInstructionId = allocator.getLastLirInstructionId(fromBlock) + 1;
int numOperands = allocator.operandSize();
BitSet liveAtEdge = allocator.getBlockData(toBlock).liveIn;
// visit all variables for which the liveAtEdge bit is set
for (int operandNum = liveAtEdge.nextSetBit(0); operandNum >= 0; operandNum = liveAtEdge.nextSetBit(operandNum + 1)) {
assert operandNum < numOperands : "live information set for not exisiting interval";
assert allocator.getBlockData(fromBlock).liveOut.get(operandNum) && allocator.getBlockData(toBlock).liveIn.get(operandNum) : "interval not live at this edge";
Interval fromInterval = allocator.splitChildAtOpId(allocator.intervalFor(operandNum), fromBlockLastInstructionId, LIRInstruction.OperandMode.DEF);
Interval toInterval = allocator.splitChildAtOpId(allocator.intervalFor(operandNum), toBlockFirstInstructionId, LIRInstruction.OperandMode.DEF);
if (fromInterval != toInterval && !fromInterval.location().equals(toInterval.location())) {
// need to insert move instruction
moveResolver.addMapping(fromInterval, toInterval);
}
}
}
void resolveFindInsertPos(AbstractBlockBase<?> fromBlock, AbstractBlockBase<?> toBlock, MoveResolver moveResolver) {
if (fromBlock.getSuccessorCount() <= 1) {
if (Debug.isLogEnabled()) {
Debug.log("inserting moves at end of fromBlock B%d", fromBlock.getId());
}
List<LIRInstruction> instructions = allocator.getLIR().getLIRforBlock(fromBlock);
LIRInstruction instr = instructions.get(instructions.size() - 1);
if (instr instanceof StandardOp.JumpOp) {
// insert moves before branch
moveResolver.setInsertPosition(instructions, instructions.size() - 1);
} else {
moveResolver.setInsertPosition(instructions, instructions.size());
}
} else {
if (Debug.isLogEnabled()) {
Debug.log("inserting moves at beginning of toBlock B%d", toBlock.getId());
}
if (DetailedAsserts.getValue()) {
assert allocator.getLIR().getLIRforBlock(fromBlock).get(0) instanceof StandardOp.LabelOp : "block does not start with a label";
/*
* Because the number of predecessor edges matches the number of successor edges,
* blocks which are reached by switch statements may have be more than one
* predecessor but it will be guaranteed that all predecessors will be the same.
*/
for (AbstractBlockBase<?> predecessor : toBlock.getPredecessors()) {
assert fromBlock == predecessor : "all critical edges must be broken";
}
}
moveResolver.setInsertPosition(allocator.getLIR().getLIRforBlock(toBlock), 1);
}
}
/**
* Inserts necessary moves (spilling or reloading) at edges between blocks for intervals that
* have been split.
*/
@SuppressWarnings("try")
protected void resolveDataFlow() {
try (Indent indent = Debug.logAndIndent("resolve data flow")) {
MoveResolver moveResolver = allocator.createMoveResolver();
BitSet blockCompleted = new BitSet(allocator.blockCount());
optimizeEmptyBlocks(moveResolver, blockCompleted);
resolveDataFlow0(moveResolver, blockCompleted);
}
}
protected void optimizeEmptyBlocks(MoveResolver moveResolver, BitSet blockCompleted) {
for (AbstractBlockBase<?> block : allocator.sortedBlocks()) {
// check if block has only one predecessor and only one successor
if (block.getPredecessorCount() == 1 && block.getSuccessorCount() == 1) {
List<LIRInstruction> instructions = allocator.getLIR().getLIRforBlock(block);
assert instructions.get(0) instanceof StandardOp.LabelOp : "block must start with label";
assert instructions.get(instructions.size() - 1) instanceof StandardOp.JumpOp : "block with successor must end with unconditional jump";
// check if block is empty (only label and branch)
if (instructions.size() == 2) {
AbstractBlockBase<?> pred = block.getPredecessors()[0];
AbstractBlockBase<?> sux = block.getSuccessors()[0];
// prevent optimization of two consecutive blocks
if (!blockCompleted.get(pred.getLinearScanNumber()) && !blockCompleted.get(sux.getLinearScanNumber())) {
if (Debug.isLogEnabled()) {
Debug.log(" optimizing empty block B%d (pred: B%d, sux: B%d)", block.getId(), pred.getId(), sux.getId());
}
blockCompleted.set(block.getLinearScanNumber());
/*
* Directly resolve between pred and sux (without looking at the empty block
* between).
*/
resolveCollectMappings(pred, sux, block, moveResolver);
if (moveResolver.hasMappings()) {
moveResolver.setInsertPosition(instructions, 1);
moveResolver.resolveAndAppendMoves();
}
}
}
}
}
}
protected void resolveDataFlow0(MoveResolver moveResolver, BitSet blockCompleted) {
BitSet alreadyResolved = new BitSet(allocator.blockCount());
for (AbstractBlockBase<?> fromBlock : allocator.sortedBlocks()) {
if (!blockCompleted.get(fromBlock.getLinearScanNumber())) {
alreadyResolved.clear();
alreadyResolved.or(blockCompleted);
for (AbstractBlockBase<?> toBlock : fromBlock.getSuccessors()) {
/*
* Check for duplicate edges between the same blocks (can happen with switch
* blocks).
*/
if (!alreadyResolved.get(toBlock.getLinearScanNumber())) {
if (Debug.isLogEnabled()) {
Debug.log("processing edge between B%d and B%d", fromBlock.getId(), toBlock.getId());
}
alreadyResolved.set(toBlock.getLinearScanNumber());
// collect all intervals that have been split between
// fromBlock and toBlock
resolveCollectMappings(fromBlock, toBlock, null, moveResolver);
if (moveResolver.hasMappings()) {
resolveFindInsertPos(fromBlock, toBlock, moveResolver);
moveResolver.resolveAndAppendMoves();
}
}
}
}
}
}
}