blob: abe2d0ba2d797745364695c5ddaca6a3100bd0e5 [file] [log] [blame]
/*
* Copyright (c) 2013, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.hotspot.sparc;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BPCC;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isGlobalRegister;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Annul.NOT_ANNUL;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict.PREDICT_NOT_TAKEN;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Xcc;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.NotEqual;
import static org.graalvm.compiler.core.common.GraalOptions.ZapStackOnMethodEntry;
import static jdk.vm.ci.code.ValueUtil.asRegister;
import static jdk.vm.ci.code.ValueUtil.isRegister;
import static jdk.vm.ci.sparc.SPARC.g0;
import static jdk.vm.ci.sparc.SPARC.g5;
import static jdk.vm.ci.sparc.SPARC.i0;
import static jdk.vm.ci.sparc.SPARC.i7;
import static jdk.vm.ci.sparc.SPARC.l0;
import static jdk.vm.ci.sparc.SPARC.l7;
import static jdk.vm.ci.sparc.SPARC.o0;
import static jdk.vm.ci.sparc.SPARC.o7;
import static jdk.vm.ci.sparc.SPARC.sp;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import org.graalvm.compiler.asm.Assembler;
import org.graalvm.compiler.asm.Label;
import org.graalvm.compiler.asm.sparc.SPARCAddress;
import org.graalvm.compiler.asm.sparc.SPARCAssembler;
import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler;
import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler.ScratchRegister;
import org.graalvm.compiler.code.CompilationResult;
import org.graalvm.compiler.code.DataSection;
import org.graalvm.compiler.code.DataSection.Data;
import org.graalvm.compiler.core.common.CompilationIdentifier;
import org.graalvm.compiler.core.common.alloc.RegisterAllocationConfig;
import org.graalvm.compiler.core.common.cfg.AbstractBlockBase;
import org.graalvm.compiler.core.sparc.SPARCNodeMatchRules;
import org.graalvm.compiler.debug.Debug;
import org.graalvm.compiler.debug.DebugCounter;
import org.graalvm.compiler.hotspot.HotSpotDataBuilder;
import org.graalvm.compiler.hotspot.HotSpotGraalRuntimeProvider;
import org.graalvm.compiler.hotspot.HotSpotHostBackend;
import org.graalvm.compiler.hotspot.HotSpotLIRGenerationResult;
import org.graalvm.compiler.hotspot.GraalHotSpotVMConfig;
import org.graalvm.compiler.hotspot.meta.HotSpotForeignCallsProvider;
import org.graalvm.compiler.hotspot.meta.HotSpotProviders;
import org.graalvm.compiler.hotspot.stubs.Stub;
import org.graalvm.compiler.lir.InstructionValueConsumer;
import org.graalvm.compiler.lir.LIR;
import org.graalvm.compiler.lir.LIRFrameState;
import org.graalvm.compiler.lir.LIRInstruction;
import org.graalvm.compiler.lir.StandardOp.SaveRegistersOp;
import org.graalvm.compiler.lir.asm.CompilationResultBuilder;
import org.graalvm.compiler.lir.asm.CompilationResultBuilderFactory;
import org.graalvm.compiler.lir.asm.DataBuilder;
import org.graalvm.compiler.lir.asm.FrameContext;
import org.graalvm.compiler.lir.framemap.FrameMap;
import org.graalvm.compiler.lir.framemap.FrameMapBuilder;
import org.graalvm.compiler.lir.gen.LIRGenerationResult;
import org.graalvm.compiler.lir.gen.LIRGeneratorTool;
import org.graalvm.compiler.lir.sparc.SPARCCall;
import org.graalvm.compiler.lir.sparc.SPARCDelayedControlTransfer;
import org.graalvm.compiler.lir.sparc.SPARCFrameMap;
import org.graalvm.compiler.lir.sparc.SPARCFrameMapBuilder;
import org.graalvm.compiler.lir.sparc.SPARCLIRInstructionMixin;
import org.graalvm.compiler.lir.sparc.SPARCLIRInstructionMixin.SizeEstimate;
import org.graalvm.compiler.lir.sparc.SPARCTailDelayedLIRInstruction;
import org.graalvm.compiler.nodes.StructuredGraph;
import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool;
import jdk.vm.ci.code.CallingConvention;
import jdk.vm.ci.code.Register;
import jdk.vm.ci.code.RegisterConfig;
import jdk.vm.ci.code.StackSlot;
import jdk.vm.ci.hotspot.HotSpotCallingConventionType;
import jdk.vm.ci.meta.JavaType;
import jdk.vm.ci.meta.ResolvedJavaMethod;
/**
* HotSpot SPARC specific backend.
*/
public class SPARCHotSpotBackend extends HotSpotHostBackend {
private static final SizeEstimateStatistics CONSTANT_ESTIMATED_STATS = new SizeEstimateStatistics("ESTIMATE");
private static final SizeEstimateStatistics CONSTANT_ACTUAL_STATS = new SizeEstimateStatistics("ACTUAL");
public SPARCHotSpotBackend(GraalHotSpotVMConfig config, HotSpotGraalRuntimeProvider runtime, HotSpotProviders providers) {
super(config, runtime, providers);
}
private static class SizeEstimateStatistics {
private static final ConcurrentHashMap<String, DebugCounter> counters = new ConcurrentHashMap<>();
private final String suffix;
SizeEstimateStatistics(String suffix) {
super();
this.suffix = suffix;
}
public void add(Class<?> c, int count) {
String name = SizeEstimateStatistics.class.getSimpleName() + "_" + c.getSimpleName() + "." + suffix;
DebugCounter m = counters.computeIfAbsent(name, (n) -> Debug.counter(n));
m.add(count);
}
}
@Override
public FrameMapBuilder newFrameMapBuilder(RegisterConfig registerConfig) {
RegisterConfig registerConfigNonNull = registerConfig == null ? getCodeCache().getRegisterConfig() : registerConfig;
return new SPARCFrameMapBuilder(newFrameMap(registerConfigNonNull), getCodeCache(), registerConfigNonNull);
}
@Override
public FrameMap newFrameMap(RegisterConfig registerConfig) {
return new SPARCFrameMap(getCodeCache(), registerConfig, this);
}
@Override
public LIRGeneratorTool newLIRGenerator(LIRGenerationResult lirGenRes) {
return new SPARCHotSpotLIRGenerator(getProviders(), getRuntime().getVMConfig(), lirGenRes);
}
@Override
public LIRGenerationResult newLIRGenerationResult(CompilationIdentifier compilationId, LIR lir, FrameMapBuilder frameMapBuilder, StructuredGraph graph, Object stub) {
return new HotSpotLIRGenerationResult(compilationId, lir, frameMapBuilder, makeCallingConvention(graph, (Stub) stub), stub);
}
@Override
public NodeLIRBuilderTool newNodeLIRBuilder(StructuredGraph graph, LIRGeneratorTool lirGen) {
return new SPARCHotSpotNodeLIRBuilder(graph, lirGen, new SPARCNodeMatchRules(lirGen));
}
@Override
protected void bangStackWithOffset(CompilationResultBuilder crb, int bangOffset) {
// Use SPARCAddress to get the final displacement including the stack bias.
SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm;
SPARCAddress address = new SPARCAddress(sp, -bangOffset);
if (SPARCAssembler.isSimm13(address.getDisplacement())) {
masm.stx(g0, address);
} else {
try (ScratchRegister sc = masm.getScratchRegister()) {
Register scratch = sc.getRegister();
assert isGlobalRegister(scratch) : "Only global (g1-g7) registers are allowed if the frame was not initialized here. Got register " + scratch;
masm.setx(address.getDisplacement(), scratch, false);
masm.stx(g0, new SPARCAddress(sp, scratch));
}
}
}
public class HotSpotFrameContext implements FrameContext {
final boolean isStub;
HotSpotFrameContext(boolean isStub) {
this.isStub = isStub;
}
@Override
public boolean hasFrame() {
return true;
}
@Override
public void enter(CompilationResultBuilder crb) {
final int frameSize = crb.frameMap.totalFrameSize();
final int stackpoinerChange = -frameSize;
SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm;
emitStackOverflowCheck(crb);
if (SPARCAssembler.isSimm13(stackpoinerChange)) {
masm.save(sp, stackpoinerChange, sp);
} else {
try (ScratchRegister sc = masm.getScratchRegister()) {
Register scratch = sc.getRegister();
assert isGlobalRegister(scratch) : "Only global registers are allowed before save. Got register " + scratch;
masm.setx(stackpoinerChange, scratch, false);
masm.save(sp, scratch, sp);
}
}
if (ZapStackOnMethodEntry.getValue()) {
final int slotSize = 8;
for (int i = 0; i < frameSize / slotSize; ++i) {
// 0xC1C1C1C1
masm.stx(g0, new SPARCAddress(sp, i * slotSize));
}
}
}
@Override
public void leave(CompilationResultBuilder crb) {
SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm;
masm.restoreWindow();
}
}
@Override
protected Assembler createAssembler(FrameMap frameMap) {
return new SPARCMacroAssembler(getTarget());
}
@Override
public CompilationResultBuilder newCompilationResultBuilder(LIRGenerationResult lirGenRes, FrameMap frameMap, CompilationResult compilationResult, CompilationResultBuilderFactory factory) {
HotSpotLIRGenerationResult gen = (HotSpotLIRGenerationResult) lirGenRes;
LIR lir = gen.getLIR();
assert gen.getDeoptimizationRescueSlot() == null || frameMap.frameNeedsAllocating() : "method that can deoptimize must have a frame";
Stub stub = gen.getStub();
Assembler masm = createAssembler(frameMap);
// On SPARC we always use stack frames.
HotSpotFrameContext frameContext = new HotSpotFrameContext(stub != null);
DataBuilder dataBuilder = new HotSpotDataBuilder(getCodeCache().getTarget());
CompilationResultBuilder crb = factory.createBuilder(getProviders().getCodeCache(), getProviders().getForeignCalls(), frameMap, masm, dataBuilder, frameContext, compilationResult);
crb.setTotalFrameSize(frameMap.totalFrameSize());
crb.setMaxInterpreterFrameSize(gen.getMaxInterpreterFrameSize());
StackSlot deoptimizationRescueSlot = gen.getDeoptimizationRescueSlot();
if (deoptimizationRescueSlot != null && stub == null) {
crb.compilationResult.setCustomStackAreaOffset(deoptimizationRescueSlot);
}
if (stub != null) {
// Even on sparc we need to save floating point registers
Set<Register> destroyedCallerRegisters = gatherDestroyedCallerRegisters(lir);
Map<LIRFrameState, SaveRegistersOp> calleeSaveInfo = gen.getCalleeSaveInfo();
updateStub(stub, destroyedCallerRegisters, calleeSaveInfo, frameMap);
}
assert registerSizePredictionValidator(crb);
return crb;
}
/**
* Registers a verifier which checks if the LIRInstructions estimate of constants size is
* greater or equal to the actual one.
*/
private static boolean registerSizePredictionValidator(final CompilationResultBuilder crb) {
/**
* Used to hold state between beforeOp and afterOp
*/
class ValidationState {
LIRInstruction op;
int constantSizeBefore;
public void before(LIRInstruction before) {
assert op == null : "LIRInstruction " + op + " no after call received";
op = before;
constantSizeBefore = calculateDataSectionSize(crb.compilationResult.getDataSection());
}
public void after(LIRInstruction after) {
assert after.equals(op) : "Instructions before/after don't match " + op + "/" + after;
int constantSizeAfter = calculateDataSectionSize(crb.compilationResult.getDataSection());
int actual = constantSizeAfter - constantSizeBefore;
if (op instanceof SPARCLIRInstructionMixin) {
org.graalvm.compiler.lir.sparc.SPARCLIRInstructionMixin.SizeEstimate size = ((SPARCLIRInstructionMixin) op).estimateSize();
assert size != null : "No size prediction available for op: " + op;
Class<?> c = op.getClass();
CONSTANT_ESTIMATED_STATS.add(c, size.constantSize);
CONSTANT_ACTUAL_STATS.add(c, actual);
assert size.constantSize >= actual : "Op " + op + " exceeded estimated constant size; predicted: " + size.constantSize + " actual: " + actual;
} else {
assert actual == 0 : "Op " + op + " emitted to DataSection without any estimate.";
}
op = null;
constantSizeBefore = 0;
}
}
final ValidationState state = new ValidationState();
crb.setOpCallback(op -> state.before(op), op -> state.after(op));
return true;
}
private static int calculateDataSectionSize(DataSection ds) {
int sum = 0;
for (Data d : ds) {
sum += d.getSize();
}
return sum;
}
@Override
public void emitCode(CompilationResultBuilder crb, LIR lir, ResolvedJavaMethod installedCodeOwner) {
SPARCMacroAssembler masm = (SPARCMacroAssembler) crb.asm;
// TODO: (sa) Fold the two traversals into one
stuffDelayedControlTransfers(lir);
int constantSize = calculateConstantSize(lir);
boolean canUseImmediateConstantLoad = constantSize < (1 << 13);
masm.setImmediateConstantLoad(canUseImmediateConstantLoad);
FrameMap frameMap = crb.frameMap;
RegisterConfig regConfig = frameMap.getRegisterConfig();
Label unverifiedStub = installedCodeOwner == null || installedCodeOwner.isStatic() ? null : new Label();
for (int i = 0; i < 2; i++) {
if (i > 0) {
crb.resetForEmittingCode();
lir.resetLabels();
resetDelayedControlTransfers(lir);
}
// Emit the prefix
if (unverifiedStub != null) {
crb.recordMark(config.MARKID_UNVERIFIED_ENTRY);
// We need to use JavaCall here because we haven't entered the frame yet.
CallingConvention cc = regConfig.getCallingConvention(HotSpotCallingConventionType.JavaCall, null, new JavaType[]{getProviders().getMetaAccess().lookupJavaType(Object.class)}, this);
Register inlineCacheKlass = g5; // see MacroAssembler::ic_call
try (ScratchRegister sc = masm.getScratchRegister()) {
Register scratch = sc.getRegister();
Register receiver = asRegister(cc.getArgument(0));
SPARCAddress src = new SPARCAddress(receiver, config.hubOffset);
masm.ldx(src, scratch);
masm.cmp(scratch, inlineCacheKlass);
}
BPCC.emit(masm, Xcc, NotEqual, NOT_ANNUL, PREDICT_NOT_TAKEN, unverifiedStub);
masm.nop(); // delay slot
}
masm.align(config.codeEntryAlignment);
crb.recordMark(config.MARKID_OSR_ENTRY);
crb.recordMark(config.MARKID_VERIFIED_ENTRY);
// Emit code for the LIR
crb.emit(lir);
}
profileInstructions(lir, crb);
HotSpotFrameContext frameContext = (HotSpotFrameContext) crb.frameContext;
HotSpotForeignCallsProvider foreignCalls = getProviders().getForeignCalls();
if (!frameContext.isStub) {
crb.recordMark(config.MARKID_EXCEPTION_HANDLER_ENTRY);
SPARCCall.directCall(crb, masm, foreignCalls.lookupForeignCall(EXCEPTION_HANDLER), null, null);
crb.recordMark(config.MARKID_DEOPT_HANDLER_ENTRY);
SPARCCall.directCall(crb, masm, foreignCalls.lookupForeignCall(DEOPTIMIZATION_HANDLER), null, null);
} else {
// No need to emit the stubs for entries back into the method since
// it has no calls that can cause such "return" entries
}
if (unverifiedStub != null) {
masm.bind(unverifiedStub);
try (ScratchRegister sc = masm.getScratchRegister()) {
Register scratch = sc.getRegister();
SPARCCall.indirectJmp(crb, masm, scratch, foreignCalls.lookupForeignCall(IC_MISS_HANDLER));
}
}
masm.peephole();
}
private static int calculateConstantSize(LIR lir) {
int size = 0;
for (AbstractBlockBase<?> block : lir.codeEmittingOrder()) {
if (block == null) {
continue;
}
for (LIRInstruction inst : lir.getLIRforBlock(block)) {
if (inst instanceof SPARCLIRInstructionMixin) {
SizeEstimate pred = ((SPARCLIRInstructionMixin) inst).estimateSize();
if (pred != null) {
size += pred.constantSize;
}
}
}
}
return size;
}
private static void resetDelayedControlTransfers(LIR lir) {
for (AbstractBlockBase<?> block : lir.codeEmittingOrder()) {
if (block == null) {
continue;
}
for (LIRInstruction inst : lir.getLIRforBlock(block)) {
if (inst instanceof SPARCDelayedControlTransfer) {
((SPARCDelayedControlTransfer) inst).resetState();
}
}
}
}
/**
* Fix-up over whole LIR.
*
* @see #stuffDelayedControlTransfers(LIR, AbstractBlockBase)
* @param l
*/
private static void stuffDelayedControlTransfers(LIR l) {
for (AbstractBlockBase<?> b : l.codeEmittingOrder()) {
if (b != null) {
stuffDelayedControlTransfers(l, b);
}
}
}
/**
* Tries to put DelayedControlTransfer instructions and DelayableLIRInstructions together. Also
* it tries to move the DelayedLIRInstruction to the DelayedControlTransfer instruction, if
* possible.
*/
private static void stuffDelayedControlTransfers(LIR l, AbstractBlockBase<?> block) {
List<LIRInstruction> instructions = l.getLIRforBlock(block);
if (instructions.size() >= 2) {
LIRDependencyAccumulator acc = new LIRDependencyAccumulator();
SPARCDelayedControlTransfer delayedTransfer = null;
int delayTransferPosition = -1;
for (int i = instructions.size() - 1; i >= 0; i--) {
LIRInstruction inst = instructions.get(i);
boolean adjacent = delayTransferPosition - i == 1;
if (!adjacent || inst.destroysCallerSavedRegisters() || leavesRegisterWindow(inst)) {
delayedTransfer = null;
}
if (inst instanceof SPARCDelayedControlTransfer) {
delayedTransfer = (SPARCDelayedControlTransfer) inst;
acc.start(inst);
delayTransferPosition = i;
} else if (delayedTransfer != null) {
boolean overlap = acc.add(inst);
if (!overlap && inst instanceof SPARCTailDelayedLIRInstruction) {
// We have found a non overlapping LIR instruction which can be delayed
((SPARCTailDelayedLIRInstruction) inst).setDelayedControlTransfer(delayedTransfer);
delayedTransfer = null;
}
}
}
}
}
private static boolean leavesRegisterWindow(LIRInstruction inst) {
return inst instanceof SPARCLIRInstructionMixin && ((SPARCLIRInstructionMixin) inst).leavesRegisterWindow();
}
/**
* Accumulates inputs/outputs/temp/alive in a set along we walk back the LIRInstructions and
* detects, if there is any overlap. In this way LIRInstructions can be detected, which can be
* moved nearer to the DelayedControlTransfer instruction.
*/
private static class LIRDependencyAccumulator {
private final Set<Object> inputs = new HashSet<>(10);
private boolean overlap = false;
private final InstructionValueConsumer valueConsumer = (instruction, value, mode, flags) -> {
Object valueObject = value;
if (isRegister(value)) { // Canonicalize registers
valueObject = asRegister(value);
}
if (!inputs.add(valueObject)) {
overlap = true;
}
};
public void start(LIRInstruction initial) {
inputs.clear();
overlap = false;
initial.visitEachInput(valueConsumer);
initial.visitEachTemp(valueConsumer);
initial.visitEachAlive(valueConsumer);
}
/**
* Adds the inputs of lir instruction to the accumulator and returns, true if there was any
* overlap of parameters.
*
* @param inst
* @return true if an overlap was found
*/
public boolean add(LIRInstruction inst) {
overlap = false;
inst.visitEachOutput(valueConsumer);
inst.visitEachTemp(valueConsumer);
inst.visitEachInput(valueConsumer);
inst.visitEachAlive(valueConsumer);
return overlap;
}
}
@Override
public RegisterAllocationConfig newRegisterAllocationConfig(RegisterConfig registerConfig) {
RegisterConfig registerConfigNonNull = registerConfig == null ? getCodeCache().getRegisterConfig() : registerConfig;
return new SPARCHotSpotRegisterAllocationConfig(registerConfigNonNull);
}
@Override
public Set<Register> translateToCallerRegisters(Set<Register> calleeRegisters) {
HashSet<Register> callerRegisters = new HashSet<>(calleeRegisters.size());
for (Register register : calleeRegisters) {
if (l0.number <= register.number && register.number <= l7.number) {
// do nothing
} else if (o0.number <= register.number && register.number <= o7.number) {
// do nothing
} else if (i0.number <= register.number && register.number <= i7.number) {
// translate input to output registers
callerRegisters.add(translateInputToOutputRegister(register));
} else {
callerRegisters.add(register);
}
}
return callerRegisters;
}
private Register translateInputToOutputRegister(Register register) {
assert i0.number <= register.number && register.number <= i7.number : "Not an input register " + register;
return getTarget().arch.getRegisters().get(o0.number + register.number - i0.number);
}
}