blob: 788eada6fcc465244bb32960819fae3339e877e8 [file] [log] [blame]
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.java.util.jar.pack;
import com.sun.java.util.jar.pack.Package.Class;
import java.lang.reflect.Modifier;
import java.util.Arrays;
import java.util.Collection;
import static com.sun.java.util.jar.pack.Constants.*;
/**
* Represents a chunk of bytecodes.
* @author John Rose
*/
class Code extends Attribute.Holder {
Class.Method m;
public Code(Class.Method m) {
this.m = m;
}
public Class.Method getMethod() {
return m;
}
public Class thisClass() {
return m.thisClass();
}
public Package getPackage() {
return m.thisClass().getPackage();
}
public ConstantPool.Entry[] getCPMap() {
return m.getCPMap();
}
static private final ConstantPool.Entry[] noRefs = ConstantPool.noRefs;
// The following fields are used directly by the ClassReader, etc.
int max_stack;
int max_locals;
ConstantPool.Entry handler_class[] = noRefs;
int handler_start[] = noInts;
int handler_end[] = noInts;
int handler_catch[] = noInts;
byte[] bytes;
Fixups fixups; // reference relocations, if any are required
Object insnMap; // array of instruction boundaries
int getLength() { return bytes.length; }
int getMaxStack() {
return max_stack;
}
void setMaxStack(int ms) {
max_stack = ms;
}
int getMaxNALocals() {
int argsize = m.getArgumentSize();
return max_locals - argsize;
}
void setMaxNALocals(int ml) {
int argsize = m.getArgumentSize();
max_locals = argsize + ml;
}
int getHandlerCount() {
assert(handler_class.length == handler_start.length);
assert(handler_class.length == handler_end.length);
assert(handler_class.length == handler_catch.length);
return handler_class.length;
}
void setHandlerCount(int h) {
if (h > 0) {
handler_class = new ConstantPool.Entry[h];
handler_start = new int[h];
handler_end = new int[h];
handler_catch = new int[h];
// caller must fill these in ASAP
}
}
void setBytes(byte[] bytes) {
this.bytes = bytes;
if (fixups != null)
fixups.setBytes(bytes);
}
void setInstructionMap(int[] insnMap, int mapLen) {
//int[] oldMap = null;
//assert((oldMap = getInstructionMap()) != null);
this.insnMap = allocateInstructionMap(insnMap, mapLen);
//assert(Arrays.equals(oldMap, getInstructionMap()));
}
void setInstructionMap(int[] insnMap) {
setInstructionMap(insnMap, insnMap.length);
}
int[] getInstructionMap() {
return expandInstructionMap(getInsnMap());
}
void addFixups(Collection moreFixups) {
if (fixups == null) {
fixups = new Fixups(bytes);
}
assert(fixups.getBytes() == bytes);
fixups.addAll(moreFixups);
}
public void trimToSize() {
if (fixups != null) {
fixups.trimToSize();
if (fixups.size() == 0)
fixups = null;
}
super.trimToSize();
}
protected void visitRefs(int mode, Collection<ConstantPool.Entry> refs) {
int verbose = getPackage().verbose;
if (verbose > 2)
System.out.println("Reference scan "+this);
Class cls = thisClass();
refs.addAll(Arrays.asList(handler_class));
if (fixups != null) {
fixups.visitRefs(refs);
} else {
// References (to a local cpMap) are embedded in the bytes.
ConstantPool.Entry[] cpMap = getCPMap();
for (Instruction i = instructionAt(0); i != null; i = i.next()) {
if (verbose > 4)
System.out.println(i);
int cpref = i.getCPIndex();
if (cpref >= 0) {
refs.add(cpMap[cpref]);
}
}
}
// Handle attribute list:
super.visitRefs(mode, refs);
}
// Since bytecodes are the single largest contributor to
// package size, it's worth a little bit of trouble
// to reduce the per-bytecode memory footprint.
// In the current scheme, half of the bulk of these arrays
// due to bytes, and half to shorts. (Ints are insignificant.)
// Given an average of 1.8 bytes per instruction, this means
// instruction boundary arrays are about a 75% overhead--tolerable.
// (By using bytes, we get 33% savings over just shorts and ints.
// Using both bytes and shorts gives 66% savings over just ints.)
static final boolean shrinkMaps = true;
private Object allocateInstructionMap(int[] insnMap, int mapLen) {
int PClimit = getLength();
if (shrinkMaps && PClimit <= Byte.MAX_VALUE - Byte.MIN_VALUE) {
byte[] map = new byte[mapLen+1];
for (int i = 0; i < mapLen; i++) {
map[i] = (byte)(insnMap[i] + Byte.MIN_VALUE);
}
map[mapLen] = (byte)(PClimit + Byte.MIN_VALUE);
return map;
} else if (shrinkMaps && PClimit < Short.MAX_VALUE - Short.MIN_VALUE) {
short[] map = new short[mapLen+1];
for (int i = 0; i < mapLen; i++) {
map[i] = (short)(insnMap[i] + Short.MIN_VALUE);
}
map[mapLen] = (short)(PClimit + Short.MIN_VALUE);
return map;
} else {
int[] map = Arrays.copyOf(insnMap, mapLen + 1);
map[mapLen] = PClimit;
return map;
}
}
private int[] expandInstructionMap(Object map0) {
int[] imap;
if (map0 instanceof byte[]) {
byte[] map = (byte[]) map0;
imap = new int[map.length-1];
for (int i = 0; i < imap.length; i++) {
imap[i] = map[i] - Byte.MIN_VALUE;
}
} else if (map0 instanceof short[]) {
short[] map = (short[]) map0;
imap = new int[map.length-1];
for (int i = 0; i < imap.length; i++) {
imap[i] = map[i] - Byte.MIN_VALUE;
}
} else {
int[] map = (int[]) map0;
imap = Arrays.copyOfRange(map, 0, map.length - 1);
}
return imap;
}
Object getInsnMap() {
// Build a map of instruction boundaries.
if (insnMap != null) {
return insnMap;
}
int[] map = new int[getLength()];
int fillp = 0;
for (Instruction i = instructionAt(0); i != null; i = i.next()) {
map[fillp++] = i.getPC();
}
// Make it byte[], short[], or int[] according to the max BCI.
insnMap = allocateInstructionMap(map, fillp);
//assert(assertBCICodingsOK());
return insnMap;
}
/** Encode the given BCI as an instruction boundary number.
* For completeness, irregular (non-boundary) BCIs are
* encoded compactly immediately after the boundary numbers.
* This encoding is the identity mapping outside 0..length,
* and it is 1-1 everywhere. All by itself this technique
* improved zipped rt.jar compression by 2.6%.
*/
public int encodeBCI(int bci) {
if (bci <= 0 || bci > getLength()) return bci;
Object map0 = getInsnMap();
int i, len;
if (shrinkMaps && map0 instanceof byte[]) {
byte[] map = (byte[]) map0;
len = map.length;
i = Arrays.binarySearch(map, (byte)(bci + Byte.MIN_VALUE));
} else if (shrinkMaps && map0 instanceof short[]) {
short[] map = (short[]) map0;
len = map.length;
i = Arrays.binarySearch(map, (short)(bci + Short.MIN_VALUE));
} else {
int[] map = (int[]) map0;
len = map.length;
i = Arrays.binarySearch(map, bci);
}
assert(i != -1);
assert(i != 0);
assert(i != len);
assert(i != -len-1);
return (i >= 0) ? i : len + bci - (-i-1);
}
public int decodeBCI(int bciCode) {
if (bciCode <= 0 || bciCode > getLength()) return bciCode;
Object map0 = getInsnMap();
int i, len;
// len == map.length
// If bciCode < len, result is map[bciCode], the common and fast case.
// Otherwise, let map[i] be the smallest map[*] larger than bci.
// Then, required by the return statement of encodeBCI:
// bciCode == len + bci - i
// Thus:
// bci-i == bciCode-len
// map[i]-adj-i == bciCode-len ; adj in (0..map[i]-map[i-1])
// We can solve this by searching for adjacent entries
// map[i-1], map[i] such that:
// map[i-1]-(i-1) <= bciCode-len < map[i]-i
// This can be approximated by searching map[i] for bciCode and then
// linear searching backward. Given the right i, we then have:
// bci == bciCode-len + i
// This linear search is at its worst case for indexes in the beginning
// of a large method, but it's not clear that this is a problem in
// practice, since BCIs are usually on instruction boundaries.
if (shrinkMaps && map0 instanceof byte[]) {
byte[] map = (byte[]) map0;
len = map.length;
if (bciCode < len)
return map[bciCode] - Byte.MIN_VALUE;
i = Arrays.binarySearch(map, (byte)(bciCode + Byte.MIN_VALUE));
if (i < 0) i = -i-1;
int key = bciCode-len + Byte.MIN_VALUE;
for (;; i--) {
if (map[i-1]-(i-1) <= key) break;
}
} else if (shrinkMaps && map0 instanceof short[]) {
short[] map = (short[]) map0;
len = map.length;
if (bciCode < len)
return map[bciCode] - Short.MIN_VALUE;
i = Arrays.binarySearch(map, (short)(bciCode + Short.MIN_VALUE));
if (i < 0) i = -i-1;
int key = bciCode-len + Short.MIN_VALUE;
for (;; i--) {
if (map[i-1]-(i-1) <= key) break;
}
} else {
int[] map = (int[]) map0;
len = map.length;
if (bciCode < len)
return map[bciCode];
i = Arrays.binarySearch(map, bciCode);
if (i < 0) i = -i-1;
int key = bciCode-len;
for (;; i--) {
if (map[i-1]-(i-1) <= key) break;
}
}
return bciCode-len + i;
}
public void finishRefs(ConstantPool.Index ix) {
if (fixups != null) {
fixups.finishRefs(ix);
fixups = null;
}
// Code attributes are finished in ClassWriter.writeAttributes.
}
Instruction instructionAt(int pc) {
return Instruction.at(bytes, pc);
}
static boolean flagsRequireCode(int flags) {
// A method's flags force it to have a Code attribute,
// if the flags are neither native nor abstract.
return (flags & (Modifier.NATIVE | Modifier.ABSTRACT)) == 0;
}
public String toString() {
return m+".Code";
}
/// Fetching values from my own array.
public int getInt(int pc) { return Instruction.getInt(bytes, pc); }
public int getShort(int pc) { return Instruction.getShort(bytes, pc); }
public int getByte(int pc) { return Instruction.getByte(bytes, pc); }
void setInt(int pc, int x) { Instruction.setInt(bytes, pc, x); }
void setShort(int pc, int x) { Instruction.setShort(bytes, pc, x); }
void setByte(int pc, int x) { Instruction.setByte(bytes, pc, x); }
/* TEST CODE ONLY
private boolean assertBCICodingsOK() {
boolean ok = true;
int len = java.lang.reflect.Array.getLength(insnMap);
int base = 0;
if (insnMap.getClass().getComponentType() == Byte.TYPE)
base = Byte.MIN_VALUE;
if (insnMap.getClass().getComponentType() == Short.TYPE)
base = Short.MIN_VALUE;
for (int i = -1, imax = getLength()+1; i <= imax; i++) {
int bci = i;
int enc = Math.min(-999, bci-1);
int dec = enc;
try {
enc = encodeBCI(bci);
dec = decodeBCI(enc);
} catch (RuntimeException ee) {
ee.printStackTrace();
}
if (dec == bci) {
//System.out.println("BCI="+bci+(enc<len?"":" ")+" enc="+enc);
continue;
}
if (ok) {
for (int q = 0; q <= 1; q++) {
StringBuffer sb = new StringBuffer();
sb.append("bci "+(q==0?"map":"del")+"["+len+"] = {");
for (int j = 0; j < len; j++) {
int mapi = ((Number)java.lang.reflect.Array.get(insnMap, j)).intValue() - base;
mapi -= j*q;
sb.append(" "+mapi);
}
sb.append(" }");
System.out.println("*** "+sb);
}
}
System.out.println("*** BCI="+bci+" enc="+enc+" dec="+dec);
ok = false;
}
return ok;
}
//*/
}