blob: 2d27a5ba72d51fb026024ffa95a5a00bedcf93ae [file] [log] [blame]
/* Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation, nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define LOG_NDEBUG 0
#define LOG_TAG "LocSvc_MeasurementAPIClient"
#include <log_util.h>
#include <loc_cfg.h>
#include <inttypes.h>
#include "LocationUtil.h"
#include "MeasurementAPIClient.h"
#include <loc_misc_utils.h>
namespace android {
namespace hardware {
namespace gnss {
namespace V2_1 {
namespace implementation {
using ::android::hardware::gnss::V1_0::IGnssMeasurement;
using ::android::hardware::gnss::V2_0::IGnssMeasurementCallback;
static void convertGnssData(GnssMeasurementsNotification& in,
V1_0::IGnssMeasurementCallback::GnssData& out);
static void convertGnssData_1_1(GnssMeasurementsNotification& in,
V1_1::IGnssMeasurementCallback::GnssData& out);
static void convertGnssData_2_0(GnssMeasurementsNotification& in,
V2_0::IGnssMeasurementCallback::GnssData& out);
static void convertGnssData_2_1(GnssMeasurementsNotification& in,
V2_1::IGnssMeasurementCallback::GnssData& out);
static void convertGnssMeasurement(GnssMeasurementsData& in,
V1_0::IGnssMeasurementCallback::GnssMeasurement& out);
static void convertGnssClock(GnssMeasurementsClock& in, IGnssMeasurementCallback::GnssClock& out);
static void convertGnssClock_2_1(GnssMeasurementsClock& in,
V2_1::IGnssMeasurementCallback::GnssClock& out);
static void convertGnssMeasurementsCodeType(GnssMeasurementsCodeType& inCodeType,
char* inOtherCodeTypeName,
::android::hardware::hidl_string& out);
static void convertGnssMeasurementsAccumulatedDeltaRangeState(GnssMeasurementsAdrStateMask& in,
::android::hardware::hidl_bitfield
<V1_1::IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState>& out);
static void convertGnssMeasurementsState(GnssMeasurementsStateMask& in,
::android::hardware::hidl_bitfield
<V2_0::IGnssMeasurementCallback::GnssMeasurementState>& out);
static void convertElapsedRealtimeNanos(GnssMeasurementsNotification& in,
::android::hardware::gnss::V2_0::ElapsedRealtime& elapsedRealtimeNanos);
MeasurementAPIClient::MeasurementAPIClient() :
mGnssMeasurementCbIface(nullptr),
mGnssMeasurementCbIface_1_1(nullptr),
mGnssMeasurementCbIface_2_0(nullptr),
mGnssMeasurementCbIface_2_1(nullptr),
mTracking(false)
{
LOC_LOGD("%s]: ()", __FUNCTION__);
}
MeasurementAPIClient::~MeasurementAPIClient()
{
LOC_LOGD("%s]: ()", __FUNCTION__);
}
void MeasurementAPIClient::clearInterfaces()
{
mGnssMeasurementCbIface = nullptr;
mGnssMeasurementCbIface_1_1 = nullptr;
mGnssMeasurementCbIface_2_0 = nullptr;
mGnssMeasurementCbIface_2_1 = nullptr;
}
// for GpsInterface
Return<IGnssMeasurement::GnssMeasurementStatus>
MeasurementAPIClient::measurementSetCallback(const sp<V1_0::IGnssMeasurementCallback>& callback)
{
LOC_LOGD("%s]: (%p)", __FUNCTION__, &callback);
mMutex.lock();
clearInterfaces();
mGnssMeasurementCbIface = callback;
mMutex.unlock();
return startTracking();
}
Return<IGnssMeasurement::GnssMeasurementStatus>
MeasurementAPIClient::measurementSetCallback_1_1(
const sp<V1_1::IGnssMeasurementCallback>& callback,
GnssPowerMode powerMode, uint32_t timeBetweenMeasurement)
{
LOC_LOGD("%s]: (%p) (powermode: %d) (tbm: %d)",
__FUNCTION__, &callback, (int)powerMode, timeBetweenMeasurement);
mMutex.lock();
clearInterfaces();
mGnssMeasurementCbIface_1_1 = callback;
mMutex.unlock();
return startTracking(powerMode, timeBetweenMeasurement);
}
Return<IGnssMeasurement::GnssMeasurementStatus>
MeasurementAPIClient::measurementSetCallback_2_0(
const sp<V2_0::IGnssMeasurementCallback>& callback,
GnssPowerMode powerMode, uint32_t timeBetweenMeasurement)
{
LOC_LOGD("%s]: (%p) (powermode: %d) (tbm: %d)",
__FUNCTION__, &callback, (int)powerMode, timeBetweenMeasurement);
mMutex.lock();
clearInterfaces();
mGnssMeasurementCbIface_2_0 = callback;
mMutex.unlock();
return startTracking(powerMode, timeBetweenMeasurement);
}
Return<IGnssMeasurement::GnssMeasurementStatus> MeasurementAPIClient::measurementSetCallback_2_1(
const sp<V2_1::IGnssMeasurementCallback>& callback,
GnssPowerMode powerMode, uint32_t timeBetweenMeasurement) {
LOC_LOGD("%s]: (%p) (powermode: %d) (tbm: %d)",
__FUNCTION__, &callback, (int)powerMode, timeBetweenMeasurement);
mMutex.lock();
clearInterfaces();
mGnssMeasurementCbIface_2_1 = callback;
mMutex.unlock();
return startTracking(powerMode, timeBetweenMeasurement);
}
Return<IGnssMeasurement::GnssMeasurementStatus>
MeasurementAPIClient::startTracking(
GnssPowerMode powerMode, uint32_t timeBetweenMeasurement)
{
LocationCallbacks locationCallbacks;
memset(&locationCallbacks, 0, sizeof(LocationCallbacks));
locationCallbacks.size = sizeof(LocationCallbacks);
locationCallbacks.trackingCb = nullptr;
locationCallbacks.batchingCb = nullptr;
locationCallbacks.geofenceBreachCb = nullptr;
locationCallbacks.geofenceStatusCb = nullptr;
locationCallbacks.gnssLocationInfoCb = nullptr;
locationCallbacks.gnssNiCb = nullptr;
locationCallbacks.gnssSvCb = nullptr;
locationCallbacks.gnssNmeaCb = nullptr;
locationCallbacks.gnssMeasurementsCb = nullptr;
if (mGnssMeasurementCbIface_2_1 != nullptr ||
mGnssMeasurementCbIface_2_0 != nullptr ||
mGnssMeasurementCbIface_1_1 != nullptr ||
mGnssMeasurementCbIface != nullptr) {
locationCallbacks.gnssMeasurementsCb =
[this](GnssMeasurementsNotification gnssMeasurementsNotification) {
onGnssMeasurementsCb(gnssMeasurementsNotification);
};
}
locAPISetCallbacks(locationCallbacks);
TrackingOptions options = {};
memset(&options, 0, sizeof(TrackingOptions));
options.size = sizeof(TrackingOptions);
options.minInterval = 1000;
options.mode = GNSS_SUPL_MODE_STANDALONE;
if (GNSS_POWER_MODE_INVALID != powerMode) {
options.powerMode = powerMode;
options.tbm = timeBetweenMeasurement;
}
mTracking = true;
LOC_LOGD("%s]: start tracking session", __FUNCTION__);
locAPIStartTracking(options);
return IGnssMeasurement::GnssMeasurementStatus::SUCCESS;
}
// for GpsMeasurementInterface
void MeasurementAPIClient::measurementClose() {
LOC_LOGD("%s]: ()", __FUNCTION__);
mTracking = false;
locAPIStopTracking();
}
// callbacks
void MeasurementAPIClient::onGnssMeasurementsCb(
GnssMeasurementsNotification gnssMeasurementsNotification)
{
LOC_LOGD("%s]: (count: %u active: %d)",
__FUNCTION__, gnssMeasurementsNotification.count, mTracking);
if (mTracking) {
mMutex.lock();
sp<V1_0::IGnssMeasurementCallback> gnssMeasurementCbIface = nullptr;
sp<V1_1::IGnssMeasurementCallback> gnssMeasurementCbIface_1_1 = nullptr;
sp<V2_0::IGnssMeasurementCallback> gnssMeasurementCbIface_2_0 = nullptr;
sp<V2_1::IGnssMeasurementCallback> gnssMeasurementCbIface_2_1 = nullptr;
if (mGnssMeasurementCbIface_2_1 != nullptr) {
gnssMeasurementCbIface_2_1 = mGnssMeasurementCbIface_2_1;
} else if (mGnssMeasurementCbIface_2_0 != nullptr) {
gnssMeasurementCbIface_2_0 = mGnssMeasurementCbIface_2_0;
} else if (mGnssMeasurementCbIface_1_1 != nullptr) {
gnssMeasurementCbIface_1_1 = mGnssMeasurementCbIface_1_1;
} else if (mGnssMeasurementCbIface != nullptr) {
gnssMeasurementCbIface = mGnssMeasurementCbIface;
}
mMutex.unlock();
if (gnssMeasurementCbIface_2_1 != nullptr) {
V2_1::IGnssMeasurementCallback::GnssData gnssData;
convertGnssData_2_1(gnssMeasurementsNotification, gnssData);
auto r = gnssMeasurementCbIface_2_1->gnssMeasurementCb_2_1(gnssData);
if (!r.isOk()) {
LOC_LOGE("%s] Error from gnssMeasurementCb description=%s",
__func__, r.description().c_str());
}
} else if (gnssMeasurementCbIface_2_0 != nullptr) {
V2_0::IGnssMeasurementCallback::GnssData gnssData;
convertGnssData_2_0(gnssMeasurementsNotification, gnssData);
auto r = gnssMeasurementCbIface_2_0->gnssMeasurementCb_2_0(gnssData);
if (!r.isOk()) {
LOC_LOGE("%s] Error from gnssMeasurementCb description=%s",
__func__, r.description().c_str());
}
} else if (gnssMeasurementCbIface_1_1 != nullptr) {
V1_1::IGnssMeasurementCallback::GnssData gnssData;
convertGnssData_1_1(gnssMeasurementsNotification, gnssData);
auto r = gnssMeasurementCbIface_1_1->gnssMeasurementCb(gnssData);
if (!r.isOk()) {
LOC_LOGE("%s] Error from gnssMeasurementCb description=%s",
__func__, r.description().c_str());
}
} else if (gnssMeasurementCbIface != nullptr) {
V1_0::IGnssMeasurementCallback::GnssData gnssData;
convertGnssData(gnssMeasurementsNotification, gnssData);
auto r = gnssMeasurementCbIface->GnssMeasurementCb(gnssData);
if (!r.isOk()) {
LOC_LOGE("%s] Error from GnssMeasurementCb description=%s",
__func__, r.description().c_str());
}
}
}
}
static void convertGnssMeasurement(GnssMeasurementsData& in,
V1_0::IGnssMeasurementCallback::GnssMeasurement& out)
{
memset(&out, 0, sizeof(out));
if (in.flags & GNSS_MEASUREMENTS_DATA_SIGNAL_TO_NOISE_RATIO_BIT)
out.flags |= IGnssMeasurementCallback::GnssMeasurementFlags::HAS_SNR;
if (in.flags & GNSS_MEASUREMENTS_DATA_CARRIER_FREQUENCY_BIT)
out.flags |= IGnssMeasurementCallback::GnssMeasurementFlags::HAS_CARRIER_FREQUENCY;
if (in.flags & GNSS_MEASUREMENTS_DATA_CARRIER_CYCLES_BIT)
out.flags |= IGnssMeasurementCallback::GnssMeasurementFlags::HAS_CARRIER_CYCLES;
if (in.flags & GNSS_MEASUREMENTS_DATA_CARRIER_PHASE_BIT)
out.flags |= IGnssMeasurementCallback::GnssMeasurementFlags::HAS_CARRIER_PHASE;
if (in.flags & GNSS_MEASUREMENTS_DATA_CARRIER_PHASE_UNCERTAINTY_BIT)
out.flags |= IGnssMeasurementCallback::GnssMeasurementFlags::HAS_CARRIER_PHASE_UNCERTAINTY;
if (in.flags & GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT)
out.flags |= IGnssMeasurementCallback::GnssMeasurementFlags::HAS_AUTOMATIC_GAIN_CONTROL;
convertGnssSvid(in, out.svid);
convertGnssConstellationType(in.svType, out.constellation);
out.timeOffsetNs = in.timeOffsetNs;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_CODE_LOCK_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_CODE_LOCK;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_BIT_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_BIT_SYNC;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_SUBFRAME_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_SUBFRAME_SYNC;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_TOW_DECODED_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_TOW_DECODED;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_MSEC_AMBIGUOUS_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_MSEC_AMBIGUOUS;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_SYMBOL_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_SYMBOL_SYNC;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_GLO_STRING_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GLO_STRING_SYNC;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_GLO_TOD_DECODED_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GLO_TOD_DECODED;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_BDS_D2_BIT_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_BDS_D2_BIT_SYNC;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_BDS_D2_SUBFRAME_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_BDS_D2_SUBFRAME_SYNC;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_GAL_E1BC_CODE_LOCK_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GAL_E1BC_CODE_LOCK;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_GAL_E1C_2ND_CODE_LOCK_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GAL_E1C_2ND_CODE_LOCK;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_GAL_E1B_PAGE_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GAL_E1B_PAGE_SYNC;
if (in.stateMask & GNSS_MEASUREMENTS_STATE_SBAS_SYNC_BIT)
out.state |= IGnssMeasurementCallback::GnssMeasurementState::STATE_SBAS_SYNC;
out.receivedSvTimeInNs = in.receivedSvTimeNs;
out.receivedSvTimeUncertaintyInNs = in.receivedSvTimeUncertaintyNs;
out.cN0DbHz = in.carrierToNoiseDbHz;
out.pseudorangeRateMps = in.pseudorangeRateMps;
out.pseudorangeRateUncertaintyMps = in.pseudorangeRateUncertaintyMps;
if (in.adrStateMask & GNSS_MEASUREMENTS_ACCUMULATED_DELTA_RANGE_STATE_VALID_BIT)
out.accumulatedDeltaRangeState |=
IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState::ADR_STATE_VALID;
if (in.adrStateMask & GNSS_MEASUREMENTS_ACCUMULATED_DELTA_RANGE_STATE_RESET_BIT)
out.accumulatedDeltaRangeState |=
IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState::ADR_STATE_RESET;
if (in.adrStateMask & GNSS_MEASUREMENTS_ACCUMULATED_DELTA_RANGE_STATE_CYCLE_SLIP_BIT)
out.accumulatedDeltaRangeState |=
IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState::ADR_STATE_CYCLE_SLIP;
out.accumulatedDeltaRangeM = in.adrMeters;
out.accumulatedDeltaRangeUncertaintyM = in.adrUncertaintyMeters;
out.carrierFrequencyHz = in.carrierFrequencyHz;
out.carrierCycles = in.carrierCycles;
out.carrierPhase = in.carrierPhase;
out.carrierPhaseUncertainty = in.carrierPhaseUncertainty;
uint8_t indicator =
static_cast<uint8_t>(IGnssMeasurementCallback::GnssMultipathIndicator::INDICATOR_UNKNOWN);
if (in.multipathIndicator & GNSS_MEASUREMENTS_MULTIPATH_INDICATOR_PRESENT)
indicator |= IGnssMeasurementCallback::GnssMultipathIndicator::INDICATOR_PRESENT;
if (in.multipathIndicator & GNSS_MEASUREMENTS_MULTIPATH_INDICATOR_NOT_PRESENT)
indicator |= IGnssMeasurementCallback::GnssMultipathIndicator::INDICATIOR_NOT_PRESENT;
out.multipathIndicator =
static_cast<IGnssMeasurementCallback::GnssMultipathIndicator>(indicator);
out.snrDb = in.signalToNoiseRatioDb;
out.agcLevelDb = in.agcLevelDb;
}
static void convertGnssClock(GnssMeasurementsClock& in, IGnssMeasurementCallback::GnssClock& out)
{
memset(&out, 0, sizeof(out));
if (in.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_LEAP_SECOND_BIT)
out.gnssClockFlags |= IGnssMeasurementCallback::GnssClockFlags::HAS_LEAP_SECOND;
if (in.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_TIME_UNCERTAINTY_BIT)
out.gnssClockFlags |= IGnssMeasurementCallback::GnssClockFlags::HAS_TIME_UNCERTAINTY;
if (in.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_FULL_BIAS_BIT)
out.gnssClockFlags |= IGnssMeasurementCallback::GnssClockFlags::HAS_FULL_BIAS;
if (in.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_BIAS_BIT)
out.gnssClockFlags |= IGnssMeasurementCallback::GnssClockFlags::HAS_BIAS;
if (in.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_BIAS_UNCERTAINTY_BIT)
out.gnssClockFlags |= IGnssMeasurementCallback::GnssClockFlags::HAS_BIAS_UNCERTAINTY;
if (in.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_DRIFT_BIT)
out.gnssClockFlags |= IGnssMeasurementCallback::GnssClockFlags::HAS_DRIFT;
if (in.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_DRIFT_UNCERTAINTY_BIT)
out.gnssClockFlags |= IGnssMeasurementCallback::GnssClockFlags::HAS_DRIFT_UNCERTAINTY;
out.leapSecond = in.leapSecond;
out.timeNs = in.timeNs;
out.timeUncertaintyNs = in.timeUncertaintyNs;
out.fullBiasNs = in.fullBiasNs;
out.biasNs = in.biasNs;
out.biasUncertaintyNs = in.biasUncertaintyNs;
out.driftNsps = in.driftNsps;
out.driftUncertaintyNsps = in.driftUncertaintyNsps;
out.hwClockDiscontinuityCount = in.hwClockDiscontinuityCount;
}
static void convertGnssClock_2_1(GnssMeasurementsClock& in,
V2_1::IGnssMeasurementCallback::GnssClock& out)
{
memset(&out, 0, sizeof(out));
convertGnssClock(in, out.v1_0);
convertGnssConstellationType(in.referenceSignalTypeForIsb.svType,
out.referenceSignalTypeForIsb.constellation);
out.referenceSignalTypeForIsb.carrierFrequencyHz =
in.referenceSignalTypeForIsb.carrierFrequencyHz;
convertGnssMeasurementsCodeType(in.referenceSignalTypeForIsb.codeType,
in.referenceSignalTypeForIsb.otherCodeTypeName,
out.referenceSignalTypeForIsb.codeType);
}
static void convertGnssData(GnssMeasurementsNotification& in,
V1_0::IGnssMeasurementCallback::GnssData& out)
{
memset(&out, 0, sizeof(out));
out.measurementCount = in.count;
if (out.measurementCount > static_cast<uint32_t>(V1_0::GnssMax::SVS_COUNT)) {
LOC_LOGW("%s]: Too many measurement %u. Clamps to %d.",
__FUNCTION__, out.measurementCount, V1_0::GnssMax::SVS_COUNT);
out.measurementCount = static_cast<uint32_t>(V1_0::GnssMax::SVS_COUNT);
}
for (size_t i = 0; i < out.measurementCount; i++) {
convertGnssMeasurement(in.measurements[i], out.measurements[i]);
}
convertGnssClock(in.clock, out.clock);
}
static void convertGnssData_1_1(GnssMeasurementsNotification& in,
V1_1::IGnssMeasurementCallback::GnssData& out)
{
memset(&out, 0, sizeof(out));
out.measurements.resize(in.count);
for (size_t i = 0; i < in.count; i++) {
convertGnssMeasurement(in.measurements[i], out.measurements[i].v1_0);
convertGnssMeasurementsAccumulatedDeltaRangeState(in.measurements[i].adrStateMask,
out.measurements[i].accumulatedDeltaRangeState);
}
convertGnssClock(in.clock, out.clock);
}
static void convertGnssData_2_0(GnssMeasurementsNotification& in,
V2_0::IGnssMeasurementCallback::GnssData& out)
{
memset(&out, 0, sizeof(out));
out.measurements.resize(in.count);
for (size_t i = 0; i < in.count; i++) {
convertGnssMeasurement(in.measurements[i], out.measurements[i].v1_1.v1_0);
convertGnssConstellationType(in.measurements[i].svType, out.measurements[i].constellation);
convertGnssMeasurementsCodeType(in.measurements[i].codeType,
in.measurements[i].otherCodeTypeName,
out.measurements[i].codeType);
convertGnssMeasurementsAccumulatedDeltaRangeState(in.measurements[i].adrStateMask,
out.measurements[i].v1_1.accumulatedDeltaRangeState);
convertGnssMeasurementsState(in.measurements[i].stateMask, out.measurements[i].state);
}
convertGnssClock(in.clock, out.clock);
convertElapsedRealtimeNanos(in, out.elapsedRealtime);
}
static void convertGnssMeasurementsCodeType(GnssMeasurementsCodeType& inCodeType,
char* inOtherCodeTypeName, ::android::hardware::hidl_string& out)
{
memset(&out, 0, sizeof(out));
switch(inCodeType) {
case GNSS_MEASUREMENTS_CODE_TYPE_A:
out = "A";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_B:
out = "B";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_C:
out = "C";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_I:
out = "I";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_L:
out = "L";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_M:
out = "M";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_P:
out = "P";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_Q:
out = "Q";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_S:
out = "S";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_W:
out = "W";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_X:
out = "X";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_Y:
out = "Y";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_Z:
out = "Z";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_N:
out = "N";
break;
case GNSS_MEASUREMENTS_CODE_TYPE_OTHER:
default:
out = inOtherCodeTypeName;
break;
}
}
static void convertGnssMeasurementsAccumulatedDeltaRangeState(GnssMeasurementsAdrStateMask& in,
::android::hardware::hidl_bitfield
<V1_1::IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState>& out)
{
memset(&out, 0, sizeof(out));
if (in & GNSS_MEASUREMENTS_ACCUMULATED_DELTA_RANGE_STATE_VALID_BIT)
out |= IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState::ADR_STATE_VALID;
if (in & GNSS_MEASUREMENTS_ACCUMULATED_DELTA_RANGE_STATE_RESET_BIT)
out |= IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState::ADR_STATE_RESET;
if (in & GNSS_MEASUREMENTS_ACCUMULATED_DELTA_RANGE_STATE_CYCLE_SLIP_BIT)
out |= IGnssMeasurementCallback::GnssAccumulatedDeltaRangeState::ADR_STATE_CYCLE_SLIP;
if (in & GNSS_MEASUREMENTS_ACCUMULATED_DELTA_RANGE_STATE_HALF_CYCLE_RESOLVED_BIT)
out |= IGnssMeasurementCallback::
GnssAccumulatedDeltaRangeState::ADR_STATE_HALF_CYCLE_RESOLVED;
}
static void convertGnssMeasurementsState(GnssMeasurementsStateMask& in,
::android::hardware::hidl_bitfield
<V2_0::IGnssMeasurementCallback::GnssMeasurementState>& out)
{
memset(&out, 0, sizeof(out));
if (in & GNSS_MEASUREMENTS_STATE_CODE_LOCK_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_CODE_LOCK;
if (in & GNSS_MEASUREMENTS_STATE_BIT_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_BIT_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_SUBFRAME_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_SUBFRAME_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_TOW_DECODED_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_TOW_DECODED;
if (in & GNSS_MEASUREMENTS_STATE_MSEC_AMBIGUOUS_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_MSEC_AMBIGUOUS;
if (in & GNSS_MEASUREMENTS_STATE_SYMBOL_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_SYMBOL_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_GLO_STRING_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GLO_STRING_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_GLO_TOD_DECODED_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GLO_TOD_DECODED;
if (in & GNSS_MEASUREMENTS_STATE_BDS_D2_BIT_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_BDS_D2_BIT_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_BDS_D2_SUBFRAME_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_BDS_D2_SUBFRAME_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_GAL_E1BC_CODE_LOCK_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GAL_E1BC_CODE_LOCK;
if (in & GNSS_MEASUREMENTS_STATE_GAL_E1C_2ND_CODE_LOCK_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GAL_E1C_2ND_CODE_LOCK;
if (in & GNSS_MEASUREMENTS_STATE_GAL_E1B_PAGE_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GAL_E1B_PAGE_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_SBAS_SYNC_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_SBAS_SYNC;
if (in & GNSS_MEASUREMENTS_STATE_TOW_KNOWN_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_TOW_KNOWN;
if (in & GNSS_MEASUREMENTS_STATE_GLO_TOD_KNOWN_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_GLO_TOD_KNOWN;
if (in & GNSS_MEASUREMENTS_STATE_2ND_CODE_LOCK_BIT)
out |= IGnssMeasurementCallback::GnssMeasurementState::STATE_2ND_CODE_LOCK;
}
static void convertGnssData_2_1(GnssMeasurementsNotification& in,
V2_1::IGnssMeasurementCallback::GnssData& out)
{
memset(&out, 0, sizeof(out));
out.measurements.resize(in.count);
for (size_t i = 0; i < in.count; i++) {
out.measurements[i].flags = 0;
convertGnssMeasurement(in.measurements[i], out.measurements[i].v2_0.v1_1.v1_0);
convertGnssConstellationType(in.measurements[i].svType,
out.measurements[i].v2_0.constellation);
convertGnssMeasurementsCodeType(in.measurements[i].codeType,
in.measurements[i].otherCodeTypeName,
out.measurements[i].v2_0.codeType);
convertGnssMeasurementsAccumulatedDeltaRangeState(in.measurements[i].adrStateMask,
out.measurements[i].v2_0.v1_1.accumulatedDeltaRangeState);
convertGnssMeasurementsState(in.measurements[i].stateMask,
out.measurements[i].v2_0.state);
out.measurements[i].basebandCN0DbHz = in.measurements[i].basebandCarrierToNoiseDbHz;
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_SIGNAL_TO_NOISE_RATIO_BIT) {
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::GnssMeasurementFlags::HAS_SNR;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_CARRIER_FREQUENCY_BIT) {
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::GnssMeasurementFlags::HAS_CARRIER_FREQUENCY;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_CARRIER_CYCLES_BIT) {
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::GnssMeasurementFlags::HAS_CARRIER_CYCLES;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_CARRIER_PHASE_BIT) {
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::GnssMeasurementFlags::HAS_CARRIER_PHASE;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_CARRIER_PHASE_UNCERTAINTY_BIT) {
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::
GnssMeasurementFlags::HAS_CARRIER_PHASE_UNCERTAINTY;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_AUTOMATIC_GAIN_CONTROL_BIT) {
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::GnssMeasurementFlags::HAS_AUTOMATIC_GAIN_CONTROL;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_FULL_ISB_BIT) {
out.measurements[i].fullInterSignalBiasNs = in.measurements[i].fullInterSignalBiasNs;
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::GnssMeasurementFlags::HAS_FULL_ISB;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_FULL_ISB_UNCERTAINTY_BIT) {
out.measurements[i].fullInterSignalBiasUncertaintyNs =
in.measurements[i].fullInterSignalBiasUncertaintyNs;
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::
GnssMeasurementFlags::HAS_FULL_ISB_UNCERTAINTY;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_SATELLITE_ISB_BIT) {
out.measurements[i].satelliteInterSignalBiasNs =
in.measurements[i].satelliteInterSignalBiasNs;
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::GnssMeasurementFlags::HAS_SATELLITE_ISB;
}
if (in.measurements[i].flags & GNSS_MEASUREMENTS_DATA_SATELLITE_ISB_UNCERTAINTY_BIT) {
out.measurements[i].satelliteInterSignalBiasUncertaintyNs =
in.measurements[i].satelliteInterSignalBiasUncertaintyNs;
out.measurements[i].flags |=
V2_1::IGnssMeasurementCallback::
GnssMeasurementFlags::HAS_SATELLITE_ISB_UNCERTAINTY;
}
}
convertGnssClock_2_1(in.clock, out.clock);
convertElapsedRealtimeNanos(in, out.elapsedRealtime);
}
static void convertElapsedRealtimeNanos(GnssMeasurementsNotification& in,
::android::hardware::gnss::V2_0::ElapsedRealtime& elapsedRealtime)
{
struct timespec currentTime;
int64_t sinceBootTimeNanos;
if (getCurrentTime(currentTime, sinceBootTimeNanos)) {
if (in.clock.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_ELAPSED_REAL_TIME_BIT) {
uint64_t qtimerDiff = 0;
uint64_t qTimerTickCount = getQTimerTickCount();
if (qTimerTickCount >= in.clock.elapsedRealTime) {
qtimerDiff = qTimerTickCount - in.clock.elapsedRealTime;
}
LOC_LOGv("sinceBootTimeNanos:%" PRIi64 " in.clock.elapsedRealTime=%" PRIi64 ""
" qTimerTickCount=%" PRIi64 " qtimerDiff=%" PRIi64 "",
sinceBootTimeNanos, in.clock.elapsedRealTime, qTimerTickCount, qtimerDiff);
uint64_t qTimerDiffNanos = qTimerTicksToNanos(double(qtimerDiff));
if (sinceBootTimeNanos >= qTimerDiffNanos) {
elapsedRealtime.flags |= V2_0::ElapsedRealtimeFlags::HAS_TIMESTAMP_NS;
elapsedRealtime.timestampNs = sinceBootTimeNanos - qTimerDiffNanos;
elapsedRealtime.flags |= V2_0::ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS;
elapsedRealtime.timeUncertaintyNs = in.clock.elapsedRealTimeUnc;
}
} else {
const uint32_t UTC_TO_GPS_SECONDS = 315964800;
if (in.clock.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_LEAP_SECOND_BIT &&
in.clock.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_FULL_BIAS_BIT &&
in.clock.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_BIAS_BIT &&
in.clock.flags & GNSS_MEASUREMENTS_CLOCK_FLAGS_BIAS_UNCERTAINTY_BIT) {
int64_t currentTimeNanos = currentTime.tv_sec * 1000000000 + currentTime.tv_nsec;
int64_t measTimeNanos = (int64_t)in.clock.timeNs - (int64_t)in.clock.fullBiasNs
- (int64_t)in.clock.biasNs - (int64_t)in.clock.leapSecond * 1000000000
+ (int64_t)UTC_TO_GPS_SECONDS * 1000000000;
LOC_LOGv("sinceBootTimeNanos:%" PRIi64 " currentTimeNanos:%" PRIi64 ""
" measTimeNanos:%" PRIi64 "",
sinceBootTimeNanos, currentTimeNanos, measTimeNanos);
if (currentTimeNanos >= measTimeNanos) {
int64_t ageTimeNanos = currentTimeNanos - measTimeNanos;
LOC_LOGv("ageTimeNanos:%" PRIi64 ")", ageTimeNanos);
// the max trusted propagation time 100ms for ageTimeNanos to avoid user
// setting wrong time, it will affect elapsedRealtimeNanos
if (ageTimeNanos <= 100000000) {
elapsedRealtime.flags |= V2_0::ElapsedRealtimeFlags::HAS_TIMESTAMP_NS;
elapsedRealtime.timestampNs = sinceBootTimeNanos - ageTimeNanos;
elapsedRealtime.flags |=
V2_0::ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS;
// time uncertainty is 1 ms since it is calculated from utc time that
// is in ms
// time uncertainty is the max value between abs(AP_UTC - MP_UTC) and 100ms,
// to verify if user change the sys time
elapsedRealtime.timeUncertaintyNs =
std::max(ageTimeNanos, (int64_t)100000000);
}
}
} else {
LOC_LOGe("Failed to calculate elapsedRealtimeNanos timestamp");
}
}
}
LOC_LOGv("elapsedRealtime.timestampNs=%" PRIi64 ""
" elapsedRealtime.timeUncertaintyNs=%" PRIi64 " elapsedRealtime.flags=0x%X",
elapsedRealtime.timestampNs,
elapsedRealtime.timeUncertaintyNs, elapsedRealtime.flags);
}
} // namespace implementation
} // namespace V2_1
} // namespace gnss
} // namespace hardware
} // namespace android