blob: 1c73a22f91e56dce2bf8fe125563698dfd0e13d4 [file] [log] [blame]
/* Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation, nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <LocationUtil.h>
#include <log_util.h>
#include <inttypes.h>
#include <loc_misc_utils.h>
#include <gps_extended_c.h>
namespace android {
namespace hardware {
namespace gnss {
namespace V2_1 {
namespace implementation {
using ::android::hardware::gnss::V2_0::GnssLocation;
using ::android::hardware::gnss::V2_0::ElapsedRealtimeFlags;
using ::android::hardware::gnss::V2_0::GnssConstellationType;
using ::android::hardware::gnss::V1_0::GnssLocationFlags;
using ::android::hardware::gnss::measurement_corrections::V1_0::GnssSingleSatCorrectionFlags;
void convertGnssLocation(Location& in, V1_0::GnssLocation& out)
{
memset(&out, 0, sizeof(V1_0::GnssLocation));
if (in.flags & LOCATION_HAS_LAT_LONG_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_LAT_LONG;
out.latitudeDegrees = in.latitude;
out.longitudeDegrees = in.longitude;
}
if (in.flags & LOCATION_HAS_ALTITUDE_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_ALTITUDE;
out.altitudeMeters = in.altitude;
}
if (in.flags & LOCATION_HAS_SPEED_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_SPEED;
out.speedMetersPerSec = in.speed;
}
if (in.flags & LOCATION_HAS_BEARING_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_BEARING;
out.bearingDegrees = in.bearing;
}
if (in.flags & LOCATION_HAS_ACCURACY_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_HORIZONTAL_ACCURACY;
out.horizontalAccuracyMeters = in.accuracy;
}
if (in.flags & LOCATION_HAS_VERTICAL_ACCURACY_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_VERTICAL_ACCURACY;
out.verticalAccuracyMeters = in.verticalAccuracy;
}
if (in.flags & LOCATION_HAS_SPEED_ACCURACY_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_SPEED_ACCURACY;
out.speedAccuracyMetersPerSecond = in.speedAccuracy;
}
if (in.flags & LOCATION_HAS_BEARING_ACCURACY_BIT) {
out.gnssLocationFlags |= GnssLocationFlags::HAS_BEARING_ACCURACY;
out.bearingAccuracyDegrees = in.bearingAccuracy;
}
out.timestamp = static_cast<V1_0::GnssUtcTime>(in.timestamp);
}
bool getCurrentTime(struct timespec& currentTime, int64_t& sinceBootTimeNanos)
{
struct timespec sinceBootTime;
struct timespec sinceBootTimeTest;
bool clockGetTimeSuccess = false;
const uint32_t MAX_TIME_DELTA_VALUE_NANOS = 10000;
const uint32_t MAX_GET_TIME_COUNT = 20;
/* Attempt to get CLOCK_REALTIME and CLOCK_BOOTIME in succession without an interruption
or context switch (for up to MAX_GET_TIME_COUNT times) to avoid errors in the calculation */
for (uint32_t i = 0; i < MAX_GET_TIME_COUNT; i++) {
if (clock_gettime(CLOCK_BOOTTIME, &sinceBootTime) != 0) {
break;
};
if (clock_gettime(CLOCK_REALTIME, &currentTime) != 0) {
break;
}
if (clock_gettime(CLOCK_BOOTTIME, &sinceBootTimeTest) != 0) {
break;
};
sinceBootTimeNanos = sinceBootTime.tv_sec * 1000000000 + sinceBootTime.tv_nsec;
int64_t sinceBootTimeTestNanos =
sinceBootTimeTest.tv_sec * 1000000000 + sinceBootTimeTest.tv_nsec;
int64_t sinceBootTimeDeltaNanos = sinceBootTimeTestNanos - sinceBootTimeNanos;
/* sinceBootTime and sinceBootTimeTest should have a close value if there was no
interruption or context switch between clock_gettime for CLOCK_BOOTIME and
clock_gettime for CLOCK_REALTIME */
if (sinceBootTimeDeltaNanos < MAX_TIME_DELTA_VALUE_NANOS) {
clockGetTimeSuccess = true;
break;
} else {
LOC_LOGd("Delta:%" PRIi64 "ns time too large, retry number #%u...",
sinceBootTimeDeltaNanos, i + 1);
}
}
return clockGetTimeSuccess;
}
void convertGnssLocation(Location& in, V2_0::GnssLocation& out)
{
memset(&out, 0, sizeof(V2_0::GnssLocation));
convertGnssLocation(in, out.v1_0);
struct timespec currentTime;
int64_t sinceBootTimeNanos;
if (getCurrentTime(currentTime, sinceBootTimeNanos)) {
if (in.flags & LOCATION_HAS_ELAPSED_REAL_TIME) {
uint64_t qtimerDiff = 0;
uint64_t qTimerTickCount = getQTimerTickCount();
if (qTimerTickCount >= in.elapsedRealTime) {
qtimerDiff = qTimerTickCount - in.elapsedRealTime;
}
LOC_LOGv("sinceBootTimeNanos:%" PRIi64 " in.elapsedRealTime=%" PRIi64 ""
" qTimerTickCount=%" PRIi64 " qtimerDiff=%" PRIi64 "",
sinceBootTimeNanos, in.elapsedRealTime, qTimerTickCount, qtimerDiff);
uint64_t qTimerDiffNanos = qTimerTicksToNanos(double(qtimerDiff));
if (sinceBootTimeNanos >= qTimerDiffNanos) {
out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIMESTAMP_NS;
out.elapsedRealtime.timestampNs = sinceBootTimeNanos - qTimerDiffNanos;
out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS;
out.elapsedRealtime.timeUncertaintyNs = in.elapsedRealTimeUnc;
}
} else {
int64_t currentTimeNanos = currentTime.tv_sec*1000000000 + currentTime.tv_nsec;
int64_t locationTimeNanos = in.timestamp*1000000;
LOC_LOGv("sinceBootTimeNanos:%" PRIi64 " currentTimeNanos:%" PRIi64 ""
" locationTimeNanos:%" PRIi64 "",
sinceBootTimeNanos, currentTimeNanos, locationTimeNanos);
if (currentTimeNanos >= locationTimeNanos) {
int64_t ageTimeNanos = currentTimeNanos - locationTimeNanos;
LOC_LOGv("ageTimeNanos:%" PRIi64 ")", ageTimeNanos);
// the max trusted propagation time 100ms for ageTimeNanos to avoid user setting
// wrong time, it will affect elapsedRealtimeNanos
if (ageTimeNanos <= 100000000) {
out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIMESTAMP_NS;
out.elapsedRealtime.timestampNs = sinceBootTimeNanos - ageTimeNanos;
out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS;
// time uncertainty is the max value between abs(AP_UTC - MP_UTC) and 100ms, to
// verify if user change the sys time
out.elapsedRealtime.timeUncertaintyNs =
std::max(ageTimeNanos, (int64_t)100000000);
}
}
}
}
LOC_LOGv("out.elapsedRealtime.timestampNs=%" PRIi64 ""
" out.elapsedRealtime.timeUncertaintyNs=%" PRIi64 ""
" out.elapsedRealtime.flags=0x%X",
out.elapsedRealtime.timestampNs,
out.elapsedRealtime.timeUncertaintyNs, out.elapsedRealtime.flags);
}
void convertGnssLocation(const V1_0::GnssLocation& in, Location& out)
{
memset(&out, 0, sizeof(out));
if (in.gnssLocationFlags & GnssLocationFlags::HAS_LAT_LONG) {
out.flags |= LOCATION_HAS_LAT_LONG_BIT;
out.latitude = in.latitudeDegrees;
out.longitude = in.longitudeDegrees;
}
if (in.gnssLocationFlags & GnssLocationFlags::HAS_ALTITUDE) {
out.flags |= LOCATION_HAS_ALTITUDE_BIT;
out.altitude = in.altitudeMeters;
}
if (in.gnssLocationFlags & GnssLocationFlags::HAS_SPEED) {
out.flags |= LOCATION_HAS_SPEED_BIT;
out.speed = in.speedMetersPerSec;
}
if (in.gnssLocationFlags & GnssLocationFlags::HAS_BEARING) {
out.flags |= LOCATION_HAS_BEARING_BIT;
out.bearing = in.bearingDegrees;
}
if (in.gnssLocationFlags & GnssLocationFlags::HAS_HORIZONTAL_ACCURACY) {
out.flags |= LOCATION_HAS_ACCURACY_BIT;
out.accuracy = in.horizontalAccuracyMeters;
}
if (in.gnssLocationFlags & GnssLocationFlags::HAS_VERTICAL_ACCURACY) {
out.flags |= LOCATION_HAS_VERTICAL_ACCURACY_BIT;
out.verticalAccuracy = in.verticalAccuracyMeters;
}
if (in.gnssLocationFlags & GnssLocationFlags::HAS_SPEED_ACCURACY) {
out.flags |= LOCATION_HAS_SPEED_ACCURACY_BIT;
out.speedAccuracy = in.speedAccuracyMetersPerSecond;
}
if (in.gnssLocationFlags & GnssLocationFlags::HAS_BEARING_ACCURACY) {
out.flags |= LOCATION_HAS_BEARING_ACCURACY_BIT;
out.bearingAccuracy = in.bearingAccuracyDegrees;
}
out.timestamp = static_cast<uint64_t>(in.timestamp);
}
void convertGnssLocation(const V2_0::GnssLocation& in, Location& out)
{
memset(&out, 0, sizeof(out));
convertGnssLocation(in.v1_0, out);
}
void convertGnssConstellationType(GnssSvType& in, V1_0::GnssConstellationType& out)
{
switch(in) {
case GNSS_SV_TYPE_GPS:
out = V1_0::GnssConstellationType::GPS;
break;
case GNSS_SV_TYPE_SBAS:
out = V1_0::GnssConstellationType::SBAS;
break;
case GNSS_SV_TYPE_GLONASS:
out = V1_0::GnssConstellationType::GLONASS;
break;
case GNSS_SV_TYPE_QZSS:
out = V1_0::GnssConstellationType::QZSS;
break;
case GNSS_SV_TYPE_BEIDOU:
out = V1_0::GnssConstellationType::BEIDOU;
break;
case GNSS_SV_TYPE_GALILEO:
out = V1_0::GnssConstellationType::GALILEO;
break;
case GNSS_SV_TYPE_UNKNOWN:
default:
out = V1_0::GnssConstellationType::UNKNOWN;
break;
}
}
void convertGnssConstellationType(GnssSvType& in, V2_0::GnssConstellationType& out)
{
switch(in) {
case GNSS_SV_TYPE_GPS:
out = V2_0::GnssConstellationType::GPS;
break;
case GNSS_SV_TYPE_SBAS:
out = V2_0::GnssConstellationType::SBAS;
break;
case GNSS_SV_TYPE_GLONASS:
out = V2_0::GnssConstellationType::GLONASS;
break;
case GNSS_SV_TYPE_QZSS:
out = V2_0::GnssConstellationType::QZSS;
break;
case GNSS_SV_TYPE_BEIDOU:
out = V2_0::GnssConstellationType::BEIDOU;
break;
case GNSS_SV_TYPE_GALILEO:
out = V2_0::GnssConstellationType::GALILEO;
break;
case GNSS_SV_TYPE_NAVIC:
out = V2_0::GnssConstellationType::IRNSS;
break;
case GNSS_SV_TYPE_UNKNOWN:
default:
out = V2_0::GnssConstellationType::UNKNOWN;
break;
}
}
void convertGnssSvid(GnssSv& in, int16_t& out)
{
switch (in.type) {
case GNSS_SV_TYPE_GPS:
out = in.svId;
break;
case GNSS_SV_TYPE_SBAS:
out = in.svId;
break;
case GNSS_SV_TYPE_GLONASS:
out = in.svId - GLO_SV_PRN_MIN + 1;
break;
case GNSS_SV_TYPE_QZSS:
out = in.svId;
break;
case GNSS_SV_TYPE_BEIDOU:
out = in.svId - BDS_SV_PRN_MIN + 1;
break;
case GNSS_SV_TYPE_GALILEO:
out = in.svId - GAL_SV_PRN_MIN + 1;
break;
case GNSS_SV_TYPE_NAVIC:
/*Android doesn't define Navic svid range yet, use Naviv svid [1, 14] now
will update this once Android give Navic svid definiitons */
out = in.svId - NAVIC_SV_PRN_MIN + 1;
break;
default:
out = in.svId;
break;
}
}
void convertGnssSvid(GnssMeasurementsData& in, int16_t& out)
{
switch (in.svType) {
case GNSS_SV_TYPE_GPS:
out = in.svId;
break;
case GNSS_SV_TYPE_SBAS:
out = in.svId;
break;
case GNSS_SV_TYPE_GLONASS:
if (in.svId != 255) { // OSN is known
out = in.svId - GLO_SV_PRN_MIN + 1;
} else { // OSN is not known, report FCN
out = in.gloFrequency + 92;
}
break;
case GNSS_SV_TYPE_QZSS:
out = in.svId;
break;
case GNSS_SV_TYPE_BEIDOU:
out = in.svId - BDS_SV_PRN_MIN + 1;
break;
case GNSS_SV_TYPE_GALILEO:
out = in.svId - GAL_SV_PRN_MIN + 1;
break;
case GNSS_SV_TYPE_NAVIC:
/*Android doesn't define Navic svid range yet, use Naviv svid [1, 14] now
will update this once Android give Navic svid definiitons */
out = in.svId - NAVIC_SV_PRN_MIN + 1;
break;
default:
out = in.svId;
break;
}
}
void convertGnssEphemerisType(GnssEphemerisType& in, GnssDebug::SatelliteEphemerisType& out)
{
switch(in) {
case GNSS_EPH_TYPE_EPHEMERIS:
out = GnssDebug::SatelliteEphemerisType::EPHEMERIS;
break;
case GNSS_EPH_TYPE_ALMANAC:
out = GnssDebug::SatelliteEphemerisType::ALMANAC_ONLY;
break;
case GNSS_EPH_TYPE_UNKNOWN:
default:
out = GnssDebug::SatelliteEphemerisType::NOT_AVAILABLE;
break;
}
}
void convertGnssEphemerisSource(GnssEphemerisSource& in, GnssDebug::SatelliteEphemerisSource& out)
{
switch(in) {
case GNSS_EPH_SOURCE_DEMODULATED:
out = GnssDebug::SatelliteEphemerisSource::DEMODULATED;
break;
case GNSS_EPH_SOURCE_SUPL_PROVIDED:
out = GnssDebug::SatelliteEphemerisSource::SUPL_PROVIDED;
break;
case GNSS_EPH_SOURCE_OTHER_SERVER_PROVIDED:
out = GnssDebug::SatelliteEphemerisSource::OTHER_SERVER_PROVIDED;
break;
case GNSS_EPH_SOURCE_LOCAL:
case GNSS_EPH_SOURCE_UNKNOWN:
default:
out = GnssDebug::SatelliteEphemerisSource::OTHER;
break;
}
}
void convertGnssEphemerisHealth(GnssEphemerisHealth& in, GnssDebug::SatelliteEphemerisHealth& out)
{
switch(in) {
case GNSS_EPH_HEALTH_GOOD:
out = GnssDebug::SatelliteEphemerisHealth::GOOD;
break;
case GNSS_EPH_HEALTH_BAD:
out = GnssDebug::SatelliteEphemerisHealth::BAD;
break;
case GNSS_EPH_HEALTH_UNKNOWN:
default:
out = GnssDebug::SatelliteEphemerisHealth::UNKNOWN;
break;
}
}
void convertSingleSatCorrections(const SingleSatCorrection& in, GnssSingleSatCorrection& out)
{
out.flags = GNSS_MEAS_CORR_UNKNOWN_BIT;
if (in.singleSatCorrectionFlags & (GnssSingleSatCorrectionFlags::HAS_SAT_IS_LOS_PROBABILITY)) {
out.flags |= GNSS_MEAS_CORR_HAS_SAT_IS_LOS_PROBABILITY_BIT;
}
if (in.singleSatCorrectionFlags & (GnssSingleSatCorrectionFlags::HAS_EXCESS_PATH_LENGTH)) {
out.flags |= GNSS_MEAS_CORR_HAS_EXCESS_PATH_LENGTH_BIT;
}
if (in.singleSatCorrectionFlags & (GnssSingleSatCorrectionFlags::HAS_EXCESS_PATH_LENGTH_UNC)) {
out.flags |= GNSS_MEAS_CORR_HAS_EXCESS_PATH_LENGTH_UNC_BIT;
}
if (in.singleSatCorrectionFlags & (GnssSingleSatCorrectionFlags::HAS_REFLECTING_PLANE)) {
out.flags |= GNSS_MEAS_CORR_HAS_REFLECTING_PLANE_BIT;
}
switch (in.constellation) {
case (::android::hardware::gnss::V1_0::GnssConstellationType::GPS):
out.svType = GNSS_SV_TYPE_GPS;
break;
case (::android::hardware::gnss::V1_0::GnssConstellationType::SBAS):
out.svType = GNSS_SV_TYPE_SBAS;
break;
case (::android::hardware::gnss::V1_0::GnssConstellationType::GLONASS):
out.svType = GNSS_SV_TYPE_GLONASS;
break;
case (::android::hardware::gnss::V1_0::GnssConstellationType::QZSS):
out.svType = GNSS_SV_TYPE_QZSS;
break;
case (::android::hardware::gnss::V1_0::GnssConstellationType::BEIDOU):
out.svType = GNSS_SV_TYPE_BEIDOU;
break;
case (::android::hardware::gnss::V1_0::GnssConstellationType::GALILEO):
out.svType = GNSS_SV_TYPE_GALILEO;
break;
case (::android::hardware::gnss::V1_0::GnssConstellationType::UNKNOWN):
default:
out.svType = GNSS_SV_TYPE_UNKNOWN;
break;
}
out.svId = in.svid;
out.carrierFrequencyHz = in.carrierFrequencyHz;
out.probSatIsLos = in.probSatIsLos;
out.excessPathLengthMeters = in.excessPathLengthMeters;
out.excessPathLengthUncertaintyMeters = in.excessPathLengthUncertaintyMeters;
out.reflectingPlane.latitudeDegrees = in.reflectingPlane.latitudeDegrees;
out.reflectingPlane.longitudeDegrees = in.reflectingPlane.longitudeDegrees;
out.reflectingPlane.altitudeMeters = in.reflectingPlane.altitudeMeters;
out.reflectingPlane.azimuthDegrees = in.reflectingPlane.azimuthDegrees;
}
void convertMeasurementCorrections(const MeasurementCorrectionsV1_0& in,
GnssMeasurementCorrections& out)
{
memset(&out, 0, sizeof(GnssMeasurementCorrections));
out.latitudeDegrees = in.latitudeDegrees;
out.longitudeDegrees = in.longitudeDegrees;
out.altitudeMeters = in.altitudeMeters;
out.horizontalPositionUncertaintyMeters = in.horizontalPositionUncertaintyMeters;
out.verticalPositionUncertaintyMeters = in.verticalPositionUncertaintyMeters;
out.toaGpsNanosecondsOfWeek = in.toaGpsNanosecondsOfWeek;
for (int i = 0; i < in.satCorrections.size(); i++) {
GnssSingleSatCorrection gnssSingleSatCorrection;
convertSingleSatCorrections(in.satCorrections[i], gnssSingleSatCorrection);
out.satCorrections.push_back(gnssSingleSatCorrection);
}
}
} // namespace implementation
} // namespace V2_1
} // namespace gnss
} // namespace hardware
} // namespace android