blob: 706e54901de4412d876859c5d3e0c78b442eab6b [file] [log] [blame]
/*
* Copyright (c) 2014 - 2015, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#include <errno.h>
#include <gralloc_priv.h>
#include <gr.h>
#include <utils/constants.h>
#include <utils/rect.h>
#include <utils/debug.h>
#include <sync/sync.h>
#include <cutils/properties.h>
#include "hwc_display.h"
#include "hwc_debugger.h"
#include "blit_engine_c2d.h"
#define __CLASS__ "HWCDisplay"
namespace sdm {
static void AssignLayerRegionsAddress(LayerRectArray *region, uint32_t rect_count,
uint8_t **base_address) {
if (rect_count) {
region->rect = reinterpret_cast<LayerRect *>(*base_address);
for (uint32_t i = 0; i < rect_count; i++) {
region->rect[i] = LayerRect();
}
*base_address += rect_count * sizeof(LayerRect);
}
region->count = rect_count;
}
static void ApplyDeInterlaceAdjustment(Layer *layer) {
// De-interlacing adjustment
if (layer->input_buffer->flags.interlace) {
float height = (layer->src_rect.bottom - layer->src_rect.top) / 2.0f;
layer->src_rect.top = ROUND_UP_ALIGN_DOWN(layer->src_rect.top / 2.0f, 2);
layer->src_rect.bottom = layer->src_rect.top + floorf(height);
}
}
HWCDisplay::HWCDisplay(CoreInterface *core_intf, hwc_procs_t const **hwc_procs, DisplayType type,
int id, bool needs_blit)
: core_intf_(core_intf), hwc_procs_(hwc_procs), type_(type), id_(id), needs_blit_(needs_blit) {
}
int HWCDisplay::Init() {
DisplayError error = core_intf_->CreateDisplay(type_, this, &display_intf_);
if (error != kErrorNone) {
DLOGE("Display create failed. Error = %d display_type %d event_handler %p disp_intf %p",
error, type_, this, &display_intf_);
return -EINVAL;
}
int property_swap_interval = 1;
HWCDebugHandler::Get()->GetProperty("debug.egl.swapinterval", &property_swap_interval);
if (property_swap_interval == 0) {
swap_interval_zero_ = true;
}
framebuffer_config_ = new DisplayConfigVariableInfo();
if (!framebuffer_config_) {
DLOGV("Failed to allocate memory for custom framebuffer config.");
core_intf_->DestroyDisplay(display_intf_);
return -EINVAL;
}
if (needs_blit_) {
blit_engine_ = new BlitEngineC2d();
if (!blit_engine_) {
DLOGI("Create Blit Engine C2D failed");
} else {
if (blit_engine_->Init() < 0) {
DLOGI("Blit Engine Init failed, Blit Composition will not be used!!");
delete blit_engine_;
blit_engine_ = NULL;
}
}
}
display_intf_->GetRefreshRateRange(&min_refresh_rate_, &max_refresh_rate_);
current_refresh_rate_ = max_refresh_rate_;
return 0;
}
int HWCDisplay::Deinit() {
DisplayError error = core_intf_->DestroyDisplay(display_intf_);
if (error != kErrorNone) {
DLOGE("Display destroy failed. Error = %d", error);
return -EINVAL;
}
if (layer_stack_memory_.raw) {
delete[] layer_stack_memory_.raw;
layer_stack_memory_.raw = NULL;
}
delete framebuffer_config_;
if (blit_engine_) {
blit_engine_->DeInit();
delete blit_engine_;
blit_engine_ = NULL;
}
return 0;
}
int HWCDisplay::EventControl(int event, int enable) {
DisplayError error = kErrorNone;
if (shutdown_pending_) {
return 0;
}
switch (event) {
case HWC_EVENT_VSYNC:
error = display_intf_->SetVSyncState(enable);
break;
default:
DLOGW("Unsupported event = %d", event);
}
if (error != kErrorNone) {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return 0;
}
DLOGE("Failed. event = %d, enable = %d, error = %d", event, enable, error);
return -EINVAL;
}
return 0;
}
int HWCDisplay::SetPowerMode(int mode) {
DLOGI("display = %d, mode = %d", id_, mode);
DisplayState state = kStateOff;
bool flush_on_error = flush_on_error_;
if (shutdown_pending_) {
return 0;
}
switch (mode) {
case HWC_POWER_MODE_OFF:
// During power off, all of the buffers are released.
// Do not flush until a buffer is successfully submitted again.
flush_on_error = false;
state = kStateOff;
break;
case HWC_POWER_MODE_NORMAL:
state = kStateOn;
last_power_mode_ = HWC_POWER_MODE_NORMAL;
break;
case HWC_POWER_MODE_DOZE:
state = kStateDoze;
last_power_mode_ = HWC_POWER_MODE_DOZE;
break;
case HWC_POWER_MODE_DOZE_SUSPEND:
state = kStateDozeSuspend;
last_power_mode_ = HWC_POWER_MODE_DOZE_SUSPEND;
break;
default:
return -EINVAL;
}
DisplayError error = display_intf_->SetDisplayState(state);
if (error == kErrorNone) {
flush_on_error_ = flush_on_error;
} else {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return 0;
}
DLOGE("Set state failed. Error = %d", error);
return -EINVAL;
}
return 0;
}
int HWCDisplay::GetDisplayConfigs(uint32_t *configs, size_t *num_configs) {
if (*num_configs > 0) {
configs[0] = 0;
*num_configs = 1;
}
return 0;
}
int HWCDisplay::GetDisplayAttributes(uint32_t config, const uint32_t *attributes, int32_t *values) {
DisplayConfigVariableInfo variable_config = *framebuffer_config_;
for (int i = 0; attributes[i] != HWC_DISPLAY_NO_ATTRIBUTE; i++) {
switch (attributes[i]) {
case HWC_DISPLAY_VSYNC_PERIOD:
values[i] = variable_config.vsync_period_ns;
break;
case HWC_DISPLAY_WIDTH:
values[i] = variable_config.x_pixels;
break;
case HWC_DISPLAY_HEIGHT:
values[i] = variable_config.y_pixels;
break;
case HWC_DISPLAY_DPI_X:
values[i] = INT32(variable_config.x_dpi * 1000.0f);
break;
case HWC_DISPLAY_DPI_Y:
values[i] = INT32(variable_config.y_dpi * 1000.0f);
break;
#ifdef QCOM_BSP
case HWC_DISPLAY_SECURE:
values[i] = INT32(true); // For backward compatibility. All Physical displays are secure
break;
#endif
default:
DLOGW("Spurious attribute type = %d", attributes[i]);
return -EINVAL;
}
}
return 0;
}
int HWCDisplay::GetActiveConfig() {
return 0;
}
int HWCDisplay::SetActiveConfig(int index) {
return -1;
}
void HWCDisplay::SetFrameDumpConfig(uint32_t count, uint32_t bit_mask_layer_type) {
dump_frame_count_ = count;
dump_frame_index_ = 0;
dump_input_layers_ = ((bit_mask_layer_type & (1 << INPUT_LAYER_DUMP)) != 0);
if (blit_engine_) {
blit_engine_->SetFrameDumpConfig(count);
}
DLOGI("num_frame_dump %d, input_layer_dump_enable %d", dump_frame_count_, dump_input_layers_);
}
uint32_t HWCDisplay::GetLastPowerMode() {
return last_power_mode_;
}
DisplayError HWCDisplay::VSync(const DisplayEventVSync &vsync) {
const hwc_procs_t *hwc_procs = *hwc_procs_;
if (!hwc_procs) {
return kErrorParameters;
}
hwc_procs->vsync(hwc_procs, id_, vsync.timestamp);
return kErrorNone;
}
DisplayError HWCDisplay::Refresh() {
return kErrorNotSupported;
}
int HWCDisplay::AllocateLayerStack(hwc_display_contents_1_t *content_list) {
if (!content_list || !content_list->numHwLayers) {
DLOGW("Invalid content list");
return -EINVAL;
}
size_t num_hw_layers = content_list->numHwLayers;
uint32_t blit_target_count = 0;
if (needs_blit_ && blit_engine_) {
blit_target_count = kMaxBlitTargetLayers;
}
// Allocate memory for
// a) total number of layers
// b) buffer handle for each layer
// c) number of visible rectangles in each layer
// d) number of dirty rectangles in each layer
// e) number of blit rectangles in each layer
size_t required_size = (num_hw_layers + blit_target_count) *
(sizeof(Layer) + sizeof(LayerBuffer));
for (size_t i = 0; i < num_hw_layers + blit_target_count; i++) {
uint32_t num_visible_rects = 0;
uint32_t num_dirty_rects = 0;
hwc_layer_1_t &hwc_layer = content_list->hwLayers[i];
if (i < num_hw_layers) {
num_visible_rects = INT32(hwc_layer.visibleRegionScreen.numRects);
num_dirty_rects = INT32(hwc_layer.surfaceDamage.numRects);
}
// visible rectangles + dirty rectangles + blit rectangle
size_t num_rects = num_visible_rects + num_dirty_rects + blit_target_count;
required_size += num_rects * sizeof(LayerRect);
}
// Layer array may be large enough to hold current number of layers.
// If not, re-allocate it now.
if (layer_stack_memory_.size < required_size) {
if (layer_stack_memory_.raw) {
delete[] layer_stack_memory_.raw;
layer_stack_memory_.size = 0;
}
// Allocate in multiple of kSizeSteps.
required_size = ROUND_UP(required_size, layer_stack_memory_.kSizeSteps);
layer_stack_memory_.raw = new uint8_t[required_size];
if (!layer_stack_memory_.raw) {
return -ENOMEM;
}
layer_stack_memory_.size = required_size;
}
// Assign memory addresses now.
uint8_t *current_address = layer_stack_memory_.raw;
// Layer array address
layer_stack_ = LayerStack();
layer_stack_.layers = reinterpret_cast<Layer *>(current_address);
layer_stack_.layer_count = INT32(num_hw_layers + blit_target_count);
current_address += (num_hw_layers + blit_target_count) * sizeof(Layer);
for (size_t i = 0; i < num_hw_layers + blit_target_count; i++) {
uint32_t num_visible_rects = 0;
uint32_t num_dirty_rects = 0;
if (i < num_hw_layers) {
num_visible_rects = UINT32(content_list->hwLayers[i].visibleRegionScreen.numRects);
num_dirty_rects = UINT32(content_list->hwLayers[i].surfaceDamage.numRects);
}
Layer &layer = layer_stack_.layers[i];
layer = Layer();
// Layer buffer handle address
layer.input_buffer = reinterpret_cast<LayerBuffer *>(current_address);
*layer.input_buffer = LayerBuffer();
current_address += sizeof(LayerBuffer);
// Visible/Dirty/Blit rectangle address
AssignLayerRegionsAddress(&layer.visible_regions, num_visible_rects, &current_address);
AssignLayerRegionsAddress(&layer.dirty_regions, num_dirty_rects, &current_address);
AssignLayerRegionsAddress(&layer.blit_regions, blit_target_count, &current_address);
}
return 0;
}
int HWCDisplay::PrepareLayerParams(hwc_layer_1_t *hwc_layer, Layer *layer) {
const private_handle_t *pvt_handle = static_cast<const private_handle_t *>(hwc_layer->handle);
LayerBuffer *layer_buffer = layer->input_buffer;
if (pvt_handle) {
layer_buffer->format = GetSDMFormat(pvt_handle->format, pvt_handle->flags);
layer_buffer->width = pvt_handle->width;
layer_buffer->height = pvt_handle->height;
if (SetMetaData(pvt_handle, layer) != kErrorNone) {
return -EINVAL;
}
if (pvt_handle->bufferType == BUFFER_TYPE_VIDEO) {
layer_stack_.flags.video_present = true;
layer_buffer->flags.video = true;
}
// TZ Protected Buffer - L1
if (pvt_handle->flags & private_handle_t::PRIV_FLAGS_SECURE_BUFFER) {
layer_stack_.flags.secure_present = true;
layer_buffer->flags.secure = true;
}
// Gralloc Usage Protected Buffer - L3 - which needs to be treated as Secure & avoid fallback
if (pvt_handle->flags & private_handle_t::PRIV_FLAGS_PROTECTED_BUFFER) {
layer_stack_.flags.secure_present = true;
}
if (pvt_handle->flags & private_handle_t::PRIV_FLAGS_SECURE_DISPLAY) {
layer_buffer->flags.secure_display = true;
}
// check if this is special solid_fill layer without input_buffer.
if (solid_fill_enable_ && pvt_handle->fd == -1) {
layer->flags.solid_fill = true;
layer->solid_fill_color = solid_fill_color_;
}
} else {
// for FBT layer
if (hwc_layer->compositionType == HWC_FRAMEBUFFER_TARGET) {
uint32_t x_pixels;
uint32_t y_pixels;
int aligned_width;
int aligned_height;
int usage = GRALLOC_USAGE_HW_FB;
int format = HAL_PIXEL_FORMAT_RGBA_8888;
int ubwc_enabled = 0;
int flags = 0;
HWCDebugHandler::Get()->GetProperty("debug.gralloc.enable_fb_ubwc", &ubwc_enabled);
if (ubwc_enabled == 1) {
usage |= GRALLOC_USAGE_PRIVATE_ALLOC_UBWC;
flags |= private_handle_t::PRIV_FLAGS_UBWC_ALIGNED;
}
GetFrameBufferResolution(&x_pixels, &y_pixels);
AdrenoMemInfo::getInstance().getAlignedWidthAndHeight(INT(x_pixels), INT(y_pixels), format,
usage, aligned_width, aligned_height);
layer_buffer->width = aligned_width;
layer_buffer->height = aligned_height;
layer_buffer->format = GetSDMFormat(format, flags);
}
}
return 0;
}
void HWCDisplay::CommitLayerParams(hwc_layer_1_t *hwc_layer, Layer *layer) {
const private_handle_t *pvt_handle = static_cast<const private_handle_t *>(hwc_layer->handle);
LayerBuffer *layer_buffer = layer->input_buffer;
if (pvt_handle) {
layer_buffer->planes[0].fd = pvt_handle->fd;
layer_buffer->planes[0].offset = pvt_handle->offset;
layer_buffer->planes[0].stride = pvt_handle->width;
}
// if swapinterval property is set to 0 then close and reset the acquireFd
if (swap_interval_zero_ && hwc_layer->acquireFenceFd >= 0) {
close(hwc_layer->acquireFenceFd);
hwc_layer->acquireFenceFd = -1;
}
layer_buffer->acquire_fence_fd = hwc_layer->acquireFenceFd;
}
int HWCDisplay::PrePrepareLayerStack(hwc_display_contents_1_t *content_list) {
if (shutdown_pending_) {
return 0;
}
if (!content_list || !content_list->numHwLayers) {
DLOGW("Invalid content list");
return -EINVAL;
}
size_t num_hw_layers = content_list->numHwLayers;
use_blit_comp_ = false;
metadata_refresh_rate_ = 0;
display_rect_ = LayerRect();
// Configure each layer
for (size_t i = 0; i < num_hw_layers; i++) {
hwc_layer_1_t &hwc_layer = content_list->hwLayers[i];
Layer &layer = layer_stack_.layers[i];
int ret = PrepareLayerParams(&content_list->hwLayers[i], &layer_stack_.layers[i]);
if (ret != kErrorNone) {
return ret;
}
layer.flags.skip = ((hwc_layer.flags & HWC_SKIP_LAYER) > 0);
layer.flags.solid_fill = (hwc_layer.flags & kDimLayer) || solid_fill_enable_;
if (layer.flags.skip || layer.flags.solid_fill) {
layer.dirty_regions.count = 0;
}
hwc_rect_t scaled_display_frame = hwc_layer.displayFrame;
ScaleDisplayFrame(&scaled_display_frame);
ApplyScanAdjustment(&scaled_display_frame);
SetRect(scaled_display_frame, &layer.dst_rect);
SetRect(hwc_layer.sourceCropf, &layer.src_rect);
ApplyDeInterlaceAdjustment(&layer);
for (uint32_t j = 0; j < layer.visible_regions.count; j++) {
SetRect(hwc_layer.visibleRegionScreen.rects[j], &layer.visible_regions.rect[j]);
}
for (uint32_t j = 0; j < layer.dirty_regions.count; j++) {
SetRect(hwc_layer.surfaceDamage.rects[j], &layer.dirty_regions.rect[j]);
}
SetComposition(hwc_layer.compositionType, &layer.composition);
if (hwc_layer.compositionType != HWC_FRAMEBUFFER_TARGET) {
display_rect_ = Union(display_rect_, layer.dst_rect);
}
// For dim layers, SurfaceFlinger
// - converts planeAlpha to per pixel alpha,
// - sets RGB color to 000,
// - sets planeAlpha to 0xff,
// - blending to Premultiplied.
// This can be achieved at hardware by
// - solid fill ARGB to 0xff000000,
// - incoming planeAlpha,
// - blending to Coverage.
if (hwc_layer.flags & kDimLayer) {
layer.input_buffer->format = kFormatARGB8888;
layer.solid_fill_color = 0xff000000;
SetBlending(HWC_BLENDING_COVERAGE, &layer.blending);
} else {
SetBlending(hwc_layer.blending, &layer.blending);
LayerTransform &layer_transform = layer.transform;
uint32_t &hwc_transform = hwc_layer.transform;
layer_transform.flip_horizontal = ((hwc_transform & HWC_TRANSFORM_FLIP_H) > 0);
layer_transform.flip_vertical = ((hwc_transform & HWC_TRANSFORM_FLIP_V) > 0);
layer_transform.rotation = ((hwc_transform & HWC_TRANSFORM_ROT_90) ? 90.0f : 0.0f);
}
// TODO(user): Remove below block.
// For solid fill, only dest rect need to be specified.
if (layer.flags.solid_fill) {
LayerBuffer *input_buffer = layer.input_buffer;
input_buffer->width = layer.dst_rect.right - layer.dst_rect.left;
input_buffer->height = layer.dst_rect.bottom - layer.dst_rect.top;
layer.src_rect.left = 0;
layer.src_rect.top = 0;
layer.src_rect.right = input_buffer->width;
layer.src_rect.bottom = input_buffer->height;
}
layer.plane_alpha = hwc_layer.planeAlpha;
layer.flags.cursor = ((hwc_layer.flags & HWC_IS_CURSOR_LAYER) > 0);
layer.flags.updating = true;
if (num_hw_layers <= kMaxLayerCount) {
LayerCache layer_cache = layer_stack_cache_.layer_cache[i];
layer.flags.updating = IsLayerUpdating(hwc_layer, layer_cache);
}
#ifdef QCOM_BSP
if (hwc_layer.flags & HWC_SCREENSHOT_ANIMATOR_LAYER) {
layer_stack_.flags.animating = true;
}
#endif
if (layer.flags.skip) {
layer_stack_.flags.skip_present = true;
}
if (layer.flags.cursor) {
layer_stack_.flags.cursor_present = true;
}
if (layer.frame_rate > metadata_refresh_rate_) {
metadata_refresh_rate_ = SanitizeRefreshRate(layer.frame_rate);
} else {
layer.frame_rate = current_refresh_rate_;
}
}
// Prepare the Blit Target
if (blit_engine_) {
int ret = blit_engine_->Prepare(&layer_stack_);
if (ret) {
// Blit engine cannot handle this layer stack, hence set the layer stack
// count to num_hw_layers
layer_stack_.layer_count -= kMaxBlitTargetLayers;
} else {
use_blit_comp_ = true;
}
}
// Configure layer stack
layer_stack_.flags.geometry_changed = ((content_list->flags & HWC_GEOMETRY_CHANGED) > 0);
return 0;
}
int HWCDisplay::PrepareLayerStack(hwc_display_contents_1_t *content_list) {
if (shutdown_pending_) {
return 0;
}
size_t num_hw_layers = content_list->numHwLayers;
if (!skip_prepare_) {
DisplayError error = display_intf_->Prepare(&layer_stack_);
if (error != kErrorNone) {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
} else if (error != kErrorPermission) {
DLOGE("Prepare failed. Error = %d", error);
// To prevent surfaceflinger infinite wait, flush the previous frame during Commit()
// so that previous buffer and fences are released, and override the error.
flush_ = true;
}
return 0;
}
} else {
// Skip is not set
MarkLayersForGPUBypass(content_list);
skip_prepare_ = false;
DLOGI("SecureDisplay %s, Skip Prepare/Commit and Flush", secure_display_active_ ? "Starting" :
"Stopping");
flush_ = true;
}
// If current draw cycle has different set of layers updating in comparison to previous cycle,
// cache content using GPU again.
// If set of updating layers remains same, use cached buffer and replace layers marked for GPU
// composition with SDE so that SurfaceFlinger does not compose them. Set cache inuse here.
bool needs_fb_refresh = NeedsFrameBufferRefresh(content_list);
layer_stack_cache_.in_use = false;
for (size_t i = 0; i < num_hw_layers; i++) {
hwc_layer_1_t &hwc_layer = content_list->hwLayers[i];
Layer &layer = layer_stack_.layers[i];
LayerComposition composition = layer.composition;
if ((composition == kCompositionSDE) || (composition == kCompositionHybrid) ||
(composition == kCompositionBlit)) {
hwc_layer.hints |= HWC_HINT_CLEAR_FB;
}
if (!needs_fb_refresh && composition == kCompositionGPU) {
composition = kCompositionSDE;
layer_stack_cache_.in_use = true;
}
SetComposition(composition, &hwc_layer.compositionType);
}
CacheLayerStackInfo(content_list);
return 0;
}
int HWCDisplay::CommitLayerStack(hwc_display_contents_1_t *content_list) {
if (!content_list || !content_list->numHwLayers) {
DLOGW("Invalid content list");
return -EINVAL;
}
if (shutdown_pending_) {
return 0;
}
int status = 0;
size_t num_hw_layers = content_list->numHwLayers;
DumpInputBuffers(content_list);
if (!flush_) {
for (size_t i = 0; i < num_hw_layers; i++) {
CommitLayerParams(&content_list->hwLayers[i], &layer_stack_.layers[i]);
}
if (use_blit_comp_) {
status = blit_engine_->PreCommit(content_list, &layer_stack_);
if (status == 0) {
status = blit_engine_->Commit(content_list, &layer_stack_);
if (status != 0) {
DLOGE("Blit Comp Failed!");
}
}
}
DisplayError error = kErrorUndefined;
if (status == 0) {
error = display_intf_->Commit(&layer_stack_);
status = 0;
}
if (error == kErrorNone) {
// A commit is successfully submitted, start flushing on failure now onwards.
flush_on_error_ = true;
} else {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return status;
} else if (error != kErrorPermission) {
DLOGE("Commit failed. Error = %d", error);
// To prevent surfaceflinger infinite wait, flush the previous frame during Commit()
// so that previous buffer and fences are released, and override the error.
flush_ = true;
}
}
}
return status;
}
int HWCDisplay::PostCommitLayerStack(hwc_display_contents_1_t *content_list) {
size_t num_hw_layers = content_list->numHwLayers;
int status = 0;
// Do no call flush on errors, if a successful buffer is never submitted.
if (flush_ && flush_on_error_) {
display_intf_->Flush();
}
// Set the release fence fd to the blit engine
if (use_blit_comp_ && blit_engine_->BlitActive()) {
blit_engine_->PostCommit(&layer_stack_);
}
for (size_t i = 0; i < num_hw_layers; i++) {
hwc_layer_1_t &hwc_layer = content_list->hwLayers[i];
Layer &layer = layer_stack_.layers[i];
LayerBuffer *layer_buffer = layer_stack_.layers[i].input_buffer;
if (!flush_) {
// If swapinterval property is set to 0 or for single buffer layers, do not update f/w
// release fences and discard fences from driver
if (swap_interval_zero_ || layer.flags.single_buffer) {
hwc_layer.releaseFenceFd = -1;
close(layer_buffer->release_fence_fd);
layer_buffer->release_fence_fd = -1;
} else if (layer.composition != kCompositionGPU) {
hwc_layer.releaseFenceFd = layer_buffer->release_fence_fd;
}
// During animation on external/virtual display, SDM will use the cached
// framebuffer layer throughout animation and do not allow framework to do eglswapbuffer on
// framebuffer target. So graphics doesn't close the release fence fd of framebuffer target,
// Hence close the release fencefd of framebuffer target here.
if (layer.composition == kCompositionGPUTarget && layer_stack_cache_.animating) {
close(hwc_layer.releaseFenceFd);
hwc_layer.releaseFenceFd = -1;
}
}
if (hwc_layer.acquireFenceFd >= 0) {
close(hwc_layer.acquireFenceFd);
hwc_layer.acquireFenceFd = -1;
}
}
if (!flush_) {
layer_stack_cache_.animating = layer_stack_.flags.animating;
// if swapinterval property is set to 0 then close and reset the list retire fence
if (swap_interval_zero_) {
close(layer_stack_.retire_fence_fd);
layer_stack_.retire_fence_fd = -1;
}
content_list->retireFenceFd = layer_stack_.retire_fence_fd;
if (dump_frame_count_) {
dump_frame_count_--;
dump_frame_index_++;
}
}
flush_ = false;
return status;
}
bool HWCDisplay::NeedsFrameBufferRefresh(hwc_display_contents_1_t *content_list) {
uint32_t layer_count = layer_stack_.layer_count;
if (layer_stack_cache_.animating) {
return false;
}
// Frame buffer needs to be refreshed for the following reasons:
// 1. Any layer is marked skip in the current layer stack.
// 2. Any layer is added/removed/layer properties changes in the current layer stack.
// 3. Any layer handle is changed and it is marked for GPU composition
// 4. Any layer's current composition is different from previous composition.
if (layer_stack_.flags.skip_present || layer_stack_.flags.geometry_changed) {
return true;
}
for (uint32_t i = 0; i < layer_count; i++) {
hwc_layer_1_t &hwc_layer = content_list->hwLayers[i];
Layer &layer = layer_stack_.layers[i];
LayerCache &layer_cache = layer_stack_cache_.layer_cache[i];
if (layer.composition == kCompositionGPUTarget) {
continue;
}
if (layer_cache.composition != layer.composition) {
return true;
}
if ((layer.composition == kCompositionGPU) && IsLayerUpdating(hwc_layer, layer_cache)) {
return true;
}
}
return false;
}
bool HWCDisplay::IsLayerUpdating(const hwc_layer_1_t &hwc_layer, const LayerCache &layer_cache) {
const private_handle_t *pvt_handle = static_cast<const private_handle_t *>(hwc_layer.handle);
const MetaData_t *meta_data = pvt_handle ?
reinterpret_cast<MetaData_t *>(pvt_handle->base_metadata) : NULL;
// If a layer is in single buffer mode, it should be considered as updating always
return ((meta_data && (meta_data->operation & SET_SINGLE_BUFFER_MODE) &&
meta_data->isSingleBufferMode) ||
(layer_cache.handle != hwc_layer.handle) ||
(layer_cache.plane_alpha != hwc_layer.planeAlpha));
}
void HWCDisplay::CacheLayerStackInfo(hwc_display_contents_1_t *content_list) {
uint32_t layer_count = layer_stack_.layer_count;
if (layer_count > kMaxLayerCount) {
ResetLayerCacheStack();
return;
}
for (uint32_t i = 0; i < layer_count; i++) {
Layer &layer = layer_stack_.layers[i];
if (layer.composition == kCompositionGPUTarget ||
layer.composition == kCompositionBlitTarget) {
continue;
}
LayerCache &layer_cache = layer_stack_cache_.layer_cache[i];
layer_cache.handle = content_list->hwLayers[i].handle;
layer_cache.plane_alpha = content_list->hwLayers[i].planeAlpha;
layer_cache.composition = layer.composition;
}
layer_stack_cache_.layer_count = layer_count;
}
void HWCDisplay::SetRect(const hwc_rect_t &source, LayerRect *target) {
target->left = FLOAT(source.left);
target->top = FLOAT(source.top);
target->right = FLOAT(source.right);
target->bottom = FLOAT(source.bottom);
}
void HWCDisplay::SetRect(const hwc_frect_t &source, LayerRect *target) {
target->left = floorf(source.left);
target->top = floorf(source.top);
target->right = ceilf(source.right);
target->bottom = ceilf(source.bottom);
}
void HWCDisplay::SetComposition(const int32_t &source, LayerComposition *target) {
switch (source) {
case HWC_FRAMEBUFFER_TARGET: *target = kCompositionGPUTarget; break;
default: *target = kCompositionGPU; break;
}
}
void HWCDisplay::SetComposition(const LayerComposition &source, int32_t *target) {
switch (source) {
case kCompositionGPUTarget: *target = HWC_FRAMEBUFFER_TARGET; break;
case kCompositionGPU: *target = HWC_FRAMEBUFFER; break;
case kCompositionHWCursor: *target = HWC_CURSOR_OVERLAY; break;
default: *target = HWC_OVERLAY; break;
}
}
void HWCDisplay::SetBlending(const int32_t &source, LayerBlending *target) {
switch (source) {
case HWC_BLENDING_PREMULT: *target = kBlendingPremultiplied; break;
case HWC_BLENDING_COVERAGE: *target = kBlendingCoverage; break;
default: *target = kBlendingOpaque; break;
}
}
void HWCDisplay::SetIdleTimeoutMs(uint32_t timeout_ms) {
return;
}
DisplayError HWCDisplay::SetMaxMixerStages(uint32_t max_mixer_stages) {
DisplayError error = kErrorNone;
if (display_intf_) {
error = display_intf_->SetMaxMixerStages(max_mixer_stages);
}
return error;
}
DisplayError HWCDisplay::ControlPartialUpdate(bool enable, uint32_t *pending) {
DisplayError error = kErrorNone;
if (display_intf_) {
error = display_intf_->ControlPartialUpdate(enable, pending);
}
return error;
}
LayerBufferFormat HWCDisplay::GetSDMFormat(const int32_t &source, const int flags) {
LayerBufferFormat format = kFormatInvalid;
if (flags & private_handle_t::PRIV_FLAGS_UBWC_ALIGNED) {
switch (source) {
case HAL_PIXEL_FORMAT_RGBA_8888: format = kFormatRGBA8888Ubwc; break;
case HAL_PIXEL_FORMAT_RGBX_8888: format = kFormatRGBX8888Ubwc; break;
case HAL_PIXEL_FORMAT_BGR_565: format = kFormatBGR565Ubwc; break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS:
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS_UBWC:
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE: format = kFormatYCbCr420SPVenusUbwc; break;
default:
DLOGE("Unsupported format type for UBWC %d", source);
return kFormatInvalid;
}
return format;
}
switch (source) {
case HAL_PIXEL_FORMAT_RGBA_8888: format = kFormatRGBA8888; break;
case HAL_PIXEL_FORMAT_RGBA_5551: format = kFormatRGBA5551; break;
case HAL_PIXEL_FORMAT_RGBA_4444: format = kFormatRGBA4444; break;
case HAL_PIXEL_FORMAT_BGRA_8888: format = kFormatBGRA8888; break;
case HAL_PIXEL_FORMAT_RGBX_8888: format = kFormatRGBX8888; break;
case HAL_PIXEL_FORMAT_BGRX_8888: format = kFormatBGRX8888; break;
case HAL_PIXEL_FORMAT_RGB_888: format = kFormatRGB888; break;
case HAL_PIXEL_FORMAT_RGB_565: format = kFormatRGB565; break;
case HAL_PIXEL_FORMAT_BGR_565: format = kFormatBGR565; break;
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS: format = kFormatYCbCr420SemiPlanarVenus; break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS_UBWC: format = kFormatYCbCr420SPVenusUbwc; break;
case HAL_PIXEL_FORMAT_YV12: format = kFormatYCrCb420PlanarStride16; break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP: format = kFormatYCrCb420SemiPlanar; break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP: format = kFormatYCbCr420SemiPlanar; break;
case HAL_PIXEL_FORMAT_YCbCr_422_SP: format = kFormatYCbCr422H2V1SemiPlanar; break;
case HAL_PIXEL_FORMAT_YCbCr_422_I: format = kFormatYCbCr422H2V1Packed; break;
default:
DLOGW("Unsupported format type = %d", source);
return kFormatInvalid;
}
return format;
}
void HWCDisplay::DumpInputBuffers(hwc_display_contents_1_t *content_list) {
size_t num_hw_layers = content_list->numHwLayers;
char dir_path[PATH_MAX];
if (!dump_frame_count_ || flush_ || !dump_input_layers_) {
return;
}
snprintf(dir_path, sizeof(dir_path), "/data/misc/display/frame_dump_%s", GetDisplayString());
if (mkdir(dir_path, 0777) != 0 && errno != EEXIST) {
DLOGW("Failed to create %s directory errno = %d, desc = %s", dir_path, errno, strerror(errno));
return;
}
// if directory exists already, need to explicitly change the permission.
if (errno == EEXIST && chmod(dir_path, 0777) != 0) {
DLOGW("Failed to change permissions on %s directory", dir_path);
return;
}
for (uint32_t i = 0; i < num_hw_layers; i++) {
hwc_layer_1_t &hwc_layer = content_list->hwLayers[i];
const private_handle_t *pvt_handle = static_cast<const private_handle_t *>(hwc_layer.handle);
if (hwc_layer.acquireFenceFd >= 0) {
int error = sync_wait(hwc_layer.acquireFenceFd, 1000);
if (error < 0) {
DLOGW("sync_wait error errno = %d, desc = %s", errno, strerror(errno));
return;
}
}
if (pvt_handle && pvt_handle->base) {
char dump_file_name[PATH_MAX];
size_t result = 0;
snprintf(dump_file_name, sizeof(dump_file_name), "%s/input_layer%d_%dx%d_%s_frame%d.raw",
dir_path, i, pvt_handle->width, pvt_handle->height,
GetHALPixelFormatString(pvt_handle->format), dump_frame_index_);
FILE* fp = fopen(dump_file_name, "w+");
if (fp) {
result = fwrite(reinterpret_cast<void *>(pvt_handle->base), pvt_handle->size, 1, fp);
fclose(fp);
}
DLOGI("Frame Dump %s: is %s", dump_file_name, result ? "Successful" : "Failed");
}
}
}
const char *HWCDisplay::GetHALPixelFormatString(int format) {
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
return "RGBA_8888";
case HAL_PIXEL_FORMAT_RGBX_8888:
return "RGBX_8888";
case HAL_PIXEL_FORMAT_RGB_888:
return "RGB_888";
case HAL_PIXEL_FORMAT_RGB_565:
return "RGB_565";
case HAL_PIXEL_FORMAT_BGR_565:
return "BGR_565";
case HAL_PIXEL_FORMAT_BGRA_8888:
return "BGRA_8888";
case HAL_PIXEL_FORMAT_RGBA_5551:
return "RGBA_5551";
case HAL_PIXEL_FORMAT_RGBA_4444:
return "RGBA_4444";
case HAL_PIXEL_FORMAT_YV12:
return "YV12";
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
return "YCbCr_422_SP_NV16";
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
return "YCrCb_420_SP_NV21";
case HAL_PIXEL_FORMAT_YCbCr_422_I:
return "YCbCr_422_I_YUY2";
case HAL_PIXEL_FORMAT_YCrCb_422_I:
return "YCrCb_422_I_YVYU";
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
return "NV12_ENCODEABLE";
case HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED:
return "YCbCr_420_SP_TILED_TILE_4x2";
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
return "YCbCr_420_SP";
case HAL_PIXEL_FORMAT_YCrCb_420_SP_ADRENO:
return "YCrCb_420_SP_ADRENO";
case HAL_PIXEL_FORMAT_YCrCb_422_SP:
return "YCrCb_422_SP";
case HAL_PIXEL_FORMAT_R_8:
return "R_8";
case HAL_PIXEL_FORMAT_RG_88:
return "RG_88";
case HAL_PIXEL_FORMAT_INTERLACE:
return "INTERLACE";
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS:
return "YCbCr_420_SP_VENUS";
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS_UBWC:
return "YCbCr_420_SP_VENUS_UBWC";
default:
return "Unknown pixel format";
}
}
const char *HWCDisplay::GetDisplayString() {
switch (type_) {
case kPrimary:
return "primary";
case kHDMI:
return "hdmi";
case kVirtual:
return "virtual";
default:
return "invalid";
}
}
int HWCDisplay::SetFrameBufferResolution(uint32_t x_pixels, uint32_t y_pixels) {
if (x_pixels <= 0 || y_pixels <= 0) {
DLOGV("Unsupported config: x_pixels=%d, y_pixels=%d", x_pixels, y_pixels);
return -EINVAL;
}
if (framebuffer_config_->x_pixels == x_pixels && framebuffer_config_->y_pixels == y_pixels) {
return 0;
}
DisplayConfigVariableInfo active_config;
uint32_t active_config_index = 0;
display_intf_->GetActiveConfig(&active_config_index);
DisplayError error = display_intf_->GetConfig(active_config_index, &active_config);
if (error != kErrorNone) {
DLOGV("GetConfig variable info failed. Error = %d", error);
return -EINVAL;
}
if (active_config.x_pixels <= 0 || active_config.y_pixels <= 0) {
DLOGV("Invalid panel resolution (%dx%d)", active_config.x_pixels, active_config.y_pixels);
return -EINVAL;
}
// Create rects to represent the new source and destination crops
LayerRect crop = LayerRect(0, 0, FLOAT(x_pixels), FLOAT(y_pixels));
LayerRect dst = LayerRect(0, 0, FLOAT(active_config.x_pixels), FLOAT(active_config.y_pixels));
// Set rotate90 to false since this is taken care of during regular composition.
bool rotate90 = false;
error = display_intf_->IsScalingValid(crop, dst, rotate90);
if (error != kErrorNone) {
DLOGV("Unsupported resolution: (%dx%d)", x_pixels, y_pixels);
return -EINVAL;
}
framebuffer_config_->x_pixels = x_pixels;
framebuffer_config_->y_pixels = y_pixels;
framebuffer_config_->vsync_period_ns = active_config.vsync_period_ns;
framebuffer_config_->x_dpi = active_config.x_dpi;
framebuffer_config_->y_dpi = active_config.y_dpi;
DLOGI("New framebuffer resolution (%dx%d)", framebuffer_config_->x_pixels,
framebuffer_config_->y_pixels);
return 0;
}
void HWCDisplay::GetFrameBufferResolution(uint32_t *x_pixels, uint32_t *y_pixels) {
*x_pixels = framebuffer_config_->x_pixels;
*y_pixels = framebuffer_config_->y_pixels;
}
void HWCDisplay::ScaleDisplayFrame(hwc_rect_t *display_frame) {
if (!IsFrameBufferScaled()) {
return;
}
uint32_t active_config_index = 0;
display_intf_->GetActiveConfig(&active_config_index);
DisplayConfigVariableInfo active_config;
DisplayError error = display_intf_->GetConfig(active_config_index, &active_config);
if (error != kErrorNone) {
DLOGE("GetConfig variable info failed. Error = %d", error);
return;
}
float custom_x_pixels = FLOAT(framebuffer_config_->x_pixels);
float custom_y_pixels = FLOAT(framebuffer_config_->y_pixels);
float active_x_pixels = FLOAT(active_config.x_pixels);
float active_y_pixels = FLOAT(active_config.y_pixels);
float x_pixels_ratio = active_x_pixels / custom_x_pixels;
float y_pixels_ratio = active_y_pixels / custom_y_pixels;
float layer_width = FLOAT(display_frame->right - display_frame->left);
float layer_height = FLOAT(display_frame->bottom - display_frame->top);
display_frame->left = INT(x_pixels_ratio * FLOAT(display_frame->left));
display_frame->top = INT(y_pixels_ratio * FLOAT(display_frame->top));
display_frame->right = INT(FLOAT(display_frame->left) + layer_width * x_pixels_ratio);
display_frame->bottom = INT(FLOAT(display_frame->top) + layer_height * y_pixels_ratio);
}
bool HWCDisplay::IsFrameBufferScaled() {
if (framebuffer_config_->x_pixels == 0 || framebuffer_config_->y_pixels == 0) {
return false;
}
uint32_t panel_x_pixels = 0;
uint32_t panel_y_pixels = 0;
GetPanelResolution(&panel_x_pixels, &panel_y_pixels);
return (framebuffer_config_->x_pixels != panel_x_pixels) ||
(framebuffer_config_->y_pixels != panel_y_pixels);
}
void HWCDisplay::GetPanelResolution(uint32_t *x_pixels, uint32_t *y_pixels) {
DisplayConfigVariableInfo active_config;
uint32_t active_config_index = 0;
display_intf_->GetActiveConfig(&active_config_index);
DisplayError error = display_intf_->GetConfig(active_config_index, &active_config);
if (error != kErrorNone) {
DLOGE("GetConfig variable info failed. Error = %d", error);
return;
}
*x_pixels = active_config.x_pixels;
*y_pixels = active_config.y_pixels;
}
int HWCDisplay::SetDisplayStatus(uint32_t display_status) {
int status = 0;
switch (display_status) {
case kDisplayStatusResume:
display_paused_ = false;
case kDisplayStatusOnline:
status = SetPowerMode(HWC_POWER_MODE_NORMAL);
break;
case kDisplayStatusPause:
display_paused_ = true;
case kDisplayStatusOffline:
status = SetPowerMode(HWC_POWER_MODE_OFF);
break;
default:
DLOGW("Invalid display status %d", display_status);
return -EINVAL;
}
return status;
}
int HWCDisplay::SetCursorPosition(int x, int y) {
DisplayError error = kErrorNone;
if (shutdown_pending_) {
return 0;
}
error = display_intf_->SetCursorPosition(x, y);
if (error != kErrorNone) {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return 0;
}
DLOGE("Failed for x = %d y = %d, Error = %d", x, y, error);
return -1;
}
return 0;
}
int HWCDisplay::OnMinHdcpEncryptionLevelChange(uint32_t min_enc_level) {
DisplayError error = display_intf_->OnMinHdcpEncryptionLevelChange(min_enc_level);
if (error != kErrorNone) {
DLOGE("Failed. Error = %d", error);
return -1;
}
return 0;
}
void HWCDisplay::MarkLayersForGPUBypass(hwc_display_contents_1_t *content_list) {
for (size_t i = 0 ; i < (content_list->numHwLayers - 1); i++) {
hwc_layer_1_t *layer = &content_list->hwLayers[i];
layer->compositionType = HWC_OVERLAY;
}
}
uint32_t HWCDisplay::RoundToStandardFPS(uint32_t fps) {
static const uint32_t standard_fps[4] = {30, 24, 48, 60};
int count = INT(sizeof(standard_fps) / sizeof(standard_fps[0]));
for (int i = 0; i < count; i++) {
if ((standard_fps[i] - fps) < 2) {
// Most likely used for video, the fps can fluctuate
// Ex: b/w 29 and 30 for 30 fps clip
return standard_fps[i];
}
}
return fps;
}
void HWCDisplay::ApplyScanAdjustment(hwc_rect_t *display_frame) {
}
DisplayError HWCDisplay::SetCSC(ColorSpace_t source, LayerCSC *target) {
switch (source) {
case ITU_R_601: *target = kCSCLimitedRange601; break;
case ITU_R_601_FR: *target = kCSCFullRange601; break;
case ITU_R_709: *target = kCSCLimitedRange709; break;
default:
DLOGE("Unsupported CSC: %d", source);
return kErrorNotSupported;
}
return kErrorNone;
}
DisplayError HWCDisplay::SetIGC(IGC_t source, LayerIGC *target) {
switch (source) {
case IGC_NotSpecified: *target = kIGCNotSpecified; break;
case IGC_sRGB: *target = kIGCsRGB; break;
default:
DLOGE("Unsupported IGC: %d", source);
return kErrorNotSupported;
}
return kErrorNone;
}
DisplayError HWCDisplay::SetMetaData(const private_handle_t *pvt_handle, Layer *layer) {
const MetaData_t *meta_data = reinterpret_cast<MetaData_t *>(pvt_handle->base_metadata);
LayerBuffer *layer_buffer = layer->input_buffer;
if (!meta_data) {
return kErrorNone;
}
if (meta_data->operation & UPDATE_COLOR_SPACE) {
if (SetCSC(meta_data->colorSpace, &layer->csc) != kErrorNone) {
return kErrorNotSupported;
}
}
if (meta_data->operation & SET_IGC) {
if (SetIGC(meta_data->igc, &layer->igc) != kErrorNone) {
return kErrorNotSupported;
}
}
if (meta_data->operation & UPDATE_REFRESH_RATE) {
layer->frame_rate = RoundToStandardFPS(meta_data->refreshrate);
}
if ((meta_data->operation & PP_PARAM_INTERLACED) && meta_data->interlaced) {
layer_buffer->flags.interlace = true;
}
if (meta_data->operation & LINEAR_FORMAT) {
layer_buffer->format = GetSDMFormat(meta_data->linearFormat, 0);
}
if (meta_data->operation & UPDATE_BUFFER_GEOMETRY) {
int actual_width = pvt_handle->width;
int actual_height = pvt_handle->height;
AdrenoMemInfo::getInstance().getAlignedWidthAndHeight(pvt_handle, actual_width, actual_height);
layer_buffer->width = actual_width;
layer_buffer->height = actual_height;
}
if (meta_data->operation & SET_SINGLE_BUFFER_MODE) {
layer->flags.single_buffer = meta_data->isSingleBufferMode;
// Graphics can set this operation on all types of layers including FB and set the actual value
// to 0. To protect against SET operations of 0 value, we need to do a logical OR.
layer_stack_.flags.single_buffered_layer_present |= meta_data->isSingleBufferMode;
}
return kErrorNone;
}
int HWCDisplay::SetPanelBrightness(int level) {
int ret = 0;
if (display_intf_)
ret = display_intf_->SetPanelBrightness(level);
else
ret = -EINVAL;
return ret;
}
int HWCDisplay::GetPanelBrightness(int *level) {
return display_intf_->GetPanelBrightness(level);
}
int HWCDisplay::ToggleScreenUpdates(bool enable) {
display_paused_ = enable ? false : true;
return 0;
}
int HWCDisplay::ColorSVCRequestRoute(const PPDisplayAPIPayload &in_payload,
PPDisplayAPIPayload *out_payload,
PPPendingParams *pending_action) {
int ret = 0;
if (display_intf_)
ret = display_intf_->ColorSVCRequestRoute(in_payload, out_payload, pending_action);
else
ret = -EINVAL;
return ret;
}
int HWCDisplay::GetVisibleDisplayRect(hwc_rect_t* visible_rect) {
if (!IsValid(display_rect_)) {
return -EINVAL;
}
visible_rect->left = INT(display_rect_.left);
visible_rect->top = INT(display_rect_.top);
visible_rect->right = INT(display_rect_.right);
visible_rect->bottom = INT(display_rect_.bottom);
DLOGI("Dpy = %d Visible Display Rect(%d %d %d %d)", visible_rect->left, visible_rect->top,
visible_rect->right, visible_rect->bottom);
return 0;
}
void HWCDisplay::ResetLayerCacheStack() {
uint32_t layer_count = layer_stack_cache_.layer_count;
for (uint32_t i = 0; i < layer_count; i++) {
layer_stack_cache_.layer_cache[i] = LayerCache();
}
layer_stack_cache_.layer_count = 0;
layer_stack_cache_.animating = false;
layer_stack_cache_.in_use = false;
}
void HWCDisplay::SetSecureDisplay(bool secure_display_active) {
secure_display_active_ = secure_display_active;
return;
}
int HWCDisplay::SetActiveDisplayConfig(int config) {
return display_intf_->SetActiveConfig(config) == kErrorNone ? 0 : -1;
}
int HWCDisplay::GetActiveDisplayConfig(uint32_t *config) {
return display_intf_->GetActiveConfig(config) == kErrorNone ? 0 : -1;
}
int HWCDisplay::GetDisplayConfigCount(uint32_t *count) {
return display_intf_->GetNumVariableInfoConfigs(count) == kErrorNone ? 0 : -1;
}
int HWCDisplay::GetDisplayAttributesForConfig(int config, DisplayConfigVariableInfo *attributes) {
return display_intf_->GetConfig(config, attributes) == kErrorNone ? 0 : -1;
}
bool HWCDisplay::SingleLayerUpdating(uint32_t app_layer_count) {
uint32_t updating_count = 0;
for (uint i = 0; i < app_layer_count; i++) {
Layer &layer = layer_stack_.layers[i];
if (layer.flags.updating) {
updating_count++;
}
}
return (updating_count == 1);
}
uint32_t HWCDisplay::SanitizeRefreshRate(uint32_t req_refresh_rate) {
uint32_t refresh_rate = req_refresh_rate;
if (refresh_rate < min_refresh_rate_) {
// Pick the next multiple of request which is within the range
refresh_rate = (((min_refresh_rate_ / refresh_rate) +
((min_refresh_rate_ % refresh_rate) ? 1 : 0)) * refresh_rate);
}
if (refresh_rate > max_refresh_rate_) {
refresh_rate = max_refresh_rate_;
}
return refresh_rate;
}
} // namespace sdm