blob: a1a47e81fbc26c01b308ba86f2a8aaa8a0d23c98 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "BaseSensorObject.h"
#include "ConnectionDetector.h"
#include "DummyDynamicAccelDaemon.h"
#include "DynamicSensorManager.h"
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/SystemClock.h>
#include <utils/misc.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <algorithm> //std::max
#define SYSPROP_PREFIX "dynamic_sensor.dummy"
#define FILE_NAME_BASE "dummy_accel_file"
#define FILE_NAME_REGEX ("^" FILE_NAME_BASE "[0-9]$")
namespace android {
namespace SensorHalExt {
DummyDynamicAccelDaemon::DummyDynamicAccelDaemon(DynamicSensorManager& manager)
: BaseDynamicSensorDaemon(manager) {
char property[PROPERTY_VALUE_MAX+1];
property_get(SYSPROP_PREFIX ".file", property, "");
if (strcmp(property, "") != 0) {
mFileDetector = new FileConnectionDetector(
this, std::string(property), std::string(FILE_NAME_REGEX));
}
property_get(SYSPROP_PREFIX ".socket", property, "");
if (strcmp(property, "") != 0) {
mSocketDetector = new SocketConnectionDetector(this, atoi(property));
}
}
BaseSensorVector DummyDynamicAccelDaemon::createSensor(const std::string &deviceKey) {
BaseSensorVector ret;
if (deviceKey.compare(0, 1, "/") == 0) {
// file detector result, deviceKey is file absolute path
const size_t len = ::strlen(FILE_NAME_BASE) + 1; // +1 for number
if (deviceKey.length() < len) {
ALOGE("illegal file device key %s", deviceKey.c_str());
} else {
size_t start = deviceKey.length() - len;
ret.emplace_back(new DummySensor(deviceKey.substr(start)));
}
} else if (deviceKey.compare(0, ::strlen("socket:"), "socket:") == 0) {
ret.emplace_back(new DummySensor(deviceKey));
} else {
// unknown deviceKey
ALOGE("unknown deviceKey: %s", deviceKey.c_str());
}
return ret;
}
DummyDynamicAccelDaemon::DummySensor::DummySensor(const std::string &name)
: Thread(false /*canCallJava*/), mRunState(false) {
mSensorName = "Dummy Accel - " + name;
// fake sensor information for dummy sensor
mSensor = (struct sensor_t) {
mSensorName.c_str(),
"DemoSense, Inc.",
1, // version
-1, // handle, dummy number here
SENSOR_TYPE_ACCELEROMETER,
9.8 * 8.0f, // maxRange
9.8 * 8.0f / 32768.0f, // resolution
0.5f, // power
(int32_t)(1.0E6f / 50), // minDelay
0, // fifoReservedEventCount
0, // fifoMaxEventCount
SENSOR_STRING_TYPE_ACCELEROMETER,
"", // requiredPermission
(long)(1.0E6f / 50), // maxDelay
SENSOR_FLAG_CONTINUOUS_MODE,
{ NULL, NULL }
};
mRunLock.lock();
run("DummySensor");
}
DummyDynamicAccelDaemon::DummySensor::~DummySensor() {
requestExitAndWait();
// unlock mRunLock so thread can be unblocked
mRunLock.unlock();
}
const sensor_t* DummyDynamicAccelDaemon::DummySensor::getSensor() const {
return &mSensor;
}
void DummyDynamicAccelDaemon::DummySensor::getUuid(uint8_t* uuid) const {
// at maximum, there will be always one instance, so we can hardcode
size_t hash = std::hash<std::string>()(mSensorName);
memset(uuid, 'x', 16);
memcpy(uuid, &hash, sizeof(hash));
}
int DummyDynamicAccelDaemon::DummySensor::enable(bool enable) {
std::lock_guard<std::mutex> lk(mLock);
if (mRunState != enable) {
if (enable) {
mRunLock.unlock();
} else {
mRunLock.lock();
}
mRunState = enable;
}
return 0;
}
int DummyDynamicAccelDaemon::DummySensor::batch(int64_t /*samplePeriod*/, int64_t /*batchPeriod*/) {
// Dummy sensor does not support changing rate and batching. But return successful anyway.
return 0;
}
void DummyDynamicAccelDaemon::DummySensor::waitUntilNextSample() {
// block when disabled (mRunLock locked)
mRunLock.lock();
mRunLock.unlock();
if (!Thread::exitPending()) {
// sleep 20 ms (50Hz)
usleep(20000);
}
}
bool DummyDynamicAccelDaemon::DummySensor::threadLoop() {
// designated intialization will leave the unspecified fields zeroed
sensors_event_t event = {
.version = sizeof(event),
.sensor = -1,
.type = SENSOR_TYPE_ACCELEROMETER,
};
int64_t startTimeNs = elapsedRealtimeNano();
ALOGI("Dynamic Dummy Accel started for sensor %s", mSensorName.c_str());
while (!Thread::exitPending()) {
waitUntilNextSample();
if (Thread::exitPending()) {
break;
}
int64_t nowTimeNs = elapsedRealtimeNano();
float t = (nowTimeNs - startTimeNs) / 1e9f;
event.data[0] = 2 * ::sin(3 * M_PI * t);
event.data[1] = 3 * ::cos(3 * M_PI * t);
event.data[2] = 1.5 * ::sin(6 * M_PI * t);
event.timestamp = nowTimeNs;
generateEvent(event);
}
ALOGI("Dynamic Dummy Accel thread ended for sensor %s", mSensorName.c_str());
return false;
}
} // namespace SensorHalExt
} // namespace android