blob: 5e7b2ccb70cae775659d3b97c3c433badfc31399 [file] [log] [blame]
/*
$License:
Copyright (C) 2011-2012 InvenSense Corporation, All Rights Reserved.
See included License.txt for License information.
$
*/
/**
* @defgroup HAL_Outputs hal_outputs
* @brief Motion Library - HAL Outputs
* Sets up common outputs for HAL
*
* @{
* @file hal_outputs.c
* @brief HAL Outputs.
*/
#include "hal_outputs.h"
#include "log.h"
#include "ml_math_func.h"
#include "mlmath.h"
#include "start_manager.h"
#include "data_builder.h"
#include "results_holder.h"
struct hal_output_t {
int accuracy_mag; /**< Compass accuracy */
// int accuracy_gyro; /**< Gyro Accuracy */
// int accuracy_accel; /**< Accel Accuracy */
int accuracy_quat; /**< quat Accuracy */
inv_time_t nav_timestamp;
inv_time_t gam_timestamp;
// inv_time_t accel_timestamp;
inv_time_t mag_timestamp;
long nav_quat[4];
int gyro_status;
int accel_status;
int compass_status;
int nine_axis_status;
inv_biquad_filter_t lp_filter[3];
float compass_float[3];
};
static struct hal_output_t hal_out;
/** Acceleration (m/s^2) in body frame.
* @param[out] values Acceleration in m/s^2 includes gravity. So while not in motion, it
* should return a vector of magnitude near 9.81 m/s^2
* @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate.
* @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to
* inv_build_accel().
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_accelerometer(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
int status;
/* Converts fixed point to m/s^2. Fixed point has 1g = 2^16.
* So this 9.80665 / 2^16 */
#define ACCEL_CONVERSION 0.000149637603759766f
long accel[3];
inv_get_accel_set(accel, accuracy, timestamp);
values[0] = accel[0] * ACCEL_CONVERSION;
values[1] = accel[1] * ACCEL_CONVERSION;
values[2] = accel[2] * ACCEL_CONVERSION;
if (hal_out.accel_status & INV_NEW_DATA)
status = 1;
else
status = 0;
return status;
}
/** Linear Acceleration (m/s^2) in Body Frame.
* @param[out] values Linear Acceleration in body frame, length 3, (m/s^2). May show
* accel biases while at rest.
* @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate.
* @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to
* inv_build_accel().
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_linear_acceleration(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
long gravity[3], accel[3];
inv_get_accel_set(accel, accuracy, timestamp);
inv_get_gravity(gravity);
accel[0] -= gravity[0] >> 14;
accel[1] -= gravity[1] >> 14;
accel[2] -= gravity[2] >> 14;
values[0] = accel[0] * ACCEL_CONVERSION;
values[1] = accel[1] * ACCEL_CONVERSION;
values[2] = accel[2] * ACCEL_CONVERSION;
return hal_out.nine_axis_status;
}
/** Gravity vector (m/s^2) in Body Frame.
* @param[out] values Gravity vector in body frame, length 3, (m/s^2)
* @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate.
* @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to
* inv_build_accel().
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_gravity(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
long gravity[3];
int status;
*accuracy = (int8_t) hal_out.accuracy_quat;
*timestamp = hal_out.nav_timestamp;
inv_get_gravity(gravity);
values[0] = (gravity[0] >> 14) * ACCEL_CONVERSION;
values[1] = (gravity[1] >> 14) * ACCEL_CONVERSION;
values[2] = (gravity[2] >> 14) * ACCEL_CONVERSION;
if ((hal_out.accel_status & INV_NEW_DATA) || (hal_out.gyro_status & INV_NEW_DATA))
status = 1;
else
status = 0;
return status;
}
/** Gyroscope calibrated data (rad/s) in body frame.
* @param[out] values Rotation Rate in rad/sec.
* @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate.
* @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to
* inv_build_gyro().
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_gyroscope(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
/* Converts fixed point to rad/sec. Fixed point has 1 dps = 2^16.
* So this is: pi / 2^16 / 180 */
#define GYRO_CONVERSION 2.66316109007924e-007f
long gyro[3];
int status;
inv_get_gyro_set(gyro, accuracy, timestamp);
values[0] = gyro[0] * GYRO_CONVERSION;
values[1] = gyro[1] * GYRO_CONVERSION;
values[2] = gyro[2] * GYRO_CONVERSION;
if (hal_out.gyro_status & INV_NEW_DATA)
status = 1;
else
status = 0;
return status;
}
/** Gyroscope raw data (rad/s) in body frame.
* @param[out] values Rotation Rate in rad/sec.
* @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate.
* @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to
* inv_build_gyro().
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_gyroscope_raw(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
/* Converts fixed point to rad/sec. Fixed point has 1 dps = 2^16.
* So this is: pi / 2^16 / 180 */
#define GYRO_CONVERSION 2.66316109007924e-007f
long gyro[3];
int status;
inv_get_gyro_set_raw(gyro, accuracy, timestamp);
values[0] = gyro[0] * GYRO_CONVERSION;
values[1] = gyro[1] * GYRO_CONVERSION;
values[2] = gyro[2] * GYRO_CONVERSION;
if (hal_out.gyro_status & INV_NEW_DATA)
status = 1;
else
status = 0;
return status;
}
/**
* This corresponds to Sensor.TYPE_ROTATION_VECTOR.
* The rotation vector represents the orientation of the device as a combination
* of an angle and an axis, in which the device has rotated through an angle @f$\theta@f$
* around an axis {x, y, z}. <br>
* The three elements of the rotation vector are
* {x*sin(@f$\theta@f$/2), y*sin(@f$\theta@f$/2), z*sin(@f$\theta@f$/2)}, such that the magnitude of the rotation
* vector is equal to sin(@f$\theta@f$/2), and the direction of the rotation vector is
* equal to the direction of the axis of rotation.
*
* The three elements of the rotation vector are equal to the last three components of a unit quaternion
* {x*sin(@f$\theta@f$/2), y*sin(@f$\theta@f$/2), z*sin(@f$\theta@f$/2)>. The 4th element is cos(@f$\theta@f$/2).
*
* Elements of the rotation vector are unitless. The x,y and z axis are defined in the same way as the acceleration sensor.
* The reference coordinate system is defined as a direct orthonormal basis, where:
-X is defined as the vector product Y.Z (It is tangential to the ground at the device's current location and roughly points East).
-Y is tangential to the ground at the device's current location and points towards the magnetic North Pole.
-Z points towards the sky and is perpendicular to the ground.
* @param[out] values Length 4.
* @param[out] accuracy Accuracy 0 to 3, 3 = most accurate
* @param[out] timestamp Timestamp. In (ns) for Android.
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_rotation_vector(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
*accuracy = (int8_t) hal_out.accuracy_quat;
*timestamp = hal_out.nav_timestamp;
if (hal_out.nav_quat[0] >= 0) {
values[0] = hal_out.nav_quat[1] * INV_TWO_POWER_NEG_30;
values[1] = hal_out.nav_quat[2] * INV_TWO_POWER_NEG_30;
values[2] = hal_out.nav_quat[3] * INV_TWO_POWER_NEG_30;
values[3] = hal_out.nav_quat[0] * INV_TWO_POWER_NEG_30;
} else {
values[0] = -hal_out.nav_quat[1] * INV_TWO_POWER_NEG_30;
values[1] = -hal_out.nav_quat[2] * INV_TWO_POWER_NEG_30;
values[2] = -hal_out.nav_quat[3] * INV_TWO_POWER_NEG_30;
values[3] = -hal_out.nav_quat[0] * INV_TWO_POWER_NEG_30;
}
values[4] = inv_get_heading_confidence_interval();
return hal_out.nine_axis_status;
}
/** Compass data (uT) in body frame.
* @param[out] values Compass data in (uT), length 3. May be calibrated by having
* biases removed and sensitivity adjusted
* @param[out] accuracy Accuracy 0 to 3, 3 = most accurate
* @param[out] timestamp Timestamp. In (ns) for Android.
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_magnetic_field(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
int status;
/* Converts fixed point to uT. Fixed point has 1 uT = 2^16.
* So this is: 1 / 2^16*/
//#define COMPASS_CONVERSION 1.52587890625e-005f
int i;
*timestamp = hal_out.mag_timestamp;
*accuracy = (int8_t) hal_out.accuracy_mag;
for (i=0; i<3; i++) {
values[i] = hal_out.compass_float[i];
}
if (hal_out.compass_status & INV_NEW_DATA)
status = 1;
else
status = 0;
return status;
}
static void inv_get_rotation(float r[3][3])
{
long rot[9];
float conv = 1.f / (1L<<30);
inv_quaternion_to_rotation(hal_out.nav_quat, rot);
r[0][0] = rot[0]*conv;
r[0][1] = rot[1]*conv;
r[0][2] = rot[2]*conv;
r[1][0] = rot[3]*conv;
r[1][1] = rot[4]*conv;
r[1][2] = rot[5]*conv;
r[2][0] = rot[6]*conv;
r[2][1] = rot[7]*conv;
r[2][2] = rot[8]*conv;
}
static void google_orientation(float *g)
{
float rad2deg = (float)(180.0 / M_PI);
float R[3][3];
inv_get_rotation(R);
g[0] = atan2f(-R[1][0], R[0][0]) * rad2deg;
g[1] = atan2f(-R[2][1], R[2][2]) * rad2deg;
g[2] = asinf ( R[2][0]) * rad2deg;
if (g[0] < 0)
g[0] += 360;
}
/** This corresponds to Sensor.TYPE_ORIENTATION. All values are angles in degrees.
* @param[out] values Length 3, Degrees.<br>
* - values[0]: Azimuth, angle between the magnetic north direction
* and the y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South, 270=West<br>
* - values[1]: Pitch, rotation around x-axis (-180 to 180), with positive values
* when the z-axis moves toward the y-axis.<br>
* - values[2]: Roll, rotation around y-axis (-90 to 90), with positive
* values when the x-axis moves toward the z-axis.<br>
*
* @note This definition is different from yaw, pitch and roll used in aviation
* where the X axis is along the long side of the plane (tail to nose).
* Note: This sensor type exists for legacy reasons, please use getRotationMatrix()
* in conjunction with remapCoordinateSystem() and getOrientation() to compute
* these values instead.
* Important note: For historical reasons the roll angle is positive in the
* clockwise direction (mathematically speaking, it should be positive in
* the counter-clockwise direction).
* @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate.
* @param[out] timestamp The timestamp for this sensor.
* @return Returns 1 if the data was updated or 0 if it was not updated.
*/
int inv_get_sensor_type_orientation(float *values, int8_t *accuracy,
inv_time_t * timestamp)
{
*accuracy = (int8_t) hal_out.accuracy_quat;
*timestamp = hal_out.nav_timestamp;
google_orientation(values);
return hal_out.nine_axis_status;
}
/** Main callback to generate HAL outputs. Typically not called by library users.
* @param[in] sensor_cal Input variable to take sensor data whenever there is new
* sensor data.
* @return Returns INV_SUCCESS if successful or an error code if not.
*/
inv_error_t inv_generate_hal_outputs(struct inv_sensor_cal_t *sensor_cal)
{
int use_sensor = 0;
long sr = 1000;
long compass[3];
int8_t accuracy;
int i;
(void) sensor_cal;
inv_get_quaternion_set(hal_out.nav_quat, &hal_out.accuracy_quat,
&hal_out.nav_timestamp);
hal_out.gyro_status = sensor_cal->gyro.status;
hal_out.accel_status = sensor_cal->accel.status;
hal_out.compass_status = sensor_cal->compass.status;
// Find the highest sample rate and tie generating 9-axis to that one.
if (sensor_cal->gyro.status & INV_SENSOR_ON) {
sr = sensor_cal->gyro.sample_rate_ms;
use_sensor = 0;
}
if ((sensor_cal->accel.status & INV_SENSOR_ON) && (sr > sensor_cal->accel.sample_rate_ms)) {
sr = sensor_cal->accel.sample_rate_ms;
use_sensor = 1;
}
if ((sensor_cal->compass.status & INV_SENSOR_ON) && (sr > sensor_cal->compass.sample_rate_ms)) {
sr = sensor_cal->compass.sample_rate_ms;
use_sensor = 2;
}
if ((sensor_cal->quat.status & INV_SENSOR_ON) && (sr > sensor_cal->quat.sample_rate_ms)) {
sr = sensor_cal->quat.sample_rate_ms;
use_sensor = 3;
}
switch (use_sensor) {
default:
case 0:
hal_out.nine_axis_status = (sensor_cal->gyro.status & INV_NEW_DATA) ? 1 : 0;
hal_out.nav_timestamp = sensor_cal->gyro.timestamp;
break;
case 1:
hal_out.nine_axis_status = (sensor_cal->accel.status & INV_NEW_DATA) ? 1 : 0;
hal_out.nav_timestamp = sensor_cal->accel.timestamp;
break;
case 2:
hal_out.nine_axis_status = (sensor_cal->compass.status & INV_NEW_DATA) ? 1 : 0;
hal_out.nav_timestamp = sensor_cal->compass.timestamp;
break;
case 3:
hal_out.nine_axis_status = (sensor_cal->quat.status & INV_NEW_DATA) ? 1 : 0;
hal_out.nav_timestamp = sensor_cal->quat.timestamp;
break;
}
/* Converts fixed point to uT. Fixed point has 1 uT = 2^16.
* So this is: 1 / 2^16*/
#define COMPASS_CONVERSION 1.52587890625e-005f
inv_get_compass_set(compass, &accuracy, &(hal_out.mag_timestamp) );
hal_out.accuracy_mag = (int ) accuracy;
for (i=0; i<3; i++) {
if ((sensor_cal->compass.status & (INV_NEW_DATA | INV_CONTIGUOUS)) ==
INV_NEW_DATA ) {
// set the state variables to match output with input
inv_calc_state_to_match_output(&hal_out.lp_filter[i], (float ) compass[i]);
}
if ((sensor_cal->compass.status & (INV_NEW_DATA | INV_RAW_DATA)) ==
(INV_NEW_DATA | INV_RAW_DATA) ) {
hal_out.compass_float[i] = inv_biquad_filter_process(&hal_out.lp_filter[i],
(float ) compass[i]) * COMPASS_CONVERSION;
} else if ((sensor_cal->compass.status & INV_NEW_DATA) == INV_NEW_DATA ) {
hal_out.compass_float[i] = (float ) compass[i] * COMPASS_CONVERSION;
}
}
return INV_SUCCESS;
}
/** Turns off generation of HAL outputs.
* @return Returns INV_SUCCESS if successful or an error code if not.
*/
inv_error_t inv_stop_hal_outputs(void)
{
inv_error_t result;
result = inv_unregister_data_cb(inv_generate_hal_outputs);
return result;
}
/** Turns on generation of HAL outputs. This should be called after inv_stop_hal_outputs()
* to turn generation of HAL outputs back on. It is automatically called by inv_enable_hal_outputs().
* @return Returns INV_SUCCESS if successful or an error code if not.
*/
inv_error_t inv_start_hal_outputs(void)
{
inv_error_t result;
result =
inv_register_data_cb(inv_generate_hal_outputs,
INV_PRIORITY_HAL_OUTPUTS,
INV_GYRO_NEW | INV_ACCEL_NEW | INV_MAG_NEW);
return result;
}
/* file name: lowPassFilterCoeff_1_6.c */
float compass_low_pass_filter_coeff[5] =
{+2.000000000000f, +1.000000000000f, -1.279632424998f, +0.477592250073f, +0.049489956269f};
/** Initializes hal outputs class. This is called automatically by the
* enable function. It may be called any time the feature is enabled, but
* is typically not needed to be called by outside callers.
* @return Returns INV_SUCCESS if successful or an error code if not.
*/
inv_error_t inv_init_hal_outputs(void)
{
int i;
memset(&hal_out, 0, sizeof(hal_out));
for (i=0; i<3; i++) {
inv_init_biquad_filter(&hal_out.lp_filter[i], compass_low_pass_filter_coeff);
}
return INV_SUCCESS;
}
/** Turns on creation and storage of HAL type results.
* @return Returns INV_SUCCESS if successful or an error code if not.
*/
inv_error_t inv_enable_hal_outputs(void)
{
inv_error_t result;
// don't need to check the result for inv_init_hal_outputs
// since it's always INV_SUCCESS
inv_init_hal_outputs();
result = inv_register_mpl_start_notification(inv_start_hal_outputs);
return result;
}
/** Turns off creation and storage of HAL type results.
*/
inv_error_t inv_disable_hal_outputs(void)
{
inv_error_t result;
inv_stop_hal_outputs(); // Ignore error if we have already stopped this
result = inv_unregister_mpl_start_notification(inv_start_hal_outputs);
return result;
}
/**
* @}
*/