blob: 61745281f875af97940000298ef5ef701e74e589 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "EventMessageQueueWrapper.h"
#include "HalProxyCallback.h"
#include "ISensorsCallbackWrapper.h"
#include "SubHalWrapper.h"
#include "V2_0/ScopedWakelock.h"
#include "V2_0/SubHal.h"
#include "V2_1/SubHal.h"
#include "WakeLockMessageQueueWrapper.h"
#include "convertV2_1.h"
#include <android/hardware/sensors/2.1/ISensors.h>
#include <android/hardware/sensors/2.1/types.h>
#include <fmq/MessageQueue.h>
#include <hardware_legacy/power.h>
#include <hidl/MQDescriptor.h>
#include <hidl/Status.h>
#include <atomic>
#include <condition_variable>
#include <map>
#include <mutex>
#include <queue>
#include <thread>
#include <utility>
namespace android {
namespace hardware {
namespace sensors {
namespace V2_1 {
namespace implementation {
/**
* HalProxy is the main interface for Multi-HAL. It is responsible for managing subHALs and
* proxying function calls to/from the subHAL APIs from the sensors framework. It also manages any
* wakelocks allocated through the IHalProxyCallback and manages posting events to the sensors
* framework.
*/
class HalProxy : public V2_0::implementation::IScopedWakelockRefCounter,
public V2_0::implementation::ISubHalCallback {
public:
using Event = ::android::hardware::sensors::V2_1::Event;
using OperationMode = ::android::hardware::sensors::V1_0::OperationMode;
using RateLevel = ::android::hardware::sensors::V1_0::RateLevel;
using Result = ::android::hardware::sensors::V1_0::Result;
using SensorInfo = ::android::hardware::sensors::V2_1::SensorInfo;
using SharedMemInfo = ::android::hardware::sensors::V1_0::SharedMemInfo;
using IHalProxyCallbackV2_0 = V2_0::implementation::IHalProxyCallback;
using IHalProxyCallbackV2_1 = V2_1::implementation::IHalProxyCallback;
using ISensorsSubHalV2_0 = V2_0::implementation::ISensorsSubHal;
using ISensorsSubHalV2_1 = V2_1::implementation::ISensorsSubHal;
using ISensorsV2_0 = V2_0::ISensors;
using ISensorsV2_1 = V2_1::ISensors;
using HalProxyCallbackBase = V2_0::implementation::HalProxyCallbackBase;
explicit HalProxy();
// Test only constructor.
explicit HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList);
explicit HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList,
std::vector<ISensorsSubHalV2_1*>& subHalListV2_1);
~HalProxy();
// Methods from ::android::hardware::sensors::V2_1::ISensors follow.
Return<void> getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb);
Return<Result> initialize_2_1(
const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<V2_1::ISensorsCallback>& sensorsCallback);
Return<Result> injectSensorData_2_1(const Event& event);
// Methods from ::android::hardware::sensors::V2_0::ISensors follow.
Return<void> getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb);
Return<Result> setOperationMode(OperationMode mode);
Return<Result> activate(int32_t sensorHandle, bool enabled);
Return<Result> initialize(
const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<V2_0::ISensorsCallback>& sensorsCallback);
Return<Result> initializeCommon(std::unique_ptr<EventMessageQueueWrapperBase>& eventQueue,
std::unique_ptr<WakeLockMessageQueueWrapperBase>& wakeLockQueue,
const sp<ISensorsCallbackWrapperBase>& sensorsCallback);
Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs);
Return<Result> flush(int32_t sensorHandle);
Return<Result> injectSensorData(const V1_0::Event& event);
Return<void> registerDirectChannel(const SharedMemInfo& mem,
ISensorsV2_0::registerDirectChannel_cb _hidl_cb);
Return<Result> unregisterDirectChannel(int32_t channelHandle);
Return<void> configDirectReport(int32_t sensorHandle, int32_t channelHandle, RateLevel rate,
ISensorsV2_0::configDirectReport_cb _hidl_cb);
Return<void> debug(const hidl_handle& fd, const hidl_vec<hidl_string>& args);
Return<void> onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded,
int32_t subHalIndex) override;
Return<void> onDynamicSensorsDisconnected(const hidl_vec<int32_t>& dynamicSensorHandlesRemoved,
int32_t subHalIndex) override;
void postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents,
V2_0::implementation::ScopedWakelock wakelock) override;
const SensorInfo& getSensorInfo(int32_t sensorHandle) override {
return mSensors[sensorHandle];
}
bool areThreadsRunning() override { return mThreadsRun.load(); }
// Below methods are from IScopedWakelockRefCounter interface
bool incrementRefCountAndMaybeAcquireWakelock(size_t delta,
int64_t* timeoutStart = nullptr) override;
void decrementRefCountAndMaybeReleaseWakelock(size_t delta, int64_t timeoutStart = -1) override;
const std::map<int32_t, SensorInfo>& getSensors() { return mSensors; }
private:
using EventMessageQueueV2_1 = MessageQueue<V2_1::Event, kSynchronizedReadWrite>;
using EventMessageQueueV2_0 = MessageQueue<V1_0::Event, kSynchronizedReadWrite>;
using WakeLockMessageQueue = MessageQueue<uint32_t, kSynchronizedReadWrite>;
/**
* The Event FMQ where sensor events are written
*/
std::unique_ptr<EventMessageQueueWrapperBase> mEventQueue;
/**
* The Wake Lock FMQ that is read to determine when the framework has handled WAKE_UP events
*/
std::unique_ptr<WakeLockMessageQueueWrapperBase> mWakeLockQueue;
/**
* Event Flag to signal to the framework when sensor events are available to be read and to
* interrupt event queue blocking write.
*/
EventFlag* mEventQueueFlag = nullptr;
//! Event Flag to signal internally that the wakelock queue should stop its blocking read.
EventFlag* mWakelockQueueFlag = nullptr;
/**
* Callback to the sensors framework to inform it that new sensors have been added or removed.
*/
sp<ISensorsCallbackWrapperBase> mDynamicSensorsCallback;
/**
* SubHal objects that have been saved from vendor dynamic libraries.
*/
std::vector<std::shared_ptr<ISubHalWrapperBase>> mSubHalList;
/**
* Map of sensor handles to SensorInfo objects that contains the sensor info from subhals as
* well as the modified sensor handle for the framework.
*
* The subhal index is encoded in the first byte of the sensor handle and the remaining
* bytes are generated by the subhal to identify the sensor.
*/
std::map<int32_t, SensorInfo> mSensors;
//! Map of the dynamic sensors that have been added to halproxy.
std::map<int32_t, SensorInfo> mDynamicSensors;
//! The current operation mode for all subhals.
OperationMode mCurrentOperationMode = OperationMode::NORMAL;
//! The single subHal that supports directChannel reporting.
std::shared_ptr<ISubHalWrapperBase> mDirectChannelSubHal;
//! The timeout for each pending write on background thread for events.
static const int64_t kPendingWriteTimeoutNs = 5 * INT64_C(1000000000) /* 5 seconds */;
//! The bit mask used to get the subhal index from a sensor handle.
static constexpr int32_t kSensorHandleSubHalIndexMask = 0xFF000000;
/**
* A FIFO queue of pairs of vector of events and the number of wakeup events in that vector
* which are waiting to be written to the events fmq in the background thread.
*/
std::queue<std::pair<std::vector<Event>, size_t>> mPendingWriteEventsQueue;
//! The most events observed on the pending write events queue for debug purposes.
size_t mMostEventsObservedPendingWriteEventsQueue = 0;
//! The max number of events allowed in the pending write events queue
static constexpr size_t kMaxSizePendingWriteEventsQueue = 100000;
//! The number of events in the pending write events queue
size_t mSizePendingWriteEventsQueue = 0;
//! The mutex protecting writing to the fmq and the pending events queue
std::mutex mEventQueueWriteMutex;
//! The condition variable waiting on pending write events to stack up
std::condition_variable mEventQueueWriteCV;
//! The thread object ptr that handles pending writes
std::thread mPendingWritesThread;
//! The thread object that handles wakelocks
std::thread mWakelockThread;
//! The bool indicating whether to end the threads started in initialize
std::atomic_bool mThreadsRun = true;
//! The mutex protecting access to the dynamic sensors added and removed methods.
std::mutex mDynamicSensorsMutex;
// WakelockRefCount membar vars below
//! The mutex protecting the wakelock refcount and subsequent wakelock releases and
//! acquisitions
std::recursive_mutex mWakelockMutex;
std::condition_variable_any mWakelockCV;
//! The refcount of how many ScopedWakelocks and pending wakeup events are active
size_t mWakelockRefCount = 0;
int64_t mWakelockTimeoutStartTime = V2_0::implementation::getTimeNow();
int64_t mWakelockTimeoutResetTime = V2_0::implementation::getTimeNow();
const char* kWakelockName = "SensorsHAL_WAKEUP";
/**
* Initialize the list of SubHal objects in mSubHalList by reading from dynamic libraries
* listed in a config file.
*/
void initializeSubHalListFromConfigFile(const char* configFileName);
/**
* Initialize the HalProxyCallback vector using the list of subhals.
*/
void initializeSubHalCallbacks();
/**
* Initialize the list of SensorInfo objects in mSensorList by getting sensors from each
* subhal.
*/
void initializeSensorList();
/**
* Try using the default include directories as well as the directories defined in
* kSubHalShareObjectLocations to get a handle for dlsym for a subhal.
*
* @param filename The file name to search for.
*
* @return The handle or nullptr if search failed.
*/
void* getHandleForSubHalSharedObject(const std::string& filename);
/**
* Calls the helper methods that all ctors use.
*/
void init();
/**
* Stops all threads by setting the threads running flag to false and joining to them.
*/
void stopThreads();
/**
* Disable all the sensors observed by the HalProxy.
*/
void disableAllSensors();
/**
* Starts the thread that handles pending writes to event fmq.
*
* @param halProxy The HalProxy object pointer.
*/
static void startPendingWritesThread(HalProxy* halProxy);
//! Handles the pending writes on events to eventqueue.
void handlePendingWrites();
/**
* Starts the thread that handles decrementing the ref count on wakeup events processed by the
* framework and timing out wakelocks.
*
* @param halProxy The HalProxy object pointer.
*/
static void startWakelockThread(HalProxy* halProxy);
//! Handles the wakelocks.
void handleWakelocks();
/**
* @param timeLeft The variable that should be set to the timeleft before timeout will occur or
* unmodified if timeout occurred.
*
* @return true if the shared wakelock has been held passed the timeout and should be released
*/
bool sharedWakelockDidTimeout(int64_t* timeLeft);
/**
* Reset all the member variables associated with the wakelock ref count and maybe release
* the shared wakelock.
*/
void resetSharedWakelock();
/**
* Clear direct channel flags if the HalProxy has already chosen a subhal as its direct channel
* subhal. Set the directChannelSubHal pointer to the subHal passed in if this is the first
* direct channel enabled sensor seen.
*
* @param sensorInfo The SensorInfo object that may be altered to have direct channel support
* disabled.
* @param subHal The subhal pointer that the current sensorInfo object came from.
*/
void setDirectChannelFlags(SensorInfo* sensorInfo, std::shared_ptr<ISubHalWrapperBase> subHal);
/*
* Get the subhal pointer which can be found by indexing into the mSubHalList vector
* using the index from the first byte of sensorHandle.
*
* @param sensorHandle The handle used to identify a sensor in one of the subhals.
*/
std::shared_ptr<ISubHalWrapperBase> getSubHalForSensorHandle(int32_t sensorHandle);
/**
* Checks that sensorHandle's subhal index byte is within bounds of mSubHalList.
*
* @param sensorHandle The sensor handle to check.
*
* @return true if sensorHandles's subhal index byte is valid.
*/
bool isSubHalIndexValid(int32_t sensorHandle);
/**
* Count the number of wakeup events in the first n events of the vector.
*
* @param events The vector of Event objects.
* @param n The end index not inclusive of events to consider.
*
* @return The number of wakeup events of the considered events.
*/
size_t countNumWakeupEvents(const std::vector<Event>& events, size_t n);
/*
* Clear out the subhal index bytes from a sensorHandle.
*
* @param sensorHandle The sensor handle to modify.
*
* @return The modified version of the sensor handle.
*/
static int32_t clearSubHalIndex(int32_t sensorHandle);
/**
* @param sensorHandle The sensor handle to modify.
*
* @return true if subHalIndex byte of sensorHandle is zeroed.
*/
static bool subHalIndexIsClear(int32_t sensorHandle);
};
/**
* Since a newer HAL can't masquerade as a older HAL, IHalProxy enables the HalProxy to be compiled
* either for HAL 2.0 or HAL 2.1 depending on the build configuration.
*/
template <class ISensorsVersion>
class IHalProxy : public HalProxy, public ISensorsVersion {
Return<void> getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb) override {
return HalProxy::getSensorsList(_hidl_cb);
}
Return<Result> setOperationMode(OperationMode mode) override {
return HalProxy::setOperationMode(mode);
}
Return<Result> activate(int32_t sensorHandle, bool enabled) override {
return HalProxy::activate(sensorHandle, enabled);
}
Return<Result> initialize(
const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<V2_0::ISensorsCallback>& sensorsCallback) override {
return HalProxy::initialize(eventQueueDescriptor, wakeLockDescriptor, sensorsCallback);
}
Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs) override {
return HalProxy::batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
}
Return<Result> flush(int32_t sensorHandle) override { return HalProxy::flush(sensorHandle); }
Return<Result> injectSensorData(const V1_0::Event& event) override {
return HalProxy::injectSensorData(event);
}
Return<void> registerDirectChannel(const SharedMemInfo& mem,
ISensorsV2_0::registerDirectChannel_cb _hidl_cb) override {
return HalProxy::registerDirectChannel(mem, _hidl_cb);
}
Return<Result> unregisterDirectChannel(int32_t channelHandle) override {
return HalProxy::unregisterDirectChannel(channelHandle);
}
Return<void> configDirectReport(int32_t sensorHandle, int32_t channelHandle, RateLevel rate,
ISensorsV2_0::configDirectReport_cb _hidl_cb) override {
return HalProxy::configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
}
Return<void> debug(const hidl_handle& fd, const hidl_vec<hidl_string>& args) override {
return HalProxy::debug(fd, args);
}
};
class HalProxyV2_0 : public IHalProxy<V2_0::ISensors> {};
class HalProxyV2_1 : public IHalProxy<V2_1::ISensors> {
Return<void> getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb) override {
return HalProxy::getSensorsList_2_1(_hidl_cb);
}
Return<Result> initialize_2_1(
const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<V2_1::ISensorsCallback>& sensorsCallback) override {
return HalProxy::initialize_2_1(eventQueueDescriptor, wakeLockDescriptor, sensorsCallback);
}
Return<Result> injectSensorData_2_1(const Event& event) override {
return HalProxy::injectSensorData_2_1(event);
}
};
} // namespace implementation
} // namespace V2_1
} // namespace sensors
} // namespace hardware
} // namespace android