| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "HalProxy.h" |
| |
| #include <android/hardware/sensors/2.0/types.h> |
| |
| #include <android-base/file.h> |
| #include "hardware_legacy/power.h" |
| |
| #include <dlfcn.h> |
| |
| #include <cinttypes> |
| #include <cmath> |
| #include <fstream> |
| #include <functional> |
| #include <thread> |
| |
| namespace android { |
| namespace hardware { |
| namespace sensors { |
| namespace V2_1 { |
| namespace implementation { |
| |
| using ::android::hardware::sensors::V1_0::Result; |
| using ::android::hardware::sensors::V2_0::EventQueueFlagBits; |
| using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits; |
| using ::android::hardware::sensors::V2_0::implementation::getTimeNow; |
| using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs; |
| |
| typedef V2_0::implementation::ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*); |
| typedef V2_1::implementation::ISensorsSubHal*(SensorsHalGetSubHalV2_1Func)(uint32_t*); |
| |
| static constexpr int32_t kBitsAfterSubHalIndex = 24; |
| |
| /** |
| * Set the subhal index as first byte of sensor handle and return this modified version. |
| * |
| * @param sensorHandle The sensor handle to modify. |
| * @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to. |
| * |
| * @return The modified sensor handle. |
| */ |
| int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) { |
| return sensorHandle | (static_cast<int32_t>(subHalIndex) << kBitsAfterSubHalIndex); |
| } |
| |
| /** |
| * Extract the subHalIndex from sensorHandle. |
| * |
| * @param sensorHandle The sensorHandle to extract from. |
| * |
| * @return The subhal index. |
| */ |
| size_t extractSubHalIndex(int32_t sensorHandle) { |
| return static_cast<size_t>(sensorHandle >> kBitsAfterSubHalIndex); |
| } |
| |
| /** |
| * Convert nanoseconds to milliseconds. |
| * |
| * @param nanos The nanoseconds input. |
| * |
| * @return The milliseconds count. |
| */ |
| int64_t msFromNs(int64_t nanos) { |
| constexpr int64_t nanosecondsInAMillsecond = 1000000; |
| return nanos / nanosecondsInAMillsecond; |
| } |
| |
| HalProxy::HalProxy() { |
| static const std::string kMultiHalConfigFiles[] = {"/vendor/etc/sensors/hals.conf", |
| "/odm/etc/sensors/hals.conf"}; |
| for (const std::string& configFile : kMultiHalConfigFiles) { |
| initializeSubHalListFromConfigFile(configFile.c_str()); |
| } |
| init(); |
| } |
| |
| HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList) { |
| for (ISensorsSubHalV2_0* subHal : subHalList) { |
| mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal)); |
| } |
| |
| init(); |
| } |
| |
| HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList, |
| std::vector<ISensorsSubHalV2_1*>& subHalListV2_1) { |
| for (ISensorsSubHalV2_0* subHal : subHalList) { |
| mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal)); |
| } |
| |
| for (ISensorsSubHalV2_1* subHal : subHalListV2_1) { |
| mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal)); |
| } |
| |
| init(); |
| } |
| |
| HalProxy::~HalProxy() { |
| stopThreads(); |
| } |
| |
| Return<void> HalProxy::getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb) { |
| std::vector<V2_1::SensorInfo> sensors; |
| for (const auto& iter : mSensors) { |
| sensors.push_back(iter.second); |
| } |
| _hidl_cb(sensors); |
| return Void(); |
| } |
| |
| Return<void> HalProxy::getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb) { |
| std::vector<V1_0::SensorInfo> sensors; |
| for (const auto& iter : mSensors) { |
| if (iter.second.type != SensorType::HINGE_ANGLE) { |
| sensors.push_back(convertToOldSensorInfo(iter.second)); |
| } |
| } |
| _hidl_cb(sensors); |
| return Void(); |
| } |
| |
| Return<Result> HalProxy::setOperationMode(OperationMode mode) { |
| Result result = Result::OK; |
| size_t subHalIndex; |
| for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) { |
| result = mSubHalList[subHalIndex]->setOperationMode(mode); |
| if (result != Result::OK) { |
| ALOGE("setOperationMode failed for SubHal: %s", |
| mSubHalList[subHalIndex]->getName().c_str()); |
| break; |
| } |
| } |
| |
| if (result != Result::OK) { |
| // Reset the subhal operation modes that have been flipped |
| for (size_t i = 0; i < subHalIndex; i++) { |
| mSubHalList[i]->setOperationMode(mCurrentOperationMode); |
| } |
| } else { |
| mCurrentOperationMode = mode; |
| } |
| return result; |
| } |
| |
| Return<Result> HalProxy::activate(int32_t sensorHandle, bool enabled) { |
| if (!isSubHalIndexValid(sensorHandle)) { |
| return Result::BAD_VALUE; |
| } |
| return getSubHalForSensorHandle(sensorHandle) |
| ->activate(clearSubHalIndex(sensorHandle), enabled); |
| } |
| |
| Return<Result> HalProxy::initialize_2_1( |
| const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor, |
| const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor, |
| const sp<V2_1::ISensorsCallback>& sensorsCallback) { |
| sp<ISensorsCallbackWrapperBase> dynamicCallback = |
| new ISensorsCallbackWrapperV2_1(sensorsCallback); |
| |
| // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions. |
| auto eventQueue = |
| std::make_unique<EventMessageQueueV2_1>(eventQueueDescriptor, true /* resetPointers */); |
| std::unique_ptr<EventMessageQueueWrapperBase> queue = |
| std::make_unique<EventMessageQueueWrapperV2_1>(eventQueue); |
| |
| // Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions. |
| auto hidlWakeLockQueue = |
| std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */); |
| std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue = |
| std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue); |
| |
| return initializeCommon(queue, wakeLockQueue, dynamicCallback); |
| } |
| |
| Return<Result> HalProxy::initialize( |
| const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor, |
| const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor, |
| const sp<V2_0::ISensorsCallback>& sensorsCallback) { |
| sp<ISensorsCallbackWrapperBase> dynamicCallback = |
| new ISensorsCallbackWrapperV2_0(sensorsCallback); |
| |
| // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions. |
| auto eventQueue = |
| std::make_unique<EventMessageQueueV2_0>(eventQueueDescriptor, true /* resetPointers */); |
| std::unique_ptr<EventMessageQueueWrapperBase> queue = |
| std::make_unique<EventMessageQueueWrapperV1_0>(eventQueue); |
| |
| // Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions. |
| auto hidlWakeLockQueue = |
| std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */); |
| std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue = |
| std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue); |
| |
| return initializeCommon(queue, wakeLockQueue, dynamicCallback); |
| } |
| |
| Return<Result> HalProxy::initializeCommon( |
| std::unique_ptr<EventMessageQueueWrapperBase>& eventQueue, |
| std::unique_ptr<WakeLockMessageQueueWrapperBase>& wakeLockQueue, |
| const sp<ISensorsCallbackWrapperBase>& sensorsCallback) { |
| Result result = Result::OK; |
| |
| stopThreads(); |
| resetSharedWakelock(); |
| |
| // So that the pending write events queue can be cleared safely and when we start threads |
| // again we do not get new events until after initialize resets the subhals. |
| disableAllSensors(); |
| |
| // Clears the queue if any events were pending write before. |
| mPendingWriteEventsQueue = std::queue<std::pair<std::vector<V2_1::Event>, size_t>>(); |
| mSizePendingWriteEventsQueue = 0; |
| |
| // Clears previously connected dynamic sensors |
| mDynamicSensors.clear(); |
| |
| mDynamicSensorsCallback = sensorsCallback; |
| |
| // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions. |
| mEventQueue = std::move(eventQueue); |
| |
| // Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP |
| // events have been successfully read and handled by the framework. |
| mWakeLockQueue = std::move(wakeLockQueue); |
| |
| if (mEventQueueFlag != nullptr) { |
| EventFlag::deleteEventFlag(&mEventQueueFlag); |
| } |
| if (mWakelockQueueFlag != nullptr) { |
| EventFlag::deleteEventFlag(&mWakelockQueueFlag); |
| } |
| if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) { |
| result = Result::BAD_VALUE; |
| } |
| if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) { |
| result = Result::BAD_VALUE; |
| } |
| if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) { |
| result = Result::BAD_VALUE; |
| } |
| |
| mThreadsRun.store(true); |
| |
| mPendingWritesThread = std::thread(startPendingWritesThread, this); |
| mWakelockThread = std::thread(startWakelockThread, this); |
| |
| for (size_t i = 0; i < mSubHalList.size(); i++) { |
| Result currRes = mSubHalList[i]->initialize(this, this, i); |
| if (currRes != Result::OK) { |
| result = currRes; |
| ALOGE("Subhal '%s' failed to initialize with reason %" PRId32 ".", |
| mSubHalList[i]->getName().c_str(), static_cast<int32_t>(currRes)); |
| } |
| } |
| |
| mCurrentOperationMode = OperationMode::NORMAL; |
| |
| return result; |
| } |
| |
| Return<Result> HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs, |
| int64_t maxReportLatencyNs) { |
| if (!isSubHalIndexValid(sensorHandle)) { |
| return Result::BAD_VALUE; |
| } |
| return getSubHalForSensorHandle(sensorHandle) |
| ->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs); |
| } |
| |
| Return<Result> HalProxy::flush(int32_t sensorHandle) { |
| if (!isSubHalIndexValid(sensorHandle)) { |
| return Result::BAD_VALUE; |
| } |
| return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle)); |
| } |
| |
| Return<Result> HalProxy::injectSensorData_2_1(const V2_1::Event& event) { |
| return injectSensorData(convertToOldEvent(event)); |
| } |
| |
| Return<Result> HalProxy::injectSensorData(const V1_0::Event& event) { |
| Result result = Result::OK; |
| if (mCurrentOperationMode == OperationMode::NORMAL && |
| event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) { |
| ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation" |
| " mode was NORMAL."); |
| result = Result::BAD_VALUE; |
| } |
| if (result == Result::OK) { |
| V1_0::Event subHalEvent = event; |
| if (!isSubHalIndexValid(event.sensorHandle)) { |
| return Result::BAD_VALUE; |
| } |
| subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle); |
| result = getSubHalForSensorHandle(event.sensorHandle) |
| ->injectSensorData(convertToNewEvent(subHalEvent)); |
| } |
| return result; |
| } |
| |
| Return<void> HalProxy::registerDirectChannel(const SharedMemInfo& mem, |
| ISensorsV2_0::registerDirectChannel_cb _hidl_cb) { |
| if (mDirectChannelSubHal == nullptr) { |
| _hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */); |
| } else { |
| mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb); |
| } |
| return Return<void>(); |
| } |
| |
| Return<Result> HalProxy::unregisterDirectChannel(int32_t channelHandle) { |
| Result result; |
| if (mDirectChannelSubHal == nullptr) { |
| result = Result::INVALID_OPERATION; |
| } else { |
| result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle); |
| } |
| return result; |
| } |
| |
| Return<void> HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle, |
| RateLevel rate, |
| ISensorsV2_0::configDirectReport_cb _hidl_cb) { |
| if (mDirectChannelSubHal == nullptr) { |
| _hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */); |
| } else if (sensorHandle == -1 && rate != RateLevel::STOP) { |
| _hidl_cb(Result::BAD_VALUE, -1 /* reportToken */); |
| } else { |
| // -1 denotes all sensors should be disabled |
| if (sensorHandle != -1) { |
| sensorHandle = clearSubHalIndex(sensorHandle); |
| } |
| mDirectChannelSubHal->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb); |
| } |
| return Return<void>(); |
| } |
| |
| Return<void> HalProxy::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& args) { |
| if (fd.getNativeHandle() == nullptr || fd->numFds < 1) { |
| ALOGE("%s: missing fd for writing", __FUNCTION__); |
| return Void(); |
| } |
| |
| int writeFd = fd->data[0]; |
| |
| std::ostringstream stream; |
| stream << "===HalProxy===" << std::endl; |
| stream << "Internal values:" << std::endl; |
| stream << " Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl; |
| int64_t now = getTimeNow(); |
| stream << " Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime) |
| << " ms ago" << std::endl; |
| stream << " Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime) |
| << " ms ago" << std::endl; |
| // TODO(b/142969448): Add logging for history of wakelock acquisition per subhal. |
| stream << " Wakelock ref count: " << mWakelockRefCount << std::endl; |
| stream << " # of events on pending write writes queue: " << mSizePendingWriteEventsQueue |
| << std::endl; |
| stream << " Most events seen on pending write events queue: " |
| << mMostEventsObservedPendingWriteEventsQueue << std::endl; |
| if (!mPendingWriteEventsQueue.empty()) { |
| stream << " Size of events list on front of pending writes queue: " |
| << mPendingWriteEventsQueue.front().first.size() << std::endl; |
| } |
| stream << " # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl; |
| stream << " # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl; |
| stream << "SubHals (" << mSubHalList.size() << "):" << std::endl; |
| for (auto& subHal : mSubHalList) { |
| stream << " Name: " << subHal->getName() << std::endl; |
| stream << " Debug dump: " << std::endl; |
| android::base::WriteStringToFd(stream.str(), writeFd); |
| subHal->debug(fd, args); |
| stream.str(""); |
| stream << std::endl; |
| } |
| android::base::WriteStringToFd(stream.str(), writeFd); |
| return Return<void>(); |
| } |
| |
| Return<void> HalProxy::onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded, |
| int32_t subHalIndex) { |
| std::vector<SensorInfo> sensors; |
| { |
| std::lock_guard<std::mutex> lock(mDynamicSensorsMutex); |
| for (SensorInfo sensor : dynamicSensorsAdded) { |
| if (!subHalIndexIsClear(sensor.sensorHandle)) { |
| ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.", |
| sensor.name.c_str()); |
| } else { |
| sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex); |
| mDynamicSensors[sensor.sensorHandle] = sensor; |
| sensors.push_back(sensor); |
| } |
| } |
| } |
| mDynamicSensorsCallback->onDynamicSensorsConnected(sensors); |
| return Return<void>(); |
| } |
| |
| Return<void> HalProxy::onDynamicSensorsDisconnected( |
| const hidl_vec<int32_t>& dynamicSensorHandlesRemoved, int32_t subHalIndex) { |
| // TODO(b/143302327): Block this call until all pending events are flushed from queue |
| std::vector<int32_t> sensorHandles; |
| { |
| std::lock_guard<std::mutex> lock(mDynamicSensorsMutex); |
| for (int32_t sensorHandle : dynamicSensorHandlesRemoved) { |
| if (!subHalIndexIsClear(sensorHandle)) { |
| ALOGE("Dynamic sensorHandle removed had first byte not 0."); |
| } else { |
| sensorHandle = setSubHalIndex(sensorHandle, subHalIndex); |
| if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) { |
| mDynamicSensors.erase(sensorHandle); |
| sensorHandles.push_back(sensorHandle); |
| } |
| } |
| } |
| } |
| mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles); |
| return Return<void>(); |
| } |
| |
| void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) { |
| std::ifstream subHalConfigStream(configFileName); |
| if (!subHalConfigStream) { |
| ALOGE("Failed to load subHal config file: %s", configFileName); |
| } else { |
| std::string subHalLibraryFile; |
| while (subHalConfigStream >> subHalLibraryFile) { |
| void* handle = getHandleForSubHalSharedObject(subHalLibraryFile); |
| if (handle == nullptr) { |
| ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str()); |
| } else { |
| SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr = |
| (SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal"); |
| if (sensorsHalGetSubHalPtr != nullptr) { |
| std::function<SensorsHalGetSubHalFunc> sensorsHalGetSubHal = |
| *sensorsHalGetSubHalPtr; |
| uint32_t version; |
| ISensorsSubHalV2_0* subHal = sensorsHalGetSubHal(&version); |
| if (version != SUB_HAL_2_0_VERSION) { |
| ALOGE("SubHal version was not 2.0 for library: %s", |
| subHalLibraryFile.c_str()); |
| } else { |
| ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str()); |
| mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal)); |
| } |
| } else { |
| SensorsHalGetSubHalV2_1Func* getSubHalV2_1Ptr = |
| (SensorsHalGetSubHalV2_1Func*)dlsym(handle, "sensorsHalGetSubHal_2_1"); |
| |
| if (getSubHalV2_1Ptr == nullptr) { |
| ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s", |
| subHalLibraryFile.c_str()); |
| } else { |
| std::function<SensorsHalGetSubHalV2_1Func> sensorsHalGetSubHal_2_1 = |
| *getSubHalV2_1Ptr; |
| uint32_t version; |
| ISensorsSubHalV2_1* subHal = sensorsHalGetSubHal_2_1(&version); |
| if (version != SUB_HAL_2_1_VERSION) { |
| ALOGE("SubHal version was not 2.1 for library: %s", |
| subHalLibraryFile.c_str()); |
| } else { |
| ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str()); |
| mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void HalProxy::initializeSensorList() { |
| for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) { |
| auto result = mSubHalList[subHalIndex]->getSensorsList([&](const auto& list) { |
| for (SensorInfo sensor : list) { |
| if (!subHalIndexIsClear(sensor.sensorHandle)) { |
| ALOGE("SubHal sensorHandle's first byte was not 0"); |
| } else { |
| ALOGV("Loaded sensor: %s", sensor.name.c_str()); |
| sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex); |
| setDirectChannelFlags(&sensor, mSubHalList[subHalIndex]); |
| mSensors[sensor.sensorHandle] = sensor; |
| } |
| } |
| }); |
| if (!result.isOk()) { |
| ALOGE("getSensorsList call failed for SubHal: %s", |
| mSubHalList[subHalIndex]->getName().c_str()); |
| } |
| } |
| } |
| |
| void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) { |
| static const std::string kSubHalShareObjectLocations[] = { |
| "", // Default locations will be searched |
| #ifdef __LP64__ |
| "/vendor/lib64/hw/", "/odm/lib64/hw/" |
| #else |
| "/vendor/lib/hw/", "/odm/lib/hw/" |
| #endif |
| }; |
| |
| for (const std::string& dir : kSubHalShareObjectLocations) { |
| void* handle = dlopen((dir + filename).c_str(), RTLD_NOW); |
| if (handle != nullptr) { |
| return handle; |
| } |
| } |
| return nullptr; |
| } |
| |
| void HalProxy::init() { |
| initializeSensorList(); |
| } |
| |
| void HalProxy::stopThreads() { |
| mThreadsRun.store(false); |
| if (mEventQueueFlag != nullptr && mEventQueue != nullptr) { |
| size_t numToRead = mEventQueue->availableToRead(); |
| std::vector<Event> events(numToRead); |
| mEventQueue->read(events.data(), numToRead); |
| mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ)); |
| } |
| if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) { |
| uint32_t kZero = 0; |
| mWakeLockQueue->write(&kZero); |
| mWakelockQueueFlag->wake(static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN)); |
| } |
| mWakelockCV.notify_one(); |
| mEventQueueWriteCV.notify_one(); |
| if (mPendingWritesThread.joinable()) { |
| mPendingWritesThread.join(); |
| } |
| if (mWakelockThread.joinable()) { |
| mWakelockThread.join(); |
| } |
| } |
| |
| void HalProxy::disableAllSensors() { |
| for (const auto& sensorEntry : mSensors) { |
| int32_t sensorHandle = sensorEntry.first; |
| activate(sensorHandle, false /* enabled */); |
| } |
| std::lock_guard<std::mutex> dynamicSensorsLock(mDynamicSensorsMutex); |
| for (const auto& sensorEntry : mDynamicSensors) { |
| int32_t sensorHandle = sensorEntry.first; |
| activate(sensorHandle, false /* enabled */); |
| } |
| } |
| |
| void HalProxy::startPendingWritesThread(HalProxy* halProxy) { |
| halProxy->handlePendingWrites(); |
| } |
| |
| void HalProxy::handlePendingWrites() { |
| // TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of |
| // one. |
| std::unique_lock<std::mutex> lock(mEventQueueWriteMutex); |
| while (mThreadsRun.load()) { |
| mEventQueueWriteCV.wait( |
| lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); }); |
| if (mThreadsRun.load()) { |
| std::vector<Event>& pendingWriteEvents = mPendingWriteEventsQueue.front().first; |
| size_t numWakeupEvents = mPendingWriteEventsQueue.front().second; |
| size_t eventQueueSize = mEventQueue->getQuantumCount(); |
| size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize); |
| lock.unlock(); |
| if (!mEventQueue->writeBlocking( |
| pendingWriteEvents.data(), numToWrite, |
| static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ), |
| static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS), |
| kPendingWriteTimeoutNs, mEventQueueFlag)) { |
| ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite); |
| if (numWakeupEvents > 0) { |
| if (pendingWriteEvents.size() > eventQueueSize) { |
| decrementRefCountAndMaybeReleaseWakelock( |
| countNumWakeupEvents(pendingWriteEvents, eventQueueSize)); |
| } else { |
| decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents); |
| } |
| } |
| } |
| lock.lock(); |
| mSizePendingWriteEventsQueue -= numToWrite; |
| if (pendingWriteEvents.size() > eventQueueSize) { |
| // TODO(b/143302327): Check if this erase operation is too inefficient. It will copy |
| // all the events ahead of it down to fill gap off array at front after the erase. |
| pendingWriteEvents.erase(pendingWriteEvents.begin(), |
| pendingWriteEvents.begin() + eventQueueSize); |
| } else { |
| mPendingWriteEventsQueue.pop(); |
| } |
| } |
| } |
| } |
| |
| void HalProxy::startWakelockThread(HalProxy* halProxy) { |
| halProxy->handleWakelocks(); |
| } |
| |
| void HalProxy::handleWakelocks() { |
| std::unique_lock<std::recursive_mutex> lock(mWakelockMutex); |
| while (mThreadsRun.load()) { |
| mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); }); |
| if (mThreadsRun.load()) { |
| int64_t timeLeft; |
| if (sharedWakelockDidTimeout(&timeLeft)) { |
| resetSharedWakelock(); |
| } else { |
| uint32_t numWakeLocksProcessed; |
| lock.unlock(); |
| bool success = mWakeLockQueue->readBlocking( |
| &numWakeLocksProcessed, 1, 0, |
| static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft); |
| lock.lock(); |
| if (success) { |
| decrementRefCountAndMaybeReleaseWakelock( |
| static_cast<size_t>(numWakeLocksProcessed)); |
| } |
| } |
| } |
| } |
| resetSharedWakelock(); |
| } |
| |
| bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) { |
| bool didTimeout; |
| int64_t duration = getTimeNow() - mWakelockTimeoutStartTime; |
| if (duration > kWakelockTimeoutNs) { |
| didTimeout = true; |
| } else { |
| didTimeout = false; |
| *timeLeft = kWakelockTimeoutNs - duration; |
| } |
| return didTimeout; |
| } |
| |
| void HalProxy::resetSharedWakelock() { |
| std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex); |
| decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount); |
| mWakelockTimeoutResetTime = getTimeNow(); |
| } |
| |
| void HalProxy::postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents, |
| V2_0::implementation::ScopedWakelock wakelock) { |
| size_t numToWrite = 0; |
| std::lock_guard<std::mutex> lock(mEventQueueWriteMutex); |
| if (wakelock.isLocked()) { |
| incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents); |
| } |
| if (mPendingWriteEventsQueue.empty()) { |
| numToWrite = std::min(events.size(), mEventQueue->availableToWrite()); |
| if (numToWrite > 0) { |
| if (mEventQueue->write(events.data(), numToWrite)) { |
| // TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit |
| // in more writes immediately |
| mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS)); |
| } else { |
| numToWrite = 0; |
| } |
| } |
| } |
| size_t numLeft = events.size() - numToWrite; |
| if (numToWrite < events.size() && |
| mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) { |
| std::vector<Event> eventsLeft(events.begin() + numToWrite, events.end()); |
| mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents}); |
| mSizePendingWriteEventsQueue += numLeft; |
| mMostEventsObservedPendingWriteEventsQueue = |
| std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue); |
| mEventQueueWriteCV.notify_one(); |
| } |
| } |
| |
| bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta, |
| int64_t* timeoutStart /* = nullptr */) { |
| if (!mThreadsRun.load()) return false; |
| std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex); |
| if (mWakelockRefCount == 0) { |
| acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName); |
| mWakelockCV.notify_one(); |
| } |
| mWakelockTimeoutStartTime = getTimeNow(); |
| mWakelockRefCount += delta; |
| if (timeoutStart != nullptr) { |
| *timeoutStart = mWakelockTimeoutStartTime; |
| } |
| return true; |
| } |
| |
| void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta, |
| int64_t timeoutStart /* = -1 */) { |
| if (!mThreadsRun.load()) return; |
| std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex); |
| if (delta > mWakelockRefCount) { |
| ALOGE("Decrementing wakelock ref count by %zu when count is %zu", |
| delta, mWakelockRefCount); |
| } |
| if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime; |
| if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return; |
| mWakelockRefCount -= std::min(mWakelockRefCount, delta); |
| if (mWakelockRefCount == 0) { |
| release_wake_lock(kWakelockName); |
| } |
| } |
| |
| void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo, |
| std::shared_ptr<ISubHalWrapperBase> subHal) { |
| bool sensorSupportsDirectChannel = |
| (sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT | |
| V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0; |
| if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) { |
| mDirectChannelSubHal = subHal; |
| } else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) { |
| // disable direct channel capability for sensors in subHals that are not |
| // the only one we will enable |
| sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT | |
| V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL); |
| } |
| } |
| |
| std::shared_ptr<ISubHalWrapperBase> HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) { |
| return mSubHalList[extractSubHalIndex(sensorHandle)]; |
| } |
| |
| bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) { |
| return extractSubHalIndex(sensorHandle) < mSubHalList.size(); |
| } |
| |
| size_t HalProxy::countNumWakeupEvents(const std::vector<Event>& events, size_t n) { |
| size_t numWakeupEvents = 0; |
| for (size_t i = 0; i < n; i++) { |
| int32_t sensorHandle = events[i].sensorHandle; |
| if (mSensors[sensorHandle].flags & static_cast<uint32_t>(V1_0::SensorFlagBits::WAKE_UP)) { |
| numWakeupEvents++; |
| } |
| } |
| return numWakeupEvents; |
| } |
| |
| int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) { |
| return sensorHandle & (~kSensorHandleSubHalIndexMask); |
| } |
| |
| bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) { |
| return (sensorHandle & kSensorHandleSubHalIndexMask) == 0; |
| } |
| |
| } // namespace implementation |
| } // namespace V2_1 |
| } // namespace sensors |
| } // namespace hardware |
| } // namespace android |