blob: 305383e93adfeccb40acc79400ce797e9cdf46d0 [file] [log] [blame] [edit]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "HalProxy.h"
#include <android/hardware/sensors/2.0/types.h>
#include <android-base/file.h>
#include "hardware_legacy/power.h"
#include <dlfcn.h>
#include <cinttypes>
#include <cmath>
#include <fstream>
#include <functional>
#include <thread>
namespace android {
namespace hardware {
namespace sensors {
namespace V2_1 {
namespace implementation {
using ::android::hardware::sensors::V1_0::Result;
using ::android::hardware::sensors::V2_0::EventQueueFlagBits;
using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
using ::android::hardware::sensors::V2_0::implementation::getTimeNow;
using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs;
typedef V2_0::implementation::ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*);
typedef V2_1::implementation::ISensorsSubHal*(SensorsHalGetSubHalV2_1Func)(uint32_t*);
static constexpr int32_t kBitsAfterSubHalIndex = 24;
/**
* Set the subhal index as first byte of sensor handle and return this modified version.
*
* @param sensorHandle The sensor handle to modify.
* @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to.
*
* @return The modified sensor handle.
*/
int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) {
return sensorHandle | (static_cast<int32_t>(subHalIndex) << kBitsAfterSubHalIndex);
}
/**
* Extract the subHalIndex from sensorHandle.
*
* @param sensorHandle The sensorHandle to extract from.
*
* @return The subhal index.
*/
size_t extractSubHalIndex(int32_t sensorHandle) {
return static_cast<size_t>(sensorHandle >> kBitsAfterSubHalIndex);
}
/**
* Convert nanoseconds to milliseconds.
*
* @param nanos The nanoseconds input.
*
* @return The milliseconds count.
*/
int64_t msFromNs(int64_t nanos) {
constexpr int64_t nanosecondsInAMillsecond = 1000000;
return nanos / nanosecondsInAMillsecond;
}
HalProxy::HalProxy() {
static const std::string kMultiHalConfigFiles[] = {"/vendor/etc/sensors/hals.conf",
"/odm/etc/sensors/hals.conf"};
for (const std::string& configFile : kMultiHalConfigFiles) {
initializeSubHalListFromConfigFile(configFile.c_str());
}
init();
}
HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList) {
for (ISensorsSubHalV2_0* subHal : subHalList) {
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
}
init();
}
HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList,
std::vector<ISensorsSubHalV2_1*>& subHalListV2_1) {
for (ISensorsSubHalV2_0* subHal : subHalList) {
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
}
for (ISensorsSubHalV2_1* subHal : subHalListV2_1) {
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
}
init();
}
HalProxy::~HalProxy() {
stopThreads();
}
Return<void> HalProxy::getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb) {
std::vector<V2_1::SensorInfo> sensors;
for (const auto& iter : mSensors) {
sensors.push_back(iter.second);
}
_hidl_cb(sensors);
return Void();
}
Return<void> HalProxy::getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb) {
std::vector<V1_0::SensorInfo> sensors;
for (const auto& iter : mSensors) {
if (iter.second.type != SensorType::HINGE_ANGLE) {
sensors.push_back(convertToOldSensorInfo(iter.second));
}
}
_hidl_cb(sensors);
return Void();
}
Return<Result> HalProxy::setOperationMode(OperationMode mode) {
Result result = Result::OK;
size_t subHalIndex;
for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
result = mSubHalList[subHalIndex]->setOperationMode(mode);
if (result != Result::OK) {
ALOGE("setOperationMode failed for SubHal: %s",
mSubHalList[subHalIndex]->getName().c_str());
break;
}
}
if (result != Result::OK) {
// Reset the subhal operation modes that have been flipped
for (size_t i = 0; i < subHalIndex; i++) {
mSubHalList[i]->setOperationMode(mCurrentOperationMode);
}
} else {
mCurrentOperationMode = mode;
}
return result;
}
Return<Result> HalProxy::activate(int32_t sensorHandle, bool enabled) {
if (!isSubHalIndexValid(sensorHandle)) {
return Result::BAD_VALUE;
}
return getSubHalForSensorHandle(sensorHandle)
->activate(clearSubHalIndex(sensorHandle), enabled);
}
Return<Result> HalProxy::initialize_2_1(
const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<V2_1::ISensorsCallback>& sensorsCallback) {
sp<ISensorsCallbackWrapperBase> dynamicCallback =
new ISensorsCallbackWrapperV2_1(sensorsCallback);
// Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
auto eventQueue =
std::make_unique<EventMessageQueueV2_1>(eventQueueDescriptor, true /* resetPointers */);
std::unique_ptr<EventMessageQueueWrapperBase> queue =
std::make_unique<EventMessageQueueWrapperV2_1>(eventQueue);
// Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions.
auto hidlWakeLockQueue =
std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue =
std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue);
return initializeCommon(queue, wakeLockQueue, dynamicCallback);
}
Return<Result> HalProxy::initialize(
const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<V2_0::ISensorsCallback>& sensorsCallback) {
sp<ISensorsCallbackWrapperBase> dynamicCallback =
new ISensorsCallbackWrapperV2_0(sensorsCallback);
// Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
auto eventQueue =
std::make_unique<EventMessageQueueV2_0>(eventQueueDescriptor, true /* resetPointers */);
std::unique_ptr<EventMessageQueueWrapperBase> queue =
std::make_unique<EventMessageQueueWrapperV1_0>(eventQueue);
// Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions.
auto hidlWakeLockQueue =
std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue =
std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue);
return initializeCommon(queue, wakeLockQueue, dynamicCallback);
}
Return<Result> HalProxy::initializeCommon(
std::unique_ptr<EventMessageQueueWrapperBase>& eventQueue,
std::unique_ptr<WakeLockMessageQueueWrapperBase>& wakeLockQueue,
const sp<ISensorsCallbackWrapperBase>& sensorsCallback) {
Result result = Result::OK;
stopThreads();
resetSharedWakelock();
// So that the pending write events queue can be cleared safely and when we start threads
// again we do not get new events until after initialize resets the subhals.
disableAllSensors();
// Clears the queue if any events were pending write before.
mPendingWriteEventsQueue = std::queue<std::pair<std::vector<V2_1::Event>, size_t>>();
mSizePendingWriteEventsQueue = 0;
// Clears previously connected dynamic sensors
mDynamicSensors.clear();
mDynamicSensorsCallback = sensorsCallback;
// Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
mEventQueue = std::move(eventQueue);
// Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
// events have been successfully read and handled by the framework.
mWakeLockQueue = std::move(wakeLockQueue);
if (mEventQueueFlag != nullptr) {
EventFlag::deleteEventFlag(&mEventQueueFlag);
}
if (mWakelockQueueFlag != nullptr) {
EventFlag::deleteEventFlag(&mWakelockQueueFlag);
}
if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
result = Result::BAD_VALUE;
}
if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) {
result = Result::BAD_VALUE;
}
if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
result = Result::BAD_VALUE;
}
mThreadsRun.store(true);
mPendingWritesThread = std::thread(startPendingWritesThread, this);
mWakelockThread = std::thread(startWakelockThread, this);
for (size_t i = 0; i < mSubHalList.size(); i++) {
Result currRes = mSubHalList[i]->initialize(this, this, i);
if (currRes != Result::OK) {
result = currRes;
ALOGE("Subhal '%s' failed to initialize with reason %" PRId32 ".",
mSubHalList[i]->getName().c_str(), static_cast<int32_t>(currRes));
}
}
mCurrentOperationMode = OperationMode::NORMAL;
return result;
}
Return<Result> HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs) {
if (!isSubHalIndexValid(sensorHandle)) {
return Result::BAD_VALUE;
}
return getSubHalForSensorHandle(sensorHandle)
->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs);
}
Return<Result> HalProxy::flush(int32_t sensorHandle) {
if (!isSubHalIndexValid(sensorHandle)) {
return Result::BAD_VALUE;
}
return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle));
}
Return<Result> HalProxy::injectSensorData_2_1(const V2_1::Event& event) {
return injectSensorData(convertToOldEvent(event));
}
Return<Result> HalProxy::injectSensorData(const V1_0::Event& event) {
Result result = Result::OK;
if (mCurrentOperationMode == OperationMode::NORMAL &&
event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) {
ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation"
" mode was NORMAL.");
result = Result::BAD_VALUE;
}
if (result == Result::OK) {
V1_0::Event subHalEvent = event;
if (!isSubHalIndexValid(event.sensorHandle)) {
return Result::BAD_VALUE;
}
subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle);
result = getSubHalForSensorHandle(event.sensorHandle)
->injectSensorData(convertToNewEvent(subHalEvent));
}
return result;
}
Return<void> HalProxy::registerDirectChannel(const SharedMemInfo& mem,
ISensorsV2_0::registerDirectChannel_cb _hidl_cb) {
if (mDirectChannelSubHal == nullptr) {
_hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
} else {
mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb);
}
return Return<void>();
}
Return<Result> HalProxy::unregisterDirectChannel(int32_t channelHandle) {
Result result;
if (mDirectChannelSubHal == nullptr) {
result = Result::INVALID_OPERATION;
} else {
result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle);
}
return result;
}
Return<void> HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle,
RateLevel rate,
ISensorsV2_0::configDirectReport_cb _hidl_cb) {
if (mDirectChannelSubHal == nullptr) {
_hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */);
} else if (sensorHandle == -1 && rate != RateLevel::STOP) {
_hidl_cb(Result::BAD_VALUE, -1 /* reportToken */);
} else {
// -1 denotes all sensors should be disabled
if (sensorHandle != -1) {
sensorHandle = clearSubHalIndex(sensorHandle);
}
mDirectChannelSubHal->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
}
return Return<void>();
}
Return<void> HalProxy::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& args) {
if (fd.getNativeHandle() == nullptr || fd->numFds < 1) {
ALOGE("%s: missing fd for writing", __FUNCTION__);
return Void();
}
int writeFd = fd->data[0];
std::ostringstream stream;
stream << "===HalProxy===" << std::endl;
stream << "Internal values:" << std::endl;
stream << " Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl;
int64_t now = getTimeNow();
stream << " Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime)
<< " ms ago" << std::endl;
stream << " Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime)
<< " ms ago" << std::endl;
// TODO(b/142969448): Add logging for history of wakelock acquisition per subhal.
stream << " Wakelock ref count: " << mWakelockRefCount << std::endl;
stream << " # of events on pending write writes queue: " << mSizePendingWriteEventsQueue
<< std::endl;
stream << " Most events seen on pending write events queue: "
<< mMostEventsObservedPendingWriteEventsQueue << std::endl;
if (!mPendingWriteEventsQueue.empty()) {
stream << " Size of events list on front of pending writes queue: "
<< mPendingWriteEventsQueue.front().first.size() << std::endl;
}
stream << " # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl;
stream << " # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl;
stream << "SubHals (" << mSubHalList.size() << "):" << std::endl;
for (auto& subHal : mSubHalList) {
stream << " Name: " << subHal->getName() << std::endl;
stream << " Debug dump: " << std::endl;
android::base::WriteStringToFd(stream.str(), writeFd);
subHal->debug(fd, args);
stream.str("");
stream << std::endl;
}
android::base::WriteStringToFd(stream.str(), writeFd);
return Return<void>();
}
Return<void> HalProxy::onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded,
int32_t subHalIndex) {
std::vector<SensorInfo> sensors;
{
std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
for (SensorInfo sensor : dynamicSensorsAdded) {
if (!subHalIndexIsClear(sensor.sensorHandle)) {
ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.",
sensor.name.c_str());
} else {
sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
mDynamicSensors[sensor.sensorHandle] = sensor;
sensors.push_back(sensor);
}
}
}
mDynamicSensorsCallback->onDynamicSensorsConnected(sensors);
return Return<void>();
}
Return<void> HalProxy::onDynamicSensorsDisconnected(
const hidl_vec<int32_t>& dynamicSensorHandlesRemoved, int32_t subHalIndex) {
// TODO(b/143302327): Block this call until all pending events are flushed from queue
std::vector<int32_t> sensorHandles;
{
std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
for (int32_t sensorHandle : dynamicSensorHandlesRemoved) {
if (!subHalIndexIsClear(sensorHandle)) {
ALOGE("Dynamic sensorHandle removed had first byte not 0.");
} else {
sensorHandle = setSubHalIndex(sensorHandle, subHalIndex);
if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) {
mDynamicSensors.erase(sensorHandle);
sensorHandles.push_back(sensorHandle);
}
}
}
}
mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles);
return Return<void>();
}
void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) {
std::ifstream subHalConfigStream(configFileName);
if (!subHalConfigStream) {
ALOGE("Failed to load subHal config file: %s", configFileName);
} else {
std::string subHalLibraryFile;
while (subHalConfigStream >> subHalLibraryFile) {
void* handle = getHandleForSubHalSharedObject(subHalLibraryFile);
if (handle == nullptr) {
ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str());
} else {
SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr =
(SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal");
if (sensorsHalGetSubHalPtr != nullptr) {
std::function<SensorsHalGetSubHalFunc> sensorsHalGetSubHal =
*sensorsHalGetSubHalPtr;
uint32_t version;
ISensorsSubHalV2_0* subHal = sensorsHalGetSubHal(&version);
if (version != SUB_HAL_2_0_VERSION) {
ALOGE("SubHal version was not 2.0 for library: %s",
subHalLibraryFile.c_str());
} else {
ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
}
} else {
SensorsHalGetSubHalV2_1Func* getSubHalV2_1Ptr =
(SensorsHalGetSubHalV2_1Func*)dlsym(handle, "sensorsHalGetSubHal_2_1");
if (getSubHalV2_1Ptr == nullptr) {
ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s",
subHalLibraryFile.c_str());
} else {
std::function<SensorsHalGetSubHalV2_1Func> sensorsHalGetSubHal_2_1 =
*getSubHalV2_1Ptr;
uint32_t version;
ISensorsSubHalV2_1* subHal = sensorsHalGetSubHal_2_1(&version);
if (version != SUB_HAL_2_1_VERSION) {
ALOGE("SubHal version was not 2.1 for library: %s",
subHalLibraryFile.c_str());
} else {
ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
}
}
}
}
}
}
}
void HalProxy::initializeSensorList() {
for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
auto result = mSubHalList[subHalIndex]->getSensorsList([&](const auto& list) {
for (SensorInfo sensor : list) {
if (!subHalIndexIsClear(sensor.sensorHandle)) {
ALOGE("SubHal sensorHandle's first byte was not 0");
} else {
ALOGV("Loaded sensor: %s", sensor.name.c_str());
sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
setDirectChannelFlags(&sensor, mSubHalList[subHalIndex]);
mSensors[sensor.sensorHandle] = sensor;
}
}
});
if (!result.isOk()) {
ALOGE("getSensorsList call failed for SubHal: %s",
mSubHalList[subHalIndex]->getName().c_str());
}
}
}
void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) {
static const std::string kSubHalShareObjectLocations[] = {
"", // Default locations will be searched
#ifdef __LP64__
"/vendor/lib64/hw/", "/odm/lib64/hw/"
#else
"/vendor/lib/hw/", "/odm/lib/hw/"
#endif
};
for (const std::string& dir : kSubHalShareObjectLocations) {
void* handle = dlopen((dir + filename).c_str(), RTLD_NOW);
if (handle != nullptr) {
return handle;
}
}
return nullptr;
}
void HalProxy::init() {
initializeSensorList();
}
void HalProxy::stopThreads() {
mThreadsRun.store(false);
if (mEventQueueFlag != nullptr && mEventQueue != nullptr) {
size_t numToRead = mEventQueue->availableToRead();
std::vector<Event> events(numToRead);
mEventQueue->read(events.data(), numToRead);
mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ));
}
if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) {
uint32_t kZero = 0;
mWakeLockQueue->write(&kZero);
mWakelockQueueFlag->wake(static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN));
}
mWakelockCV.notify_one();
mEventQueueWriteCV.notify_one();
if (mPendingWritesThread.joinable()) {
mPendingWritesThread.join();
}
if (mWakelockThread.joinable()) {
mWakelockThread.join();
}
}
void HalProxy::disableAllSensors() {
for (const auto& sensorEntry : mSensors) {
int32_t sensorHandle = sensorEntry.first;
activate(sensorHandle, false /* enabled */);
}
std::lock_guard<std::mutex> dynamicSensorsLock(mDynamicSensorsMutex);
for (const auto& sensorEntry : mDynamicSensors) {
int32_t sensorHandle = sensorEntry.first;
activate(sensorHandle, false /* enabled */);
}
}
void HalProxy::startPendingWritesThread(HalProxy* halProxy) {
halProxy->handlePendingWrites();
}
void HalProxy::handlePendingWrites() {
// TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of
// one.
std::unique_lock<std::mutex> lock(mEventQueueWriteMutex);
while (mThreadsRun.load()) {
mEventQueueWriteCV.wait(
lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); });
if (mThreadsRun.load()) {
std::vector<Event>& pendingWriteEvents = mPendingWriteEventsQueue.front().first;
size_t numWakeupEvents = mPendingWriteEventsQueue.front().second;
size_t eventQueueSize = mEventQueue->getQuantumCount();
size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize);
lock.unlock();
if (!mEventQueue->writeBlocking(
pendingWriteEvents.data(), numToWrite,
static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ),
static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS),
kPendingWriteTimeoutNs, mEventQueueFlag)) {
ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite);
if (numWakeupEvents > 0) {
if (pendingWriteEvents.size() > eventQueueSize) {
decrementRefCountAndMaybeReleaseWakelock(
countNumWakeupEvents(pendingWriteEvents, eventQueueSize));
} else {
decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents);
}
}
}
lock.lock();
mSizePendingWriteEventsQueue -= numToWrite;
if (pendingWriteEvents.size() > eventQueueSize) {
// TODO(b/143302327): Check if this erase operation is too inefficient. It will copy
// all the events ahead of it down to fill gap off array at front after the erase.
pendingWriteEvents.erase(pendingWriteEvents.begin(),
pendingWriteEvents.begin() + eventQueueSize);
} else {
mPendingWriteEventsQueue.pop();
}
}
}
}
void HalProxy::startWakelockThread(HalProxy* halProxy) {
halProxy->handleWakelocks();
}
void HalProxy::handleWakelocks() {
std::unique_lock<std::recursive_mutex> lock(mWakelockMutex);
while (mThreadsRun.load()) {
mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); });
if (mThreadsRun.load()) {
int64_t timeLeft;
if (sharedWakelockDidTimeout(&timeLeft)) {
resetSharedWakelock();
} else {
uint32_t numWakeLocksProcessed;
lock.unlock();
bool success = mWakeLockQueue->readBlocking(
&numWakeLocksProcessed, 1, 0,
static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft);
lock.lock();
if (success) {
decrementRefCountAndMaybeReleaseWakelock(
static_cast<size_t>(numWakeLocksProcessed));
}
}
}
}
resetSharedWakelock();
}
bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) {
bool didTimeout;
int64_t duration = getTimeNow() - mWakelockTimeoutStartTime;
if (duration > kWakelockTimeoutNs) {
didTimeout = true;
} else {
didTimeout = false;
*timeLeft = kWakelockTimeoutNs - duration;
}
return didTimeout;
}
void HalProxy::resetSharedWakelock() {
std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount);
mWakelockTimeoutResetTime = getTimeNow();
}
void HalProxy::postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents,
V2_0::implementation::ScopedWakelock wakelock) {
size_t numToWrite = 0;
std::lock_guard<std::mutex> lock(mEventQueueWriteMutex);
if (wakelock.isLocked()) {
incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents);
}
if (mPendingWriteEventsQueue.empty()) {
numToWrite = std::min(events.size(), mEventQueue->availableToWrite());
if (numToWrite > 0) {
if (mEventQueue->write(events.data(), numToWrite)) {
// TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit
// in more writes immediately
mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
} else {
numToWrite = 0;
}
}
}
size_t numLeft = events.size() - numToWrite;
if (numToWrite < events.size() &&
mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) {
std::vector<Event> eventsLeft(events.begin() + numToWrite, events.end());
mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents});
mSizePendingWriteEventsQueue += numLeft;
mMostEventsObservedPendingWriteEventsQueue =
std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue);
mEventQueueWriteCV.notify_one();
}
}
bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta,
int64_t* timeoutStart /* = nullptr */) {
if (!mThreadsRun.load()) return false;
std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
if (mWakelockRefCount == 0) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName);
mWakelockCV.notify_one();
}
mWakelockTimeoutStartTime = getTimeNow();
mWakelockRefCount += delta;
if (timeoutStart != nullptr) {
*timeoutStart = mWakelockTimeoutStartTime;
}
return true;
}
void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta,
int64_t timeoutStart /* = -1 */) {
if (!mThreadsRun.load()) return;
std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
if (delta > mWakelockRefCount) {
ALOGE("Decrementing wakelock ref count by %zu when count is %zu",
delta, mWakelockRefCount);
}
if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime;
if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return;
mWakelockRefCount -= std::min(mWakelockRefCount, delta);
if (mWakelockRefCount == 0) {
release_wake_lock(kWakelockName);
}
}
void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo,
std::shared_ptr<ISubHalWrapperBase> subHal) {
bool sensorSupportsDirectChannel =
(sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0;
if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) {
mDirectChannelSubHal = subHal;
} else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) {
// disable direct channel capability for sensors in subHals that are not
// the only one we will enable
sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL);
}
}
std::shared_ptr<ISubHalWrapperBase> HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) {
return mSubHalList[extractSubHalIndex(sensorHandle)];
}
bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) {
return extractSubHalIndex(sensorHandle) < mSubHalList.size();
}
size_t HalProxy::countNumWakeupEvents(const std::vector<Event>& events, size_t n) {
size_t numWakeupEvents = 0;
for (size_t i = 0; i < n; i++) {
int32_t sensorHandle = events[i].sensorHandle;
if (mSensors[sensorHandle].flags & static_cast<uint32_t>(V1_0::SensorFlagBits::WAKE_UP)) {
numWakeupEvents++;
}
}
return numWakeupEvents;
}
int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) {
return sensorHandle & (~kSensorHandleSubHalIndexMask);
}
bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) {
return (sensorHandle & kSensorHandleSubHalIndexMask) == 0;
}
} // namespace implementation
} // namespace V2_1
} // namespace sensors
} // namespace hardware
} // namespace android