blob: 1124425f99f52aec9bb6fed0ab12832fb8cc92bf [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_SENSORS_V2_X_SENSORS_H
#define ANDROID_HARDWARE_SENSORS_V2_X_SENSORS_H
#include "EventMessageQueueWrapper.h"
#include "Sensor.h"
#include <android/hardware/sensors/2.0/ISensors.h>
#include <android/hardware/sensors/2.0/types.h>
#include <fmq/MessageQueue.h>
#include <hardware_legacy/power.h>
#include <hidl/MQDescriptor.h>
#include <hidl/Status.h>
#include <log/log.h>
#include <atomic>
#include <memory>
#include <thread>
namespace android {
namespace hardware {
namespace sensors {
namespace V2_X {
namespace implementation {
template <class ISensorsInterface>
struct Sensors : public ISensorsInterface, public ISensorsEventCallback {
using Event = ::android::hardware::sensors::V1_0::Event;
using OperationMode = ::android::hardware::sensors::V1_0::OperationMode;
using RateLevel = ::android::hardware::sensors::V1_0::RateLevel;
using Result = ::android::hardware::sensors::V1_0::Result;
using SharedMemInfo = ::android::hardware::sensors::V1_0::SharedMemInfo;
using EventQueueFlagBits = ::android::hardware::sensors::V2_0::EventQueueFlagBits;
using SensorTimeout = ::android::hardware::sensors::V2_0::SensorTimeout;
using WakeLockQueueFlagBits = ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
using ISensorsCallback = ::android::hardware::sensors::V2_0::ISensorsCallback;
using EventMessageQueue = MessageQueue<Event, kSynchronizedReadWrite>;
using WakeLockMessageQueue = MessageQueue<uint32_t, kSynchronizedReadWrite>;
static constexpr const char* kWakeLockName = "SensorsHAL_WAKEUP";
Sensors()
: mEventQueueFlag(nullptr),
mNextHandle(1),
mOutstandingWakeUpEvents(0),
mReadWakeLockQueueRun(false),
mAutoReleaseWakeLockTime(0),
mHasWakeLock(false) {
AddSensor<AccelSensor>();
AddSensor<GyroSensor>();
AddSensor<AmbientTempSensor>();
AddSensor<PressureSensor>();
AddSensor<MagnetometerSensor>();
AddSensor<LightSensor>();
AddSensor<ProximitySensor>();
AddSensor<RelativeHumiditySensor>();
}
virtual ~Sensors() {
deleteEventFlag();
mReadWakeLockQueueRun = false;
mWakeLockThread.join();
}
// Methods from ::android::hardware::sensors::V2_0::ISensors follow.
Return<Result> setOperationMode(OperationMode mode) override {
for (auto sensor : mSensors) {
sensor.second->setOperationMode(mode);
}
return Result::OK;
}
Return<Result> activate(int32_t sensorHandle, bool enabled) override {
auto sensor = mSensors.find(sensorHandle);
if (sensor != mSensors.end()) {
sensor->second->activate(enabled);
return Result::OK;
}
return Result::BAD_VALUE;
}
Return<Result> initialize(
const ::android::hardware::MQDescriptorSync<Event>& eventQueueDescriptor,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<ISensorsCallback>& sensorsCallback) override {
auto eventQueue =
std::make_unique<EventMessageQueue>(eventQueueDescriptor, true /* resetPointers */);
std::unique_ptr<V2_1::implementation::EventMessageQueueWrapperBase> wrapper =
std::make_unique<V2_1::implementation::EventMessageQueueWrapperV1_0>(eventQueue);
return initializeBase(wrapper, wakeLockDescriptor, sensorsCallback);
}
Return<Result> initializeBase(
std::unique_ptr<V2_1::implementation::EventMessageQueueWrapperBase>& eventQueue,
const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
const sp<ISensorsCallback>& sensorsCallback) {
Result result = Result::OK;
// Ensure that all sensors are disabled
for (auto sensor : mSensors) {
sensor.second->activate(false /* enable */);
}
// Stop the Wake Lock thread if it is currently running
if (mReadWakeLockQueueRun.load()) {
mReadWakeLockQueueRun = false;
mWakeLockThread.join();
}
// Save a reference to the callback
mCallback = sensorsCallback;
// Save the event queue.
mEventQueue = std::move(eventQueue);
// Ensure that any existing EventFlag is properly deleted
deleteEventFlag();
// Create the EventFlag that is used to signal to the framework that sensor events have been
// written to the Event FMQ
if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
result = Result::BAD_VALUE;
}
// Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
// events have been successfully read and handled by the framework.
mWakeLockQueue = std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor,
true /* resetPointers */);
if (!mCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
result = Result::BAD_VALUE;
}
// Start the thread to read events from the Wake Lock FMQ
mReadWakeLockQueueRun = true;
mWakeLockThread = std::thread(startReadWakeLockThread, this);
return result;
}
Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t /* maxReportLatencyNs */) override {
auto sensor = mSensors.find(sensorHandle);
if (sensor != mSensors.end()) {
sensor->second->batch(samplingPeriodNs);
return Result::OK;
}
return Result::BAD_VALUE;
}
Return<Result> flush(int32_t sensorHandle) override {
auto sensor = mSensors.find(sensorHandle);
if (sensor != mSensors.end()) {
return sensor->second->flush();
}
return Result::BAD_VALUE;
}
Return<Result> injectSensorData(const Event& event) override {
auto sensor = mSensors.find(event.sensorHandle);
if (sensor != mSensors.end()) {
return sensor->second->injectEvent(V2_1::implementation::convertToNewEvent(event));
}
return Result::BAD_VALUE;
}
Return<void> registerDirectChannel(const SharedMemInfo& /* mem */,
V2_0::ISensors::registerDirectChannel_cb _hidl_cb) override {
_hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
return Return<void>();
}
Return<Result> unregisterDirectChannel(int32_t /* channelHandle */) override {
return Result::INVALID_OPERATION;
}
Return<void> configDirectReport(int32_t /* sensorHandle */, int32_t /* channelHandle */,
RateLevel /* rate */,
V2_0::ISensors::configDirectReport_cb _hidl_cb) override {
_hidl_cb(Result::INVALID_OPERATION, 0 /* reportToken */);
return Return<void>();
}
void postEvents(const std::vector<V2_1::Event>& events, bool wakeup) override {
std::lock_guard<std::mutex> lock(mWriteLock);
if (mEventQueue->write(events)) {
mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
if (wakeup) {
// Keep track of the number of outstanding WAKE_UP events in order to properly hold
// a wake lock until the framework has secured a wake lock
updateWakeLock(events.size(), 0 /* eventsHandled */);
}
}
}
protected:
/**
* Add a new sensor
*/
template <class SensorType>
void AddSensor() {
std::shared_ptr<SensorType> sensor =
std::make_shared<SensorType>(mNextHandle++ /* sensorHandle */, this /* callback */);
mSensors[sensor->getSensorInfo().sensorHandle] = sensor;
}
/**
* Utility function to delete the Event Flag
*/
void deleteEventFlag() {
status_t status = EventFlag::deleteEventFlag(&mEventQueueFlag);
if (status != OK) {
ALOGI("Failed to delete event flag: %d", status);
}
}
static void startReadWakeLockThread(Sensors* sensors) { sensors->readWakeLockFMQ(); }
/**
* Function to read the Wake Lock FMQ and release the wake lock when appropriate
*/
void readWakeLockFMQ() {
while (mReadWakeLockQueueRun.load()) {
constexpr int64_t kReadTimeoutNs = 500 * 1000 * 1000; // 500 ms
uint32_t eventsHandled = 0;
// Read events from the Wake Lock FMQ. Timeout after a reasonable amount of time to
// ensure that any held wake lock is able to be released if it is held for too long.
mWakeLockQueue->readBlocking(&eventsHandled, 1 /* count */, 0 /* readNotification */,
static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN),
kReadTimeoutNs);
updateWakeLock(0 /* eventsWritten */, eventsHandled);
}
}
/**
* Responsible for acquiring and releasing a wake lock when there are unhandled WAKE_UP events
*/
void updateWakeLock(int32_t eventsWritten, int32_t eventsHandled) {
std::lock_guard<std::mutex> lock(mWakeLockLock);
int32_t newVal = mOutstandingWakeUpEvents + eventsWritten - eventsHandled;
if (newVal < 0) {
mOutstandingWakeUpEvents = 0;
} else {
mOutstandingWakeUpEvents = newVal;
}
if (eventsWritten > 0) {
// Update the time at which the last WAKE_UP event was sent
mAutoReleaseWakeLockTime =
::android::uptimeMillis() +
static_cast<uint32_t>(SensorTimeout::WAKE_LOCK_SECONDS) * 1000;
}
if (!mHasWakeLock && mOutstandingWakeUpEvents > 0 &&
acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakeLockName) == 0) {
mHasWakeLock = true;
} else if (mHasWakeLock) {
// Check if the wake lock should be released automatically if
// SensorTimeout::WAKE_LOCK_SECONDS has elapsed since the last WAKE_UP event was written
// to the Wake Lock FMQ.
if (::android::uptimeMillis() > mAutoReleaseWakeLockTime) {
ALOGD("No events read from wake lock FMQ for %d seconds, auto releasing wake lock",
SensorTimeout::WAKE_LOCK_SECONDS);
mOutstandingWakeUpEvents = 0;
}
if (mOutstandingWakeUpEvents == 0 && release_wake_lock(kWakeLockName) == 0) {
mHasWakeLock = false;
}
}
}
/**
* The Event FMQ where sensor events are written
*/
std::unique_ptr<V2_1::implementation::EventMessageQueueWrapperBase> mEventQueue;
/**
* The Wake Lock FMQ that is read to determine when the framework has handled WAKE_UP events
*/
std::unique_ptr<WakeLockMessageQueue> mWakeLockQueue;
/**
* Event Flag to signal to the framework when sensor events are available to be read
*/
EventFlag* mEventQueueFlag;
/**
* Callback for asynchronous events, such as dynamic sensor connections.
*/
sp<ISensorsCallback> mCallback;
/**
* A map of the available sensors
*/
std::map<int32_t, std::shared_ptr<Sensor>> mSensors;
/**
* The next available sensor handle
*/
int32_t mNextHandle;
/**
* Lock to protect writes to the FMQs
*/
std::mutex mWriteLock;
/**
* Lock to protect acquiring and releasing the wake lock
*/
std::mutex mWakeLockLock;
/**
* Track the number of WAKE_UP events that have not been handled by the framework
*/
uint32_t mOutstandingWakeUpEvents;
/**
* A thread to read the Wake Lock FMQ
*/
std::thread mWakeLockThread;
/**
* Flag to indicate that the Wake Lock Thread should continue to run
*/
std::atomic_bool mReadWakeLockQueueRun;
/**
* Track the time when the wake lock should automatically be released
*/
int64_t mAutoReleaseWakeLockTime;
/**
* Flag to indicate if a wake lock has been acquired
*/
bool mHasWakeLock;
};
} // namespace implementation
} // namespace V2_X
} // namespace sensors
} // namespace hardware
} // namespace android
#endif // ANDROID_HARDWARE_SENSORS_V2_X_SENSORS_H