blob: c8e683c2900424881360acfa94c83ded9b2ef511 [file] [log] [blame]
/*
* Copyright (C) 2016-2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "camera_hidl_hal_test"
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <list>
#include <mutex>
#include <regex>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <inttypes.h>
#include <CameraMetadata.h>
#include <CameraParameters.h>
#include <HandleImporter.h>
#include <android/hardware/camera/device/1.0/ICameraDevice.h>
#include <android/hardware/camera/device/3.2/ICameraDevice.h>
#include <android/hardware/camera/device/3.3/ICameraDeviceSession.h>
#include <android/hardware/camera/device/3.4/ICameraDeviceCallback.h>
#include <android/hardware/camera/device/3.4/ICameraDeviceSession.h>
#include <android/hardware/camera/device/3.5/ICameraDevice.h>
#include <android/hardware/camera/device/3.5/ICameraDeviceCallback.h>
#include <android/hardware/camera/device/3.5/ICameraDeviceSession.h>
#include <android/hardware/camera/device/3.6/ICameraDevice.h>
#include <android/hardware/camera/device/3.6/ICameraDeviceSession.h>
#include <android/hardware/camera/device/3.7/ICameraDevice.h>
#include <android/hardware/camera/device/3.7/ICameraDeviceSession.h>
#include <android/hardware/camera/device/3.7/ICameraInjectionSession.h>
#include <android/hardware/camera/metadata/3.4/types.h>
#include <android/hardware/camera/provider/2.4/ICameraProvider.h>
#include <android/hardware/camera/provider/2.5/ICameraProvider.h>
#include <android/hardware/camera/provider/2.6/ICameraProvider.h>
#include <android/hardware/camera/provider/2.6/ICameraProviderCallback.h>
#include <android/hardware/camera/provider/2.7/ICameraProvider.h>
#include <android/hidl/manager/1.0/IServiceManager.h>
#include <binder/MemoryHeapBase.h>
#include <cutils/properties.h>
#include <fmq/MessageQueue.h>
#include <grallocusage/GrallocUsageConversion.h>
#include <gtest/gtest.h>
#include <gui/BufferItemConsumer.h>
#include <gui/BufferQueue.h>
#include <gui/Surface.h>
#include <hardware/gralloc.h>
#include <hardware/gralloc1.h>
#include <hidl/GtestPrinter.h>
#include <hidl/ServiceManagement.h>
#include <log/log.h>
#include <system/camera.h>
#include <system/camera_metadata.h>
#include <ui/GraphicBuffer.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/GraphicBufferMapper.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMapper.h>
#include <android/hidl/memory/1.0/IMemory.h>
using namespace ::android::hardware::camera::device;
using ::android::BufferItemConsumer;
using ::android::BufferQueue;
using ::android::GraphicBuffer;
using ::android::IGraphicBufferConsumer;
using ::android::IGraphicBufferProducer;
using ::android::sp;
using ::android::Surface;
using ::android::wp;
using ::android::hardware::hidl_bitfield;
using ::android::hardware::hidl_handle;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hardware::kSynchronizedReadWrite;
using ::android::hardware::MessageQueue;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::camera::common::V1_0::CameraDeviceStatus;
using ::android::hardware::camera::common::V1_0::Status;
using ::android::hardware::camera::common::V1_0::TorchMode;
using ::android::hardware::camera::common::V1_0::TorchModeStatus;
using ::android::hardware::camera::common::V1_0::helper::CameraParameters;
using ::android::hardware::camera::common::V1_0::helper::HandleImporter;
using ::android::hardware::camera::common::V1_0::helper::Size;
using ::android::hardware::camera::device::V1_0::CameraFacing;
using ::android::hardware::camera::device::V1_0::CameraFrameMetadata;
using ::android::hardware::camera::device::V1_0::CommandType;
using ::android::hardware::camera::device::V1_0::DataCallbackMsg;
using ::android::hardware::camera::device::V1_0::FrameCallbackFlag;
using ::android::hardware::camera::device::V1_0::HandleTimestampMessage;
using ::android::hardware::camera::device::V1_0::ICameraDevicePreviewCallback;
using ::android::hardware::camera::device::V1_0::NotifyCallbackMsg;
using ::android::hardware::camera::device::V3_2::BufferCache;
using ::android::hardware::camera::device::V3_2::BufferStatus;
using ::android::hardware::camera::device::V3_2::CameraMetadata;
using ::android::hardware::camera::device::V3_2::CaptureRequest;
using ::android::hardware::camera::device::V3_2::CaptureResult;
using ::android::hardware::camera::device::V3_2::ErrorCode;
using ::android::hardware::camera::device::V3_2::ErrorMsg;
using ::android::hardware::camera::device::V3_2::HalStreamConfiguration;
using ::android::hardware::camera::device::V3_2::ICameraDevice;
using ::android::hardware::camera::device::V3_2::ICameraDeviceSession;
using ::android::hardware::camera::device::V3_2::MsgType;
using ::android::hardware::camera::device::V3_2::NotifyMsg;
using ::android::hardware::camera::device::V3_2::RequestTemplate;
using ::android::hardware::camera::device::V3_2::StreamBuffer;
using ::android::hardware::camera::device::V3_2::StreamConfiguration;
using ::android::hardware::camera::device::V3_2::StreamConfigurationMode;
using ::android::hardware::camera::device::V3_2::StreamRotation;
using ::android::hardware::camera::device::V3_2::StreamType;
using ::android::hardware::camera::device::V3_4::PhysicalCameraMetadata;
using ::android::hardware::camera::metadata::V3_4::
CameraMetadataEnumAndroidSensorInfoColorFilterArrangement;
using ::android::hardware::camera::metadata::V3_4::CameraMetadataTag;
using ::android::hardware::camera::metadata::V3_6::CameraMetadataEnumAndroidSensorPixelMode;
using ::android::hardware::camera::provider::V2_4::ICameraProvider;
using ::android::hardware::camera::provider::V2_4::ICameraProviderCallback;
using ::android::hardware::camera::provider::V2_6::CameraIdAndStreamCombination;
using ::android::hardware::graphics::common::V1_0::BufferUsage;
using ::android::hardware::graphics::common::V1_0::Dataspace;
using ::android::hardware::graphics::common::V1_0::PixelFormat;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using ResultMetadataQueue = MessageQueue<uint8_t, kSynchronizedReadWrite>;
using ::android::hidl::manager::V1_0::IServiceManager;
using namespace ::android::hardware::camera;
const uint32_t kMaxPreviewWidth = 1920;
const uint32_t kMaxPreviewHeight = 1080;
const uint32_t kMaxStillWidth = 2048;
const uint32_t kMaxStillHeight = 1536;
const uint32_t kMaxVideoWidth = 4096;
const uint32_t kMaxVideoHeight = 2160;
const int64_t kStreamBufferTimeoutSec = 3;
const int64_t kAutoFocusTimeoutSec = 5;
const int64_t kTorchTimeoutSec = 1;
const int64_t kEmptyFlushTimeoutMSec = 200;
const char kDumpOutput[] = "/dev/null";
const uint32_t kBurstFrameCount = 10;
const int64_t kBufferReturnTimeoutSec = 1;
struct AvailableStream {
int32_t width;
int32_t height;
int32_t format;
};
struct RecordingRateSizePair {
int32_t recordingRate;
int32_t width;
int32_t height;
bool operator==(const RecordingRateSizePair &p) const{
return p.recordingRate == recordingRate &&
p.width == width &&
p.height == height;
}
};
struct RecordingRateSizePairHasher {
size_t operator()(const RecordingRateSizePair& p) const {
std::size_t p1 = std::hash<int32_t>()(p.recordingRate);
std::size_t p2 = std::hash<int32_t>()(p.width);
std::size_t p3 = std::hash<int32_t>()(p.height);
return p1 ^ p2 ^ p3;
}
};
struct AvailableZSLInputOutput {
int32_t inputFormat;
int32_t outputFormat;
};
enum ReprocessType {
PRIV_REPROCESS,
YUV_REPROCESS,
};
enum SystemCameraKind {
/**
* These camera devices are visible to all apps and system components alike
*/
PUBLIC = 0,
/**
* These camera devices are visible only to processes having the
* android.permission.SYSTEM_CAMERA permission. They are not exposed to 3P
* apps.
*/
SYSTEM_ONLY_CAMERA,
/**
* These camera devices are visible only to HAL clients (that try to connect
* on a hwbinder thread).
*/
HIDDEN_SECURE_CAMERA
};
const static std::vector<int64_t> kMandatoryUseCases = {
ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT,
ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_PREVIEW,
ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_STILL_CAPTURE,
ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_VIDEO_RECORD,
ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_PREVIEW_VIDEO_STILL,
ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_VIDEO_CALL
};
namespace {
// "device@<version>/legacy/<id>"
const char* kDeviceNameRE = "device@([0-9]+\\.[0-9]+)/%s/(.+)";
const int CAMERA_DEVICE_API_VERSION_3_7 = 0x307;
const int CAMERA_DEVICE_API_VERSION_3_6 = 0x306;
const int CAMERA_DEVICE_API_VERSION_3_5 = 0x305;
const int CAMERA_DEVICE_API_VERSION_3_4 = 0x304;
const int CAMERA_DEVICE_API_VERSION_3_3 = 0x303;
const int CAMERA_DEVICE_API_VERSION_3_2 = 0x302;
const int CAMERA_DEVICE_API_VERSION_1_0 = 0x100;
const char* kHAL3_7 = "3.7";
const char* kHAL3_6 = "3.6";
const char* kHAL3_5 = "3.5";
const char* kHAL3_4 = "3.4";
const char* kHAL3_3 = "3.3";
const char* kHAL3_2 = "3.2";
const char* kHAL1_0 = "1.0";
bool matchDeviceName(const hidl_string& deviceName, const hidl_string& providerType,
std::string* deviceVersion, std::string* cameraId) {
::android::String8 pattern;
pattern.appendFormat(kDeviceNameRE, providerType.c_str());
std::regex e(pattern.c_str());
std::string deviceNameStd(deviceName.c_str());
std::smatch sm;
if (std::regex_match(deviceNameStd, sm, e)) {
if (deviceVersion != nullptr) {
*deviceVersion = sm[1];
}
if (cameraId != nullptr) {
*cameraId = sm[2];
}
return true;
}
return false;
}
int getCameraDeviceVersionAndId(const hidl_string& deviceName,
const hidl_string &providerType, std::string* id) {
std::string version;
bool match = matchDeviceName(deviceName, providerType, &version, id);
if (!match) {
return -1;
}
if (version.compare(kHAL3_7) == 0) {
return CAMERA_DEVICE_API_VERSION_3_7;
} else if (version.compare(kHAL3_6) == 0) {
return CAMERA_DEVICE_API_VERSION_3_6;
} else if (version.compare(kHAL3_5) == 0) {
return CAMERA_DEVICE_API_VERSION_3_5;
} else if (version.compare(kHAL3_4) == 0) {
return CAMERA_DEVICE_API_VERSION_3_4;
} else if (version.compare(kHAL3_3) == 0) {
return CAMERA_DEVICE_API_VERSION_3_3;
} else if (version.compare(kHAL3_2) == 0) {
return CAMERA_DEVICE_API_VERSION_3_2;
} else if (version.compare(kHAL1_0) == 0) {
return CAMERA_DEVICE_API_VERSION_1_0;
}
return 0;
}
int getCameraDeviceVersion(const hidl_string& deviceName,
const hidl_string &providerType) {
return getCameraDeviceVersionAndId(deviceName, providerType, nullptr);
}
bool parseProviderName(const std::string& name, std::string *type /*out*/,
uint32_t *id /*out*/) {
if (!type || !id) {
ADD_FAILURE();
return false;
}
std::string::size_type slashIdx = name.find('/');
if (slashIdx == std::string::npos || slashIdx == name.size() - 1) {
ADD_FAILURE() << "Provider name does not have / separator between type"
"and id";
return false;
}
std::string typeVal = name.substr(0, slashIdx);
char *endPtr;
errno = 0;
long idVal = strtol(name.c_str() + slashIdx + 1, &endPtr, 10);
if (errno != 0) {
ADD_FAILURE() << "cannot parse provider id as an integer:" <<
name.c_str() << strerror(errno) << errno;
return false;
}
if (endPtr != name.c_str() + name.size()) {
ADD_FAILURE() << "provider id has unexpected length " << name.c_str();
return false;
}
if (idVal < 0) {
ADD_FAILURE() << "id is negative: " << name.c_str() << idVal;
return false;
}
*type = typeVal;
*id = static_cast<uint32_t>(idVal);
return true;
}
Status mapToStatus(::android::status_t s) {
switch(s) {
case ::android::OK:
return Status::OK ;
case ::android::BAD_VALUE:
return Status::ILLEGAL_ARGUMENT ;
case -EBUSY:
return Status::CAMERA_IN_USE;
case -EUSERS:
return Status::MAX_CAMERAS_IN_USE;
case ::android::UNKNOWN_TRANSACTION:
return Status::METHOD_NOT_SUPPORTED;
case ::android::INVALID_OPERATION:
return Status::OPERATION_NOT_SUPPORTED;
case ::android::DEAD_OBJECT:
return Status::CAMERA_DISCONNECTED;
}
ALOGW("Unexpected HAL status code %d", s);
return Status::OPERATION_NOT_SUPPORTED;
}
void getFirstApiLevel(/*out*/int32_t* outApiLevel) {
int32_t firstApiLevel = property_get_int32("ro.product.first_api_level", /*default*/-1);
if (firstApiLevel < 0) {
firstApiLevel = property_get_int32("ro.build.version.sdk", /*default*/-1);
}
ASSERT_GT(firstApiLevel, 0); // first_api_level must exist
*outApiLevel = firstApiLevel;
return;
}
}
struct BufferItemHander: public BufferItemConsumer::FrameAvailableListener {
BufferItemHander(wp<BufferItemConsumer> consumer) : mConsumer(consumer) {}
void onFrameAvailable(const android::BufferItem&) override {
sp<BufferItemConsumer> consumer = mConsumer.promote();
ASSERT_NE(nullptr, consumer.get());
android::BufferItem buffer;
ASSERT_EQ(android::OK, consumer->acquireBuffer(&buffer, 0));
ASSERT_EQ(android::OK, consumer->releaseBuffer(buffer));
}
private:
wp<BufferItemConsumer> mConsumer;
};
struct PreviewWindowCb : public ICameraDevicePreviewCallback {
PreviewWindowCb(sp<ANativeWindow> anw) : mPreviewWidth(0),
mPreviewHeight(0), mFormat(0), mPreviewUsage(0),
mPreviewSwapInterval(-1), mCrop{-1, -1, -1, -1}, mAnw(anw) {}
using dequeueBuffer_cb =
std::function<void(Status status, uint64_t bufferId,
const hidl_handle& buffer, uint32_t stride)>;
Return<void> dequeueBuffer(dequeueBuffer_cb _hidl_cb) override;
Return<Status> enqueueBuffer(uint64_t bufferId) override;
Return<Status> cancelBuffer(uint64_t bufferId) override;
Return<Status> setBufferCount(uint32_t count) override;
Return<Status> setBuffersGeometry(uint32_t w,
uint32_t h, PixelFormat format) override;
Return<Status> setCrop(int32_t left, int32_t top,
int32_t right, int32_t bottom) override;
Return<Status> setUsage(BufferUsage usage) override;
Return<Status> setSwapInterval(int32_t interval) override;
using getMinUndequeuedBufferCount_cb =
std::function<void(Status status, uint32_t count)>;
Return<void> getMinUndequeuedBufferCount(
getMinUndequeuedBufferCount_cb _hidl_cb) override;
Return<Status> setTimestamp(int64_t timestamp) override;
private:
struct BufferHasher {
size_t operator()(const buffer_handle_t& buf) const {
if (buf == nullptr)
return 0;
size_t result = 1;
result = 31 * result + buf->numFds;
for (int i = 0; i < buf->numFds; i++) {
result = 31 * result + buf->data[i];
}
return result;
}
};
struct BufferComparator {
bool operator()(const buffer_handle_t& buf1,
const buffer_handle_t& buf2) const {
if (buf1->numFds == buf2->numFds) {
for (int i = 0; i < buf1->numFds; i++) {
if (buf1->data[i] != buf2->data[i]) {
return false;
}
}
return true;
}
return false;
}
};
std::pair<bool, uint64_t> getBufferId(ANativeWindowBuffer* anb);
void cleanupCirculatingBuffers();
std::mutex mBufferIdMapLock; // protecting mBufferIdMap and mNextBufferId
typedef std::unordered_map<const buffer_handle_t, uint64_t,
BufferHasher, BufferComparator> BufferIdMap;
BufferIdMap mBufferIdMap; // stream ID -> per stream buffer ID map
std::unordered_map<uint64_t, ANativeWindowBuffer*> mReversedBufMap;
uint64_t mNextBufferId = 1;
uint32_t mPreviewWidth, mPreviewHeight;
int mFormat, mPreviewUsage;
int32_t mPreviewSwapInterval;
android_native_rect_t mCrop;
sp<ANativeWindow> mAnw; //Native window reference
};
std::pair<bool, uint64_t> PreviewWindowCb::getBufferId(
ANativeWindowBuffer* anb) {
std::lock_guard<std::mutex> lock(mBufferIdMapLock);
buffer_handle_t& buf = anb->handle;
auto it = mBufferIdMap.find(buf);
if (it == mBufferIdMap.end()) {
uint64_t bufId = mNextBufferId++;
mBufferIdMap[buf] = bufId;
mReversedBufMap[bufId] = anb;
return std::make_pair(true, bufId);
} else {
return std::make_pair(false, it->second);
}
}
void PreviewWindowCb::cleanupCirculatingBuffers() {
std::lock_guard<std::mutex> lock(mBufferIdMapLock);
mBufferIdMap.clear();
mReversedBufMap.clear();
}
Return<void> PreviewWindowCb::dequeueBuffer(dequeueBuffer_cb _hidl_cb) {
ANativeWindowBuffer* anb;
auto rc = native_window_dequeue_buffer_and_wait(mAnw.get(), &anb);
uint64_t bufferId = 0;
uint32_t stride = 0;
hidl_handle buf = nullptr;
if (rc == ::android::OK) {
auto pair = getBufferId(anb);
buf = (pair.first) ? anb->handle : nullptr;
bufferId = pair.second;
stride = anb->stride;
}
_hidl_cb(mapToStatus(rc), bufferId, buf, stride);
return Void();
}
Return<Status> PreviewWindowCb::enqueueBuffer(uint64_t bufferId) {
if (mReversedBufMap.count(bufferId) == 0) {
ALOGE("%s: bufferId %" PRIu64 " not found", __FUNCTION__, bufferId);
return Status::ILLEGAL_ARGUMENT;
}
return mapToStatus(mAnw->queueBuffer(mAnw.get(),
mReversedBufMap.at(bufferId), -1));
}
Return<Status> PreviewWindowCb::cancelBuffer(uint64_t bufferId) {
if (mReversedBufMap.count(bufferId) == 0) {
ALOGE("%s: bufferId %" PRIu64 " not found", __FUNCTION__, bufferId);
return Status::ILLEGAL_ARGUMENT;
}
return mapToStatus(mAnw->cancelBuffer(mAnw.get(),
mReversedBufMap.at(bufferId), -1));
}
Return<Status> PreviewWindowCb::setBufferCount(uint32_t count) {
if (mAnw.get() != nullptr) {
// WAR for b/27039775
native_window_api_disconnect(mAnw.get(), NATIVE_WINDOW_API_CAMERA);
native_window_api_connect(mAnw.get(), NATIVE_WINDOW_API_CAMERA);
if (mPreviewWidth != 0) {
native_window_set_buffers_dimensions(mAnw.get(),
mPreviewWidth, mPreviewHeight);
native_window_set_buffers_format(mAnw.get(), mFormat);
}
if (mPreviewUsage != 0) {
native_window_set_usage(mAnw.get(), mPreviewUsage);
}
if (mPreviewSwapInterval >= 0) {
mAnw->setSwapInterval(mAnw.get(), mPreviewSwapInterval);
}
if (mCrop.left >= 0) {
native_window_set_crop(mAnw.get(), &(mCrop));
}
}
auto rc = native_window_set_buffer_count(mAnw.get(), count);
if (rc == ::android::OK) {
cleanupCirculatingBuffers();
}
return mapToStatus(rc);
}
Return<Status> PreviewWindowCb::setBuffersGeometry(uint32_t w, uint32_t h,
PixelFormat format) {
auto rc = native_window_set_buffers_dimensions(mAnw.get(), w, h);
if (rc == ::android::OK) {
mPreviewWidth = w;
mPreviewHeight = h;
rc = native_window_set_buffers_format(mAnw.get(),
static_cast<int>(format));
if (rc == ::android::OK) {
mFormat = static_cast<int>(format);
}
}
return mapToStatus(rc);
}
Return<Status> PreviewWindowCb::setCrop(int32_t left, int32_t top,
int32_t right, int32_t bottom) {
android_native_rect_t crop = { left, top, right, bottom };
auto rc = native_window_set_crop(mAnw.get(), &crop);
if (rc == ::android::OK) {
mCrop = crop;
}
return mapToStatus(rc);
}
Return<Status> PreviewWindowCb::setUsage(BufferUsage usage) {
auto rc = native_window_set_usage(mAnw.get(), static_cast<int>(usage));
if (rc == ::android::OK) {
mPreviewUsage = static_cast<int>(usage);
}
return mapToStatus(rc);
}
Return<Status> PreviewWindowCb::setSwapInterval(int32_t interval) {
auto rc = mAnw->setSwapInterval(mAnw.get(), interval);
if (rc == ::android::OK) {
mPreviewSwapInterval = interval;
}
return mapToStatus(rc);
}
Return<void> PreviewWindowCb::getMinUndequeuedBufferCount(
getMinUndequeuedBufferCount_cb _hidl_cb) {
int count = 0;
auto rc = mAnw->query(mAnw.get(),
NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &count);
_hidl_cb(mapToStatus(rc), count);
return Void();
}
Return<Status> PreviewWindowCb::setTimestamp(int64_t timestamp) {
return mapToStatus(native_window_set_buffers_timestamp(mAnw.get(),
timestamp));
}
// The main test class for camera HIDL HAL.
class CameraHidlTest : public ::testing::TestWithParam<std::string> {
public:
virtual void SetUp() override {
std::string service_name = GetParam();
ALOGI("get service with name: %s", service_name.c_str());
mProvider = ICameraProvider::getService(service_name);
ASSERT_NE(mProvider, nullptr);
uint32_t id;
ASSERT_TRUE(parseProviderName(service_name, &mProviderType, &id));
castProvider(mProvider, &mProvider2_5, &mProvider2_6, &mProvider2_7);
notifyDeviceState(provider::V2_5::DeviceState::NORMAL);
}
virtual void TearDown() override {}
hidl_vec<hidl_string> getCameraDeviceNames(sp<ICameraProvider> provider,
bool addSecureOnly = false);
bool isSecureOnly(sp<ICameraProvider> provider, const hidl_string& name);
std::map<hidl_string, hidl_string> getCameraDeviceIdToNameMap(sp<ICameraProvider> provider);
hidl_vec<hidl_vec<hidl_string>> getConcurrentDeviceCombinations(
sp<::android::hardware::camera::provider::V2_6::ICameraProvider>&);
struct EmptyDeviceCb : public V3_5::ICameraDeviceCallback {
virtual Return<void> processCaptureResult(
const hidl_vec<CaptureResult>& /*results*/) override {
ALOGI("processCaptureResult callback");
ADD_FAILURE(); // Empty callback should not reach here
return Void();
}
virtual Return<void> processCaptureResult_3_4(
const hidl_vec<V3_4::CaptureResult>& /*results*/) override {
ALOGI("processCaptureResult_3_4 callback");
ADD_FAILURE(); // Empty callback should not reach here
return Void();
}
virtual Return<void> notify(const hidl_vec<NotifyMsg>& /*msgs*/) override {
ALOGI("notify callback");
ADD_FAILURE(); // Empty callback should not reach here
return Void();
}
virtual Return<void> requestStreamBuffers(
const hidl_vec<V3_5::BufferRequest>&,
requestStreamBuffers_cb _hidl_cb) override {
ALOGI("requestStreamBuffers callback");
// HAL might want to request buffer after configureStreams, but tests with EmptyDeviceCb
// doesn't actually need to send capture requests, so just return an error.
hidl_vec<V3_5::StreamBufferRet> emptyBufRets;
_hidl_cb(V3_5::BufferRequestStatus::FAILED_UNKNOWN, emptyBufRets);
return Void();
}
virtual Return<void> returnStreamBuffers(const hidl_vec<StreamBuffer>&) override {
ALOGI("returnStreamBuffers");
ADD_FAILURE(); // Empty callback should not reach here
return Void();
}
};
struct DeviceCb : public V3_5::ICameraDeviceCallback {
DeviceCb(CameraHidlTest* parent, int deviceVersion, const camera_metadata_t* staticMeta)
: mParent(parent), mDeviceVersion(deviceVersion) {
mStaticMetadata = staticMeta;
}
Return<void> processCaptureResult_3_4(const hidl_vec<V3_4::CaptureResult>& results) override;
Return<void> processCaptureResult(const hidl_vec<CaptureResult>& results) override;
Return<void> notify(const hidl_vec<NotifyMsg>& msgs) override;
Return<void> requestStreamBuffers(const hidl_vec<V3_5::BufferRequest>& bufReqs,
requestStreamBuffers_cb _hidl_cb) override;
Return<void> returnStreamBuffers(const hidl_vec<StreamBuffer>& buffers) override;
void setCurrentStreamConfig(const hidl_vec<V3_4::Stream>& streams,
const hidl_vec<V3_2::HalStream>& halStreams);
void waitForBuffersReturned();
private:
bool processCaptureResultLocked(const CaptureResult& results,
hidl_vec<PhysicalCameraMetadata> physicalCameraMetadata);
Return<void> notifyHelper(const hidl_vec<NotifyMsg>& msgs,
const std::vector<std::pair<bool, nsecs_t>>& readoutTimestamps);
CameraHidlTest* mParent; // Parent object
int mDeviceVersion;
android::hardware::camera::common::V1_0::helper::CameraMetadata mStaticMetadata;
bool hasOutstandingBuffersLocked();
/* members for requestStreamBuffers() and returnStreamBuffers()*/
std::mutex mLock; // protecting members below
bool mUseHalBufManager = false;
hidl_vec<V3_4::Stream> mStreams;
hidl_vec<V3_2::HalStream> mHalStreams;
uint64_t mNextBufferId = 1;
using OutstandingBuffers = std::unordered_map<uint64_t, hidl_handle>;
// size == mStreams.size(). Tracking each streams outstanding buffers
std::vector<OutstandingBuffers> mOutstandingBufferIds;
std::condition_variable mFlushedCondition;
};
struct TorchProviderCb : public ICameraProviderCallback {
TorchProviderCb(CameraHidlTest *parent) : mParent(parent) {}
virtual Return<void> cameraDeviceStatusChange(
const hidl_string&, CameraDeviceStatus) override {
return Void();
}
virtual Return<void> torchModeStatusChange(
const hidl_string&, TorchModeStatus newStatus) override {
std::lock_guard<std::mutex> l(mParent->mTorchLock);
mParent->mTorchStatus = newStatus;
mParent->mTorchCond.notify_one();
return Void();
}
private:
CameraHidlTest *mParent; // Parent object
};
struct Camera1DeviceCb :
public ::android::hardware::camera::device::V1_0::ICameraDeviceCallback {
Camera1DeviceCb(CameraHidlTest *parent) : mParent(parent) {}
Return<void> notifyCallback(NotifyCallbackMsg msgType,
int32_t ext1, int32_t ext2) override;
Return<uint32_t> registerMemory(const hidl_handle& descriptor,
uint32_t bufferSize, uint32_t bufferCount) override;
Return<void> unregisterMemory(uint32_t memId) override;
Return<void> dataCallback(DataCallbackMsg msgType,
uint32_t data, uint32_t bufferIndex,
const CameraFrameMetadata& metadata) override;
Return<void> dataCallbackTimestamp(DataCallbackMsg msgType,
uint32_t data, uint32_t bufferIndex,
int64_t timestamp) override;
Return<void> handleCallbackTimestamp(DataCallbackMsg msgType,
const hidl_handle& frameData,uint32_t data,
uint32_t bufferIndex, int64_t timestamp) override;
Return<void> handleCallbackTimestampBatch(DataCallbackMsg msgType,
const ::android::hardware::hidl_vec<HandleTimestampMessage>& batch) override;
private:
CameraHidlTest *mParent; // Parent object
};
void notifyDeviceState(::android::hardware::camera::provider::V2_5::DeviceState newState);
void openCameraDevice(const std::string &name, sp<ICameraProvider> provider,
sp<::android::hardware::camera::device::V1_0::ICameraDevice> *device /*out*/);
void setupPreviewWindow(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device,
sp<BufferItemConsumer> *bufferItemConsumer /*out*/,
sp<BufferItemHander> *bufferHandler /*out*/);
void stopPreviewAndClose(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device);
void startPreview(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device);
void enableMsgType(unsigned int msgType,
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device);
void disableMsgType(unsigned int msgType,
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device);
void getParameters(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device,
CameraParameters *cameraParams /*out*/);
void setParameters(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device,
const CameraParameters &cameraParams);
void allocateGraphicBuffer(uint32_t width, uint32_t height, uint64_t usage,
PixelFormat format, hidl_handle *buffer_handle /*out*/);
void waitForFrameLocked(DataCallbackMsg msgFrame,
std::unique_lock<std::mutex> &l);
void openEmptyDeviceSession(const std::string &name,
sp<ICameraProvider> provider,
sp<ICameraDeviceSession> *session /*out*/,
camera_metadata_t **staticMeta /*out*/,
::android::sp<ICameraDevice> *device = nullptr/*out*/);
void castProvider(const sp<provider::V2_4::ICameraProvider>& provider,
sp<provider::V2_5::ICameraProvider>* provider2_5 /*out*/,
sp<provider::V2_6::ICameraProvider>* provider2_6 /*out*/,
sp<provider::V2_7::ICameraProvider>* provider2_7 /*out*/);
void castSession(const sp<ICameraDeviceSession>& session, int32_t deviceVersion,
sp<device::V3_3::ICameraDeviceSession>* session3_3 /*out*/,
sp<device::V3_4::ICameraDeviceSession>* session3_4 /*out*/,
sp<device::V3_5::ICameraDeviceSession>* session3_5 /*out*/,
sp<device::V3_6::ICameraDeviceSession>* session3_6 /*out*/,
sp<device::V3_7::ICameraDeviceSession>* session3_7 /*out*/);
void castInjectionSession(
const sp<ICameraDeviceSession>& session,
sp<device::V3_7::ICameraInjectionSession>* injectionSession3_7 /*out*/);
void castDevice(const sp<device::V3_2::ICameraDevice>& device, int32_t deviceVersion,
sp<device::V3_5::ICameraDevice>* device3_5 /*out*/,
sp<device::V3_7::ICameraDevice>* device3_7 /*out*/);
void createStreamConfiguration(
const ::android::hardware::hidl_vec<V3_2::Stream>& streams3_2,
StreamConfigurationMode configMode,
::android::hardware::camera::device::V3_2::StreamConfiguration* config3_2,
::android::hardware::camera::device::V3_4::StreamConfiguration* config3_4,
::android::hardware::camera::device::V3_5::StreamConfiguration* config3_5,
::android::hardware::camera::device::V3_7::StreamConfiguration* config3_7,
uint32_t jpegBufferSize = 0);
void configureOfflineStillStream(const std::string &name, int32_t deviceVersion,
sp<ICameraProvider> provider,
const AvailableStream *threshold,
sp<device::V3_6::ICameraDeviceSession> *session/*out*/,
V3_2::Stream *stream /*out*/,
device::V3_6::HalStreamConfiguration *halStreamConfig /*out*/,
bool *supportsPartialResults /*out*/,
uint32_t *partialResultCount /*out*/,
sp<DeviceCb> *outCb /*out*/,
uint32_t *jpegBufferSize /*out*/,
bool *useHalBufManager /*out*/);
void configureStreams3_7(const std::string& name, int32_t deviceVersion,
sp<ICameraProvider> provider, PixelFormat format,
sp<device::V3_7::ICameraDeviceSession>* session3_7 /*out*/,
V3_2::Stream* previewStream /*out*/,
device::V3_6::HalStreamConfiguration* halStreamConfig /*out*/,
bool* supportsPartialResults /*out*/,
uint32_t* partialResultCount /*out*/, bool* useHalBufManager /*out*/,
sp<DeviceCb>* outCb /*out*/, uint32_t streamConfigCounter,
bool maxResolution);
void configurePreviewStreams3_4(const std::string &name, int32_t deviceVersion,
sp<ICameraProvider> provider,
const AvailableStream *previewThreshold,
const std::unordered_set<std::string>& physicalIds,
sp<device::V3_4::ICameraDeviceSession> *session3_4 /*out*/,
sp<device::V3_5::ICameraDeviceSession> *session3_5 /*out*/,
V3_2::Stream* previewStream /*out*/,
device::V3_4::HalStreamConfiguration *halStreamConfig /*out*/,
bool *supportsPartialResults /*out*/,
uint32_t *partialResultCount /*out*/,
bool *useHalBufManager /*out*/,
sp<DeviceCb> *cb /*out*/,
uint32_t streamConfigCounter = 0,
bool allowUnsupport = false);
void configurePreviewStream(const std::string &name, int32_t deviceVersion,
sp<ICameraProvider> provider,
const AvailableStream *previewThreshold,
sp<ICameraDeviceSession> *session /*out*/,
V3_2::Stream *previewStream /*out*/,
HalStreamConfiguration *halStreamConfig /*out*/,
bool *supportsPartialResults /*out*/,
uint32_t *partialResultCount /*out*/,
bool *useHalBufManager /*out*/,
sp<DeviceCb> *cb /*out*/,
uint32_t streamConfigCounter = 0);
void configureSingleStream(const std::string& name, int32_t deviceVersion,
sp<ICameraProvider> provider,
const AvailableStream* previewThreshold, uint64_t bufferUsage,
RequestTemplate reqTemplate,
sp<ICameraDeviceSession>* session /*out*/,
V3_2::Stream* previewStream /*out*/,
HalStreamConfiguration* halStreamConfig /*out*/,
bool* supportsPartialResults /*out*/,
uint32_t* partialResultCount /*out*/, bool* useHalBufManager /*out*/,
sp<DeviceCb>* cb /*out*/, uint32_t streamConfigCounter = 0);
void verifyLogicalOrUltraHighResCameraMetadata(
const std::string& cameraName,
const ::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice>& device,
const CameraMetadata& chars, int deviceVersion,
const hidl_vec<hidl_string>& deviceNames);
void verifyCameraCharacteristics(Status status, const CameraMetadata& chars);
void verifyExtendedSceneModeCharacteristics(const camera_metadata_t* metadata);
void verifyZoomCharacteristics(const camera_metadata_t* metadata);
void verifyStreamUseCaseCharacteristics(const camera_metadata_t* metadata);
void verifyRecommendedConfigs(const CameraMetadata& metadata);
void verifyMonochromeCharacteristics(const CameraMetadata& chars, int deviceVersion);
void verifyMonochromeCameraResult(
const ::android::hardware::camera::common::V1_0::helper::CameraMetadata& metadata);
void verifyStreamCombination(
sp<device::V3_7::ICameraDevice> cameraDevice3_7,
const ::android::hardware::camera::device::V3_7::StreamConfiguration& config3_7,
sp<device::V3_5::ICameraDevice> cameraDevice3_5,
const ::android::hardware::camera::device::V3_4::StreamConfiguration& config3_4,
bool expectedStatus, bool expectStreamCombQuery);
void verifyLogicalCameraResult(const camera_metadata_t* staticMetadata,
const ::android::hardware::camera::common::V1_0::helper::CameraMetadata& resultMetadata);
void verifyBuffersReturned(sp<device::V3_2::ICameraDeviceSession> session,
int deviceVerison, int32_t streamId, sp<DeviceCb> cb,
uint32_t streamConfigCounter = 0);
void verifyBuffersReturned(sp<device::V3_4::ICameraDeviceSession> session,
hidl_vec<int32_t> streamIds, sp<DeviceCb> cb,
uint32_t streamConfigCounter = 0);
void verifyBuffersReturned(sp<device::V3_7::ICameraDeviceSession> session,
hidl_vec<int32_t> streamIds, sp<DeviceCb> cb,
uint32_t streamConfigCounter = 0);
void verifySessionReconfigurationQuery(sp<device::V3_5::ICameraDeviceSession> session3_5,
camera_metadata* oldSessionParams, camera_metadata* newSessionParams);
void verifyRequestTemplate(const camera_metadata_t* metadata, RequestTemplate requestTemplate);
static void overrideRotateAndCrop(::android::hardware::hidl_vec<uint8_t> *settings /*in/out*/);
static bool isDepthOnly(const camera_metadata_t* staticMeta);
static bool isUltraHighResolution(const camera_metadata_t* staticMeta);
static Status getAvailableOutputStreams(const camera_metadata_t* staticMeta,
std::vector<AvailableStream>& outputStreams,
const AvailableStream* threshold = nullptr,
bool maxResolution = false);
static Status getMaxOutputSizeForFormat(const camera_metadata_t* staticMeta, PixelFormat format,
Size* size, bool maxResolution = false);
static Status getMandatoryConcurrentStreams(const camera_metadata_t* staticMeta,
std::vector<AvailableStream>* outputStreams);
static Status getJpegBufferSize(camera_metadata_t *staticMeta,
uint32_t* outBufSize);
static Status isConstrainedModeAvailable(camera_metadata_t *staticMeta);
static Status isLogicalMultiCamera(const camera_metadata_t *staticMeta);
static bool isTorchStrengthControlSupported(const camera_metadata_t *staticMeta);
static Status isOfflineSessionSupported(const camera_metadata_t *staticMeta);
static Status getPhysicalCameraIds(const camera_metadata_t *staticMeta,
std::unordered_set<std::string> *physicalIds/*out*/);
static Status getSupportedKeys(camera_metadata_t *staticMeta,
uint32_t tagId, std::unordered_set<int32_t> *requestIDs/*out*/);
static void fillOutputStreams(camera_metadata_ro_entry_t* entry,
std::vector<AvailableStream>& outputStreams,
const AvailableStream *threshold = nullptr,
const int32_t availableConfigOutputTag = 0u);
static void constructFilteredSettings(const sp<ICameraDeviceSession>& session,
const std::unordered_set<int32_t>& availableKeys, RequestTemplate reqTemplate,
android::hardware::camera::common::V1_0::helper::CameraMetadata* defaultSettings/*out*/,
android::hardware::camera::common::V1_0::helper::CameraMetadata* filteredSettings
/*out*/);
static Status pickConstrainedModeSize(camera_metadata_t *staticMeta,
AvailableStream &hfrStream);
static Status isZSLModeAvailable(const camera_metadata_t *staticMeta);
static Status isZSLModeAvailable(const camera_metadata_t *staticMeta, ReprocessType reprocType);
static Status getZSLInputOutputMap(camera_metadata_t *staticMeta,
std::vector<AvailableZSLInputOutput> &inputOutputMap);
static Status findLargestSize(
const std::vector<AvailableStream> &streamSizes,
int32_t format, AvailableStream &result);
static Status isAutoFocusModeAvailable(
CameraParameters &cameraParams, const char *mode) ;
static Status isMonochromeCamera(const camera_metadata_t *staticMeta);
static Status getSystemCameraKind(const camera_metadata_t* staticMeta,
SystemCameraKind* systemCameraKind);
static void getMultiResolutionStreamConfigurations(
camera_metadata_ro_entry* multiResStreamConfigs,
camera_metadata_ro_entry* streamConfigs,
camera_metadata_ro_entry* maxResolutionStreamConfigs,
const camera_metadata_t* staticMetadata);
void getPrivacyTestPatternModes(
const camera_metadata_t* staticMetadata,
std::unordered_set<int32_t>* privacyTestPatternModes/*out*/);
static V3_2::DataspaceFlags getDataspace(PixelFormat format);
void processCaptureRequestInternal(uint64_t bufferusage, RequestTemplate reqTemplate,
bool useSecureOnlyCameras);
// Used by switchToOffline where a new result queue is created for offline reqs
void updateInflightResultQueue(std::shared_ptr<ResultMetadataQueue> resultQueue);
protected:
// In-flight queue for tracking completion of capture requests.
struct InFlightRequest {
// Set by notify() SHUTTER call.
nsecs_t shutterTimestamp;
bool shutterReadoutTimestampValid;
nsecs_t shutterReadoutTimestamp;
bool errorCodeValid;
ErrorCode errorCode;
//Is partial result supported
bool usePartialResult;
//Partial result count expected
uint32_t numPartialResults;
// Message queue
std::shared_ptr<ResultMetadataQueue> resultQueue;
// Set by process_capture_result call with valid metadata
bool haveResultMetadata;
// Decremented by calls to process_capture_result with valid output
// and input buffers
ssize_t numBuffersLeft;
// A 64bit integer to index the frame number associated with this result.
int64_t frameNumber;
// The partial result count (index) for this capture result.
int32_t partialResultCount;
// For buffer drop errors, the stream ID for the stream that lost a buffer.
// For physical sub-camera result errors, the Id of the physical stream
// for the physical sub-camera.
// Otherwise -1.
int32_t errorStreamId;
// If this request has any input buffer
bool hasInputBuffer;
// Result metadata
::android::hardware::camera::common::V1_0::helper::CameraMetadata collectedResult;
// Buffers are added by process_capture_result when output buffers
// return from HAL but framework.
::android::Vector<StreamBuffer> resultOutputBuffers;
std::unordered_set<std::string> expectedPhysicalResults;
InFlightRequest() :
shutterTimestamp(0),
shutterReadoutTimestampValid(false),
shutterReadoutTimestamp(0),
errorCodeValid(false),
errorCode(ErrorCode::ERROR_BUFFER),
usePartialResult(false),
numPartialResults(0),
resultQueue(nullptr),
haveResultMetadata(false),
numBuffersLeft(0),
frameNumber(0),
partialResultCount(0),
errorStreamId(-1),
hasInputBuffer(false),
collectedResult(1, 10) {}
InFlightRequest(ssize_t numBuffers, bool hasInput,
bool partialResults, uint32_t partialCount,
std::shared_ptr<ResultMetadataQueue> queue = nullptr) :
shutterTimestamp(0),
shutterReadoutTimestampValid(false),
shutterReadoutTimestamp(0),
errorCodeValid(false),
errorCode(ErrorCode::ERROR_BUFFER),
usePartialResult(partialResults),
numPartialResults(partialCount),
resultQueue(queue),
haveResultMetadata(false),
numBuffersLeft(numBuffers),
frameNumber(0),
partialResultCount(0),
errorStreamId(-1),
hasInputBuffer(hasInput),
collectedResult(1, 10) {}
InFlightRequest(ssize_t numBuffers, bool hasInput,
bool partialResults, uint32_t partialCount,
const std::unordered_set<std::string>& extraPhysicalResult,
std::shared_ptr<ResultMetadataQueue> queue = nullptr) :
shutterTimestamp(0),
shutterReadoutTimestampValid(false),
shutterReadoutTimestamp(0),
errorCodeValid(false),
errorCode(ErrorCode::ERROR_BUFFER),
usePartialResult(partialResults),
numPartialResults(partialCount),
resultQueue(queue),
haveResultMetadata(false),
numBuffersLeft(numBuffers),
frameNumber(0),
partialResultCount(0),
errorStreamId(-1),
hasInputBuffer(hasInput),
collectedResult(1, 10),
expectedPhysicalResults(extraPhysicalResult) {}
};
// Map from frame number to the in-flight request state
typedef ::android::KeyedVector<uint32_t, InFlightRequest*> InFlightMap;
std::mutex mLock; // Synchronize access to member variables
std::condition_variable mResultCondition; // Condition variable for incoming results
InFlightMap mInflightMap; // Map of all inflight requests
DataCallbackMsg mDataMessageTypeReceived; // Most recent message type received through data callbacks
uint32_t mVideoBufferIndex; // Buffer index of the most recent video buffer
uint32_t mVideoData; // Buffer data of the most recent video buffer
hidl_handle mVideoNativeHandle; // Most recent video buffer native handle
NotifyCallbackMsg mNotifyMessage; // Current notification message
std::mutex mTorchLock; // Synchronize access to torch status
std::condition_variable mTorchCond; // Condition variable for torch status
TorchModeStatus mTorchStatus; // Current torch status
// Holds camera registered buffers
std::unordered_map<uint32_t, sp<::android::MemoryHeapBase> > mMemoryPool;
// Camera provider service
sp<ICameraProvider> mProvider;
sp<::android::hardware::camera::provider::V2_5::ICameraProvider> mProvider2_5;
sp<::android::hardware::camera::provider::V2_6::ICameraProvider> mProvider2_6;
sp<::android::hardware::camera::provider::V2_7::ICameraProvider> mProvider2_7;
// Camera provider type.
std::string mProviderType;
HandleImporter mHandleImporter;
};
Return<void> CameraHidlTest::Camera1DeviceCb::notifyCallback(
NotifyCallbackMsg msgType, int32_t ext1 __unused,
int32_t ext2 __unused) {
std::unique_lock<std::mutex> l(mParent->mLock);
mParent->mNotifyMessage = msgType;
mParent->mResultCondition.notify_one();
return Void();
}
Return<uint32_t> CameraHidlTest::Camera1DeviceCb::registerMemory(
const hidl_handle& descriptor, uint32_t bufferSize,
uint32_t bufferCount) {
if (descriptor->numFds != 1) {
ADD_FAILURE() << "camera memory descriptor has"
" numFds " << descriptor->numFds << " (expect 1)" ;
return 0;
}
if (descriptor->data[0] < 0) {
ADD_FAILURE() << "camera memory descriptor has"
" FD " << descriptor->data[0] << " (expect >= 0)";
return 0;
}
sp<::android::MemoryHeapBase> pool = new ::android::MemoryHeapBase(
descriptor->data[0], bufferSize*bufferCount, 0, 0);
mParent->mMemoryPool.emplace(pool->getHeapID(), pool);
return pool->getHeapID();
}
Return<void> CameraHidlTest::Camera1DeviceCb::unregisterMemory(uint32_t memId) {
if (mParent->mMemoryPool.count(memId) == 0) {
ALOGE("%s: memory pool ID %d not found", __FUNCTION__, memId);
ADD_FAILURE();
return Void();
}
mParent->mMemoryPool.erase(memId);
return Void();
}
Return<void> CameraHidlTest::Camera1DeviceCb::dataCallback(
DataCallbackMsg msgType __unused, uint32_t data __unused,
uint32_t bufferIndex __unused,
const CameraFrameMetadata& metadata __unused) {
std::unique_lock<std::mutex> l(mParent->mLock);
mParent->mDataMessageTypeReceived = msgType;
mParent->mResultCondition.notify_one();
return Void();
}
Return<void> CameraHidlTest::Camera1DeviceCb::dataCallbackTimestamp(
DataCallbackMsg msgType, uint32_t data,
uint32_t bufferIndex, int64_t timestamp __unused) {
std::unique_lock<std::mutex> l(mParent->mLock);
mParent->mDataMessageTypeReceived = msgType;
mParent->mVideoBufferIndex = bufferIndex;
if (mParent->mMemoryPool.count(data) == 0) {
ADD_FAILURE() << "memory pool ID " << data << "not found";
}
mParent->mVideoData = data;
mParent->mResultCondition.notify_one();
return Void();
}
Return<void> CameraHidlTest::Camera1DeviceCb::handleCallbackTimestamp(
DataCallbackMsg msgType, const hidl_handle& frameData,
uint32_t data __unused, uint32_t bufferIndex,
int64_t timestamp __unused) {
std::unique_lock<std::mutex> l(mParent->mLock);
mParent->mDataMessageTypeReceived = msgType;
mParent->mVideoBufferIndex = bufferIndex;
if (mParent->mMemoryPool.count(data) == 0) {
ADD_FAILURE() << "memory pool ID " << data << " not found";
}
mParent->mVideoData = data;
mParent->mVideoNativeHandle = frameData;
mParent->mResultCondition.notify_one();
return Void();
}
Return<void> CameraHidlTest::Camera1DeviceCb::handleCallbackTimestampBatch(
DataCallbackMsg msgType,
const hidl_vec<HandleTimestampMessage>& batch) {
std::unique_lock<std::mutex> l(mParent->mLock);
for (auto& msg : batch) {
mParent->mDataMessageTypeReceived = msgType;
mParent->mVideoBufferIndex = msg.bufferIndex;
if (mParent->mMemoryPool.count(msg.data) == 0) {
ADD_FAILURE() << "memory pool ID " << msg.data << " not found";
}
mParent->mVideoData = msg.data;
mParent->mVideoNativeHandle = msg.frameData;
mParent->mResultCondition.notify_one();
}
return Void();
}
Return<void> CameraHidlTest::DeviceCb::processCaptureResult_3_4(
const hidl_vec<V3_4::CaptureResult>& results) {
if (nullptr == mParent) {
return Void();
}
bool notify = false;
std::unique_lock<std::mutex> l(mParent->mLock);
for (size_t i = 0 ; i < results.size(); i++) {
notify = processCaptureResultLocked(results[i].v3_2, results[i].physicalCameraMetadata);
}
l.unlock();
if (notify) {
mParent->mResultCondition.notify_one();
}
return Void();
}
Return<void> CameraHidlTest::DeviceCb::processCaptureResult(
const hidl_vec<CaptureResult>& results) {
if (nullptr == mParent) {
return Void();
}
bool notify = false;
std::unique_lock<std::mutex> l(mParent->mLock);
::android::hardware::hidl_vec<PhysicalCameraMetadata> noPhysMetadata;
for (size_t i = 0 ; i < results.size(); i++) {
notify = processCaptureResultLocked(results[i], noPhysMetadata);
}
l.unlock();
if (notify) {
mParent->mResultCondition.notify_one();
}
return Void();
}
bool CameraHidlTest::DeviceCb::processCaptureResultLocked(const CaptureResult& results,
hidl_vec<PhysicalCameraMetadata> physicalCameraMetadata) {
bool notify = false;
uint32_t frameNumber = results.frameNumber;
if ((results.result.size() == 0) &&
(results.outputBuffers.size() == 0) &&
(results.inputBuffer.buffer == nullptr) &&
(results.fmqResultSize == 0)) {
ALOGE("%s: No result data provided by HAL for frame %d result count: %d",
__func__, frameNumber, (int) results.fmqResultSize);
ADD_FAILURE();
return notify;
}
ssize_t idx = mParent->mInflightMap.indexOfKey(frameNumber);
if (::android::NAME_NOT_FOUND == idx) {
ALOGE("%s: Unexpected frame number! received: %u",
__func__, frameNumber);
ADD_FAILURE();
return notify;
}
bool isPartialResult = false;
bool hasInputBufferInRequest = false;
InFlightRequest *request = mParent->mInflightMap.editValueAt(idx);
::android::hardware::camera::device::V3_2::CameraMetadata resultMetadata;
size_t resultSize = 0;
if (results.fmqResultSize > 0) {
resultMetadata.resize(results.fmqResultSize);
if (request->resultQueue == nullptr) {
ADD_FAILURE();
return notify;
}
if (!request->resultQueue->read(resultMetadata.data(),
results.fmqResultSize)) {
ALOGE("%s: Frame %d: Cannot read camera metadata from fmq,"
"size = %" PRIu64, __func__, frameNumber,
results.fmqResultSize);
ADD_FAILURE();
return notify;
}
// Physical device results are only expected in the last/final
// partial result notification.
bool expectPhysicalResults = !(request->usePartialResult &&
(results.partialResult < request->numPartialResults));
if (expectPhysicalResults &&
(physicalCameraMetadata.size() != request->expectedPhysicalResults.size())) {
ALOGE("%s: Frame %d: Returned physical metadata count %zu "
"must be equal to expected count %zu", __func__, frameNumber,
physicalCameraMetadata.size(), request->expectedPhysicalResults.size());
ADD_FAILURE();
return notify;
}
std::vector<::android::hardware::camera::device::V3_2::CameraMetadata> physResultMetadata;
physResultMetadata.resize(physicalCameraMetadata.size());
for (size_t i = 0; i < physicalCameraMetadata.size(); i++) {
physResultMetadata[i].resize(physicalCameraMetadata[i].fmqMetadataSize);
if (!request->resultQueue->read(physResultMetadata[i].data(),
physicalCameraMetadata[i].fmqMetadataSize)) {
ALOGE("%s: Frame %d: Cannot read physical camera metadata from fmq,"
"size = %" PRIu64, __func__, frameNumber,
physicalCameraMetadata[i].fmqMetadataSize);
ADD_FAILURE();
return notify;
}
}
resultSize = resultMetadata.size();
} else if (results.result.size() > 0) {
resultMetadata.setToExternal(const_cast<uint8_t *>(
results.result.data()), results.result.size());
resultSize = resultMetadata.size();
}
if (!request->usePartialResult && (resultSize > 0) &&
(results.partialResult != 1)) {
ALOGE("%s: Result is malformed for frame %d: partial_result %u "
"must be 1 if partial result is not supported", __func__,
frameNumber, results.partialResult);
ADD_FAILURE();
return notify;
}
if (results.partialResult != 0) {
request->partialResultCount = results.partialResult;
}
// Check if this result carries only partial metadata
if (request->usePartialResult && (resultSize > 0)) {
if ((results.partialResult > request->numPartialResults) ||
(results.partialResult < 1)) {
ALOGE("%s: Result is malformed for frame %d: partial_result %u"
" must be in the range of [1, %d] when metadata is "
"included in the result", __func__, frameNumber,
results.partialResult, request->numPartialResults);
ADD_FAILURE();
return notify;
}
// Verify no duplicate tags between partial results
const camera_metadata_t* partialMetadata =
reinterpret_cast<const camera_metadata_t*>(resultMetadata.data());
const camera_metadata_t* collectedMetadata = request->collectedResult.getAndLock();
camera_metadata_ro_entry_t searchEntry, foundEntry;
for (size_t i = 0; i < get_camera_metadata_entry_count(partialMetadata); i++) {
if (0 != get_camera_metadata_ro_entry(partialMetadata, i, &searchEntry)) {
ADD_FAILURE();
request->collectedResult.unlock(collectedMetadata);
return notify;
}
if (-ENOENT !=
find_camera_metadata_ro_entry(collectedMetadata, searchEntry.tag, &foundEntry)) {
ADD_FAILURE();
request->collectedResult.unlock(collectedMetadata);
return notify;
}
}
request->collectedResult.unlock(collectedMetadata);
request->collectedResult.append(partialMetadata);
isPartialResult =
(results.partialResult < request->numPartialResults);
} else if (resultSize > 0) {
request->collectedResult.append(reinterpret_cast<const camera_metadata_t*>(
resultMetadata.data()));
isPartialResult = false;
}
hasInputBufferInRequest = request->hasInputBuffer;
// Did we get the (final) result metadata for this capture?
if ((resultSize > 0) && !isPartialResult) {
if (request->haveResultMetadata) {
ALOGE("%s: Called multiple times with metadata for frame %d",
__func__, frameNumber);
ADD_FAILURE();
return notify;
}
request->haveResultMetadata = true;
request->collectedResult.sort();
// Verify final result metadata
bool isAtLeast_3_5 = mDeviceVersion >= CAMERA_DEVICE_API_VERSION_3_5;
if (isAtLeast_3_5) {
auto staticMetadataBuffer = mStaticMetadata.getAndLock();
bool isMonochrome = Status::OK ==
CameraHidlTest::isMonochromeCamera(staticMetadataBuffer);
if (isMonochrome) {
mParent->verifyMonochromeCameraResult(request->collectedResult);
}
// Verify logical camera result metadata
bool isLogicalCamera =
Status::OK == CameraHidlTest::isLogicalMultiCamera(staticMetadataBuffer);
if (isLogicalCamera) {
mParent->verifyLogicalCameraResult(staticMetadataBuffer, request->collectedResult);
}
mStaticMetadata.unlock(staticMetadataBuffer);
}
}
uint32_t numBuffersReturned = results.outputBuffers.size();
if (results.inputBuffer.buffer != nullptr) {
if (hasInputBufferInRequest) {
numBuffersReturned += 1;
} else {
ALOGW("%s: Input buffer should be NULL if there is no input"
" buffer sent in the request", __func__);
}
}
request->numBuffersLeft -= numBuffersReturned;
if (request->numBuffersLeft < 0) {
ALOGE("%s: Too many buffers returned for frame %d", __func__,
frameNumber);
ADD_FAILURE();
return notify;
}
request->resultOutputBuffers.appendArray(results.outputBuffers.data(),
results.outputBuffers.size());
// If shutter event is received notify the pending threads.
if (request->shutterTimestamp != 0) {
notify = true;
}
if (mUseHalBufManager) {
// Don't return buffers of bufId 0 (empty buffer)
std::vector<StreamBuffer> buffers;
for (const auto& sb : results.outputBuffers) {
if (sb.bufferId != 0) {
buffers.push_back(sb);
}
}
returnStreamBuffers(buffers);
}
return notify;
}
void CameraHidlTest::DeviceCb::setCurrentStreamConfig(
const hidl_vec<V3_4::Stream>& streams, const hidl_vec<V3_2::HalStream>& halStreams) {
ASSERT_EQ(streams.size(), halStreams.size());
ASSERT_NE(streams.size(), 0);
for (size_t i = 0; i < streams.size(); i++) {
ASSERT_EQ(streams[i].v3_2.id, halStreams[i].id);
}
std::lock_guard<std::mutex> l(mLock);
mUseHalBufManager = true;
mStreams = streams;
mHalStreams = halStreams;
mOutstandingBufferIds.clear();
for (size_t i = 0; i < streams.size(); i++) {
mOutstandingBufferIds.emplace_back();
}
}
bool CameraHidlTest::DeviceCb::hasOutstandingBuffersLocked() {
if (!mUseHalBufManager) {
return false;
}
for (const auto& outstandingBuffers : mOutstandingBufferIds) {
if (!outstandingBuffers.empty()) {
return true;
}
}
return false;
}
void CameraHidlTest::DeviceCb::waitForBuffersReturned() {
std::unique_lock<std::mutex> lk(mLock);
if (hasOutstandingBuffersLocked()) {
auto timeout = std::chrono::seconds(kBufferReturnTimeoutSec);
auto st = mFlushedCondition.wait_for(lk, timeout);
ASSERT_NE(std::cv_status::timeout, st);
}
}
Return<void> CameraHidlTest::DeviceCb::notify(
const hidl_vec<NotifyMsg>& messages) {
std::vector<std::pair<bool, nsecs_t>> readoutTimestamps;
readoutTimestamps.resize(messages.size());
for (size_t i = 0; i < messages.size(); i++) {
readoutTimestamps[i] = {false, 0};
}
return notifyHelper(messages, readoutTimestamps);
}
Return<void> CameraHidlTest::DeviceCb::notifyHelper(
const hidl_vec<NotifyMsg>& messages,
const std::vector<std::pair<bool, nsecs_t>>& readoutTimestamps) {
std::lock_guard<std::mutex> l(mParent->mLock);
for (size_t i = 0; i < messages.size(); i++) {
switch(messages[i].type) {
case MsgType::ERROR:
if (ErrorCode::ERROR_DEVICE == messages[i].msg.error.errorCode) {
ALOGE("%s: Camera reported serious device error",
__func__);
ADD_FAILURE();
} else {
ssize_t idx = mParent->mInflightMap.indexOfKey(
messages[i].msg.error.frameNumber);
if (::android::NAME_NOT_FOUND == idx) {
ALOGE("%s: Unexpected error frame number! received: %u",
__func__, messages[i].msg.error.frameNumber);
ADD_FAILURE();
break;
}
InFlightRequest *r = mParent->mInflightMap.editValueAt(idx);
if (ErrorCode::ERROR_RESULT == messages[i].msg.error.errorCode &&
messages[i].msg.error.errorStreamId != -1) {
if (r->haveResultMetadata) {
ALOGE("%s: Camera must report physical camera result error before "
"the final capture result!", __func__);
ADD_FAILURE();
} else {
for (size_t j = 0; j < mStreams.size(); j++) {
if (mStreams[j].v3_2.id == messages[i].msg.error.errorStreamId) {
hidl_string physicalCameraId = mStreams[j].physicalCameraId;
bool idExpected = r->expectedPhysicalResults.find(
physicalCameraId) != r->expectedPhysicalResults.end();
if (!idExpected) {
ALOGE("%s: ERROR_RESULT's error stream's physicalCameraId "
"%s must be expected", __func__,
physicalCameraId.c_str());
ADD_FAILURE();
} else {
r->expectedPhysicalResults.erase(physicalCameraId);
}
break;
}
}
}
} else {
r->errorCodeValid = true;
r->errorCode = messages[i].msg.error.errorCode;
r->errorStreamId = messages[i].msg.error.errorStreamId;
}
}
break;
case MsgType::SHUTTER:
{
ssize_t idx = mParent->mInflightMap.indexOfKey(messages[i].msg.shutter.frameNumber);
if (::android::NAME_NOT_FOUND == idx) {
ALOGE("%s: Unexpected shutter frame number! received: %u",
__func__, messages[i].msg.shutter.frameNumber);
ADD_FAILURE();
break;
}
InFlightRequest *r = mParent->mInflightMap.editValueAt(idx);
r->shutterTimestamp = messages[i].msg.shutter.timestamp;
r->shutterReadoutTimestampValid = readoutTimestamps[i].first;
r->shutterReadoutTimestamp = readoutTimestamps[i].second;
}
break;
default:
ALOGE("%s: Unsupported notify message %d", __func__,
messages[i].type);
ADD_FAILURE();
break;
}
}
mParent->mResultCondition.notify_one();
return Void();
}
Return<void> CameraHidlTest::DeviceCb::requestStreamBuffers(
const hidl_vec<V3_5::BufferRequest>& bufReqs,
requestStreamBuffers_cb _hidl_cb) {
using V3_5::BufferRequestStatus;
using V3_5::StreamBufferRet;
using V3_5::StreamBufferRequestError;
hidl_vec<StreamBufferRet> bufRets;
std::unique_lock<std::mutex> l(mLock);
if (!mUseHalBufManager) {
ALOGE("%s: Camera does not support HAL buffer management", __FUNCTION__);
ADD_FAILURE();
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return Void();
}
if (bufReqs.size() > mStreams.size()) {
ALOGE("%s: illegal buffer request: too many requests!", __FUNCTION__);
ADD_FAILURE();
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return Void();
}
std::vector<int32_t> indexes(bufReqs.size());
for (size_t i = 0; i < bufReqs.size(); i++) {
bool found = false;
for (size_t idx = 0; idx < mStreams.size(); idx++) {
if (bufReqs[i].streamId == mStreams[idx].v3_2.id) {
found = true;
indexes[i] = idx;
break;
}
}
if (!found) {
ALOGE("%s: illegal buffer request: unknown streamId %d!",
__FUNCTION__, bufReqs[i].streamId);
ADD_FAILURE();
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return Void();
}
}
bool allStreamOk = true;
bool atLeastOneStreamOk = false;
bufRets.resize(bufReqs.size());
for (size_t i = 0; i < bufReqs.size(); i++) {
int32_t idx = indexes[i];
const auto& stream = mStreams[idx];
const auto& halStream = mHalStreams[idx];
const V3_5::BufferRequest& bufReq = bufReqs[i];
if (mOutstandingBufferIds[idx].size() + bufReq.numBuffersRequested > halStream.maxBuffers) {
bufRets[i].streamId = stream.v3_2.id;
bufRets[i].val.error(StreamBufferRequestError::MAX_BUFFER_EXCEEDED);
allStreamOk = false;
continue;
}
hidl_vec<StreamBuffer> tmpRetBuffers(bufReq.numBuffersRequested);
for (size_t j = 0; j < bufReq.numBuffersRequested; j++) {
hidl_handle buffer_handle;
uint32_t w = stream.v3_2.width;
uint32_t h = stream.v3_2.height;
if (stream.v3_2.format == PixelFormat::BLOB) {
w = stream.bufferSize;
h = 1;
}
mParent->allocateGraphicBuffer(w, h,
android_convertGralloc1To0Usage(
halStream.producerUsage, halStream.consumerUsage),
halStream.overrideFormat, &buffer_handle);
tmpRetBuffers[j] = {stream.v3_2.id, mNextBufferId, buffer_handle, BufferStatus::OK,
nullptr, nullptr};
mOutstandingBufferIds[idx].insert(std::make_pair(mNextBufferId++, buffer_handle));
}
atLeastOneStreamOk = true;
bufRets[i].streamId = stream.v3_2.id;
bufRets[i].val.buffers(std::move(tmpRetBuffers));
}
if (allStreamOk) {
_hidl_cb(BufferRequestStatus::OK, bufRets);
} else if (atLeastOneStreamOk) {
_hidl_cb(BufferRequestStatus::FAILED_PARTIAL, bufRets);
} else {
_hidl_cb(BufferRequestStatus::FAILED_UNKNOWN, bufRets);
}
if (!hasOutstandingBuffersLocked()) {
l.unlock();
mFlushedCondition.notify_one();
}
return Void();
}
Return<void> CameraHidlTest::DeviceCb::returnStreamBuffers(
const hidl_vec<StreamBuffer>& buffers) {
if (!mUseHalBufManager) {
ALOGE("%s: Camera does not support HAL buffer management", __FUNCTION__);
ADD_FAILURE();
}
std::unique_lock<std::mutex> l(mLock);
for (const auto& buf : buffers) {
bool found = false;
for (size_t idx = 0; idx < mOutstandingBufferIds.size(); idx++) {
if (mStreams[idx].v3_2.id == buf.streamId &&
mOutstandingBufferIds[idx].count(buf.bufferId) == 1) {
mOutstandingBufferIds[idx].erase(buf.bufferId);
// TODO: check do we need to close/delete native handle or assume we have enough
// memory to run till the test finish? since we do not capture much requests (and
// most of time one buffer is sufficient)
found = true;
break;
}
}
if (found) {
continue;
}
ALOGE("%s: unknown buffer ID %" PRIu64, __FUNCTION__, buf.bufferId);
ADD_FAILURE();
}
if (!hasOutstandingBuffersLocked()) {
l.unlock();
mFlushedCondition.notify_one();
}
return Void();
}
std::map<hidl_string, hidl_string> CameraHidlTest::getCameraDeviceIdToNameMap(
sp<ICameraProvider> provider) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(provider);
std::map<hidl_string, hidl_string> idToNameMap;
for (auto& name : cameraDeviceNames) {
std::string version, cameraId;
if (!matchDeviceName(name, mProviderType, &version, &cameraId)) {
ADD_FAILURE();
}
idToNameMap.insert(std::make_pair(hidl_string(cameraId), name));
}
return idToNameMap;
}
hidl_vec<hidl_string> CameraHidlTest::getCameraDeviceNames(sp<ICameraProvider> provider,
bool addSecureOnly) {
std::vector<std::string> cameraDeviceNames;
Return<void> ret;
ret = provider->getCameraIdList(
[&](auto status, const auto& idList) {
ALOGI("getCameraIdList returns status:%d", (int)status);
for (size_t i = 0; i < idList.size(); i++) {
ALOGI("Camera Id[%zu] is %s", i, idList[i].c_str());
}
ASSERT_EQ(Status::OK, status);
for (const auto& id : idList) {
cameraDeviceNames.push_back(id);
}
});
if (!ret.isOk()) {
ADD_FAILURE();
}
// External camera devices are reported through cameraDeviceStatusChange
struct ProviderCb : public ICameraProviderCallback {
virtual Return<void> cameraDeviceStatusChange(
const hidl_string& devName,
CameraDeviceStatus newStatus) override {
ALOGI("camera device status callback name %s, status %d",
devName.c_str(), (int) newStatus);
if (newStatus == CameraDeviceStatus::PRESENT) {
externalCameraDeviceNames.push_back(devName);
}
return Void();
}
virtual Return<void> torchModeStatusChange(
const hidl_string&, TorchModeStatus) override {
return Void();
}
std::vector<std::string> externalCameraDeviceNames;
};
sp<ProviderCb> cb = new ProviderCb;
auto status = mProvider->setCallback(cb);
for (const auto& devName : cb->externalCameraDeviceNames) {
if (cameraDeviceNames.end() == std::find(
cameraDeviceNames.begin(), cameraDeviceNames.end(), devName)) {
cameraDeviceNames.push_back(devName);
}
}
std::vector<hidl_string> retList;
for (size_t i = 0; i < cameraDeviceNames.size(); i++) {
bool isSecureOnlyCamera = isSecureOnly(mProvider, cameraDeviceNames[i]);
if (addSecureOnly) {
if (isSecureOnlyCamera) {
retList.emplace_back(cameraDeviceNames[i]);
}
} else if (!isSecureOnlyCamera) {
retList.emplace_back(cameraDeviceNames[i]);
}
}
hidl_vec<hidl_string> finalRetList = std::move(retList);
return finalRetList;
}
bool CameraHidlTest::isSecureOnly(sp<ICameraProvider> provider, const hidl_string& name) {
Return<void> ret;
::android::sp<ICameraDevice> device3_x;
bool retVal = false;
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
return false;
}
ret = provider->getCameraDeviceInterface_V3_x(name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
if (!ret.isOk()) {
ADD_FAILURE() << "Failed to get camera device interface for " << name;
}
ret = device3_x->getCameraCharacteristics([&](Status s, CameraMetadata metadata) {
ASSERT_EQ(Status::OK, s);
camera_metadata_t* chars = (camera_metadata_t*)metadata.data();
SystemCameraKind systemCameraKind = SystemCameraKind::PUBLIC;
Status status = getSystemCameraKind(chars, &systemCameraKind);
ASSERT_EQ(status, Status::OK);
if (systemCameraKind == SystemCameraKind::HIDDEN_SECURE_CAMERA) {
retVal = true;
}
});
if (!ret.isOk()) {
ADD_FAILURE() << "Failed to get camera characteristics for device " << name;
}
return retVal;
}
hidl_vec<hidl_vec<hidl_string>> CameraHidlTest::getConcurrentDeviceCombinations(
sp<::android::hardware::camera::provider::V2_6::ICameraProvider>& provider2_6) {
hidl_vec<hidl_vec<hidl_string>> combinations;
Return<void> ret = provider2_6->getConcurrentStreamingCameraIds(
[&combinations](Status concurrentIdStatus,
const hidl_vec<hidl_vec<hidl_string>>& cameraDeviceIdCombinations) {
ASSERT_EQ(concurrentIdStatus, Status::OK);
combinations = cameraDeviceIdCombinations;
});
if (!ret.isOk()) {
ADD_FAILURE();
}
return combinations;
}
// Test devices with first_api_level >= P does not advertise device@1.0
TEST_P(CameraHidlTest, noHal1AfterP) {
constexpr int32_t HAL1_PHASE_OUT_API_LEVEL = 28;
int32_t firstApiLevel = 0;
getFirstApiLevel(&firstApiLevel);
// all devices with first API level == 28 and <= 1GB of RAM must set low_ram
// and thus be allowed to continue using HAL1
if ((firstApiLevel == HAL1_PHASE_OUT_API_LEVEL) &&
(property_get_bool("ro.config.low_ram", /*default*/ false))) {
ALOGI("Hal1 allowed for low ram device");
return;
}
if (firstApiLevel >= HAL1_PHASE_OUT_API_LEVEL) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
ASSERT_NE(deviceVersion, 0); // Must be a valid device version
ASSERT_NE(deviceVersion, CAMERA_DEVICE_API_VERSION_1_0); // Must not be device@1.0
}
}
}
// Test if ICameraProvider::isTorchModeSupported returns Status::OK
// Also if first_api_level >= Q torch API must be supported.
TEST_P(CameraHidlTest, isTorchModeSupported) {
constexpr int32_t API_LEVEL_Q = 29;
int32_t firstApiLevel = 0;
getFirstApiLevel(&firstApiLevel);
Return<void> ret;
ret = mProvider->isSetTorchModeSupported([&](auto status, bool support) {
ALOGI("isSetTorchModeSupported returns status:%d supported:%d", (int)status, support);
ASSERT_EQ(Status::OK, status);
if (firstApiLevel >= API_LEVEL_Q) {
ASSERT_EQ(true, support);
}
});
ASSERT_TRUE(ret.isOk());
}
// TODO: consider removing this test if getCameraDeviceNames() has the same coverage
TEST_P(CameraHidlTest, getCameraIdList) {
Return<void> ret;
ret = mProvider->getCameraIdList([&](auto status, const auto& idList) {
ALOGI("getCameraIdList returns status:%d", (int)status);
for (size_t i = 0; i < idList.size(); i++) {
ALOGI("Camera Id[%zu] is %s", i, idList[i].c_str());
}
ASSERT_EQ(Status::OK, status);
});
ASSERT_TRUE(ret.isOk());
}
// Test if ICameraProvider::getVendorTags returns Status::OK
TEST_P(CameraHidlTest, getVendorTags) {
Return<void> ret;
ret = mProvider->getVendorTags([&](auto status, const auto& vendorTagSecs) {
ALOGI("getVendorTags returns status:%d numSections %zu", (int)status, vendorTagSecs.size());
for (size_t i = 0; i < vendorTagSecs.size(); i++) {
ALOGI("Vendor tag section %zu name %s", i, vendorTagSecs[i].sectionName.c_str());
for (size_t j = 0; j < vendorTagSecs[i].tags.size(); j++) {
const auto& tag = vendorTagSecs[i].tags[j];
ALOGI("Vendor tag id %u name %s type %d", tag.tagId, tag.tagName.c_str(),
(int)tag.tagType);
}
}
ASSERT_EQ(Status::OK, status);
});
ASSERT_TRUE(ret.isOk());
}
// Test if ICameraProvider::setCallback returns Status::OK
TEST_P(CameraHidlTest, setCallback) {
struct ProviderCb : public ICameraProviderCallback {
virtual Return<void> cameraDeviceStatusChange(
const hidl_string& cameraDeviceName,
CameraDeviceStatus newStatus) override {
ALOGI("camera device status callback name %s, status %d",
cameraDeviceName.c_str(), (int) newStatus);
return Void();
}
virtual Return<void> torchModeStatusChange(
const hidl_string& cameraDeviceName,
TorchModeStatus newStatus) override {
ALOGI("Torch mode status callback name %s, status %d",
cameraDeviceName.c_str(), (int) newStatus);
return Void();
}
};
struct ProviderCb2_6
: public ::android::hardware::camera::provider::V2_6::ICameraProviderCallback {
virtual Return<void> cameraDeviceStatusChange(const hidl_string& cameraDeviceName,
CameraDeviceStatus newStatus) override {
ALOGI("camera device status callback name %s, status %d", cameraDeviceName.c_str(),
(int)newStatus);
return Void();
}
virtual Return<void> torchModeStatusChange(const hidl_string& cameraDeviceName,
TorchModeStatus newStatus) override {
ALOGI("Torch mode status callback name %s, status %d", cameraDeviceName.c_str(),
(int)newStatus);
return Void();
}
virtual Return<void> physicalCameraDeviceStatusChange(
const hidl_string& cameraDeviceName, const hidl_string& physicalCameraDeviceName,
CameraDeviceStatus newStatus) override {
ALOGI("physical camera device status callback name %s, physical camera name %s,"
" status %d",
cameraDeviceName.c_str(), physicalCameraDeviceName.c_str(), (int)newStatus);
return Void();
}
};
sp<ProviderCb> cb = new ProviderCb;
auto status = mProvider->setCallback(cb);
ASSERT_TRUE(status.isOk());
ASSERT_EQ(Status::OK, status);
status = mProvider->setCallback(nullptr);
ASSERT_TRUE(status.isOk());
ASSERT_EQ(Status::OK, status);
if (mProvider2_6.get() != nullptr) {
sp<ProviderCb2_6> cb = new ProviderCb2_6;
auto status = mProvider2_6->setCallback(cb);
ASSERT_TRUE(status.isOk());
ASSERT_EQ(Status::OK, status);
status = mProvider2_6->setCallback(nullptr);
ASSERT_TRUE(status.isOk());
ASSERT_EQ(Status::OK, status);
}
}
// Test if ICameraProvider::getCameraDeviceInterface returns Status::OK and non-null device
TEST_P(CameraHidlTest, getCameraDeviceInterface) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device3_x) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device3_x, nullptr);
});
ASSERT_TRUE(ret.isOk());
}
break;
case CAMERA_DEVICE_API_VERSION_1_0: {
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V1_x(
name, [&](auto status, const auto& device1) {
ALOGI("getCameraDeviceInterface_V1_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device1, nullptr);
});
ASSERT_TRUE(ret.isOk());
}
break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
}
break;
}
}
}
// Verify that the device resource cost can be retrieved and the values are
// correct.
TEST_P(CameraHidlTest, getResourceCost) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice> device3_x;
ALOGI("getResourceCost: Testing camera device %s", name.c_str());
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
ret = device3_x->getResourceCost([&](auto status, const auto& resourceCost) {
ALOGI("getResourceCost returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ALOGI(" Resource cost is %d", resourceCost.resourceCost);
ASSERT_LE(resourceCost.resourceCost, 100u);
for (const auto& name : resourceCost.conflictingDevices) {
ALOGI(" Conflicting device: %s", name.c_str());
}
});
ASSERT_TRUE(ret.isOk());
}
break;
case CAMERA_DEVICE_API_VERSION_1_0: {
::android::sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
ALOGI("getResourceCost: Testing camera device %s", name.c_str());
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V1_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V1_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device1 = device;
});
ASSERT_TRUE(ret.isOk());
ret = device1->getResourceCost([&](auto status, const auto& resourceCost) {
ALOGI("getResourceCost returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ALOGI(" Resource cost is %d", resourceCost.resourceCost);
ASSERT_LE(resourceCost.resourceCost, 100u);
for (const auto& name : resourceCost.conflictingDevices) {
ALOGI(" Conflicting device: %s", name.c_str());
}
});
ASSERT_TRUE(ret.isOk());
}
break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
}
break;
}
}
}
// Verify that the static camera info can be retrieved
// successfully.
TEST_P(CameraHidlTest, getCameraInfo) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
::android::sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
ALOGI("getCameraCharacteristics: Testing camera device %s", name.c_str());
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V1_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V1_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device1 = device;
});
ASSERT_TRUE(ret.isOk());
ret = device1->getCameraInfo([&](auto status, const auto& info) {
ALOGI("getCameraInfo returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
switch (info.orientation) {
case 0:
case 90:
case 180:
case 270:
// Expected cases
ALOGI("camera orientation: %d", info.orientation);
break;
default:
FAIL() << "Unexpected camera orientation:" << info.orientation;
}
switch (info.facing) {
case CameraFacing::BACK:
case CameraFacing::FRONT:
case CameraFacing::EXTERNAL:
// Expected cases
ALOGI("camera facing: %d", info.facing);
break;
default:
FAIL() << "Unexpected camera facing:" << static_cast<uint32_t>(info.facing);
}
});
ASSERT_TRUE(ret.isOk());
}
}
}
// Check whether preview window can be configured
TEST_P(CameraHidlTest, setPreviewWindow) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
Return<void> ret;
ret = device1->close();
ASSERT_TRUE(ret.isOk());
}
}
}
// Verify that setting preview window fails in case device is not open
TEST_P(CameraHidlTest, setPreviewWindowInvalid) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
::android::sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
ALOGI("getCameraCharacteristics: Testing camera device %s", name.c_str());
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V1_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V1_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device1 = device;
});
ASSERT_TRUE(ret.isOk());
Return<Status> returnStatus = device1->setPreviewWindow(nullptr);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OPERATION_NOT_SUPPORTED, returnStatus);
}
}
}
// Start and stop preview checking whether it gets enabled in between.
TEST_P(CameraHidlTest, startStopPreview) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
startPreview(device1);
Return<bool> returnBoolStatus = device1->previewEnabled();
ASSERT_TRUE(returnBoolStatus.isOk());
ASSERT_TRUE(returnBoolStatus);
stopPreviewAndClose(device1);
}
}
}
// Start preview without active preview window. Preview should start as soon
// as a valid active window gets configured.
TEST_P(CameraHidlTest, startStopPreviewDelayed) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
Return<Status> returnStatus = device1->setPreviewWindow(nullptr);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
startPreview(device1);
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
// Preview should get enabled now
Return<bool> returnBoolStatus = device1->previewEnabled();
ASSERT_TRUE(returnBoolStatus.isOk());
ASSERT_TRUE(returnBoolStatus);
stopPreviewAndClose(device1);
}
}
}
// Verify that image capture behaves as expected along with preview callbacks.
TEST_P(CameraHidlTest, takePicture) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
{
std::unique_lock<std::mutex> l(mLock);
mDataMessageTypeReceived = DataCallbackMsg::RAW_IMAGE_NOTIFY;
}
enableMsgType((unsigned int)DataCallbackMsg::PREVIEW_FRAME, device1);
startPreview(device1);
{
std::unique_lock<std::mutex> l(mLock);
waitForFrameLocked(DataCallbackMsg::PREVIEW_FRAME, l);
}
disableMsgType((unsigned int)DataCallbackMsg::PREVIEW_FRAME, device1);
enableMsgType((unsigned int)DataCallbackMsg::COMPRESSED_IMAGE, device1);
{
std::unique_lock<std::mutex> l(mLock);
mDataMessageTypeReceived = DataCallbackMsg::RAW_IMAGE_NOTIFY;
}
Return<Status> returnStatus = device1->takePicture();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
{
std::unique_lock<std::mutex> l(mLock);
waitForFrameLocked(DataCallbackMsg::COMPRESSED_IMAGE, l);
}
disableMsgType((unsigned int)DataCallbackMsg::COMPRESSED_IMAGE, device1);
stopPreviewAndClose(device1);
}
}
}
// Image capture should fail in case preview didn't get enabled first.
TEST_P(CameraHidlTest, takePictureFail) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
Return<Status> returnStatus = device1->takePicture();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_NE(Status::OK, returnStatus);
Return<void> ret = device1->close();
ASSERT_TRUE(ret.isOk());
}
}
}
// Verify that image capture can be cancelled.
TEST_P(CameraHidlTest, cancelPicture) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
startPreview(device1);
Return<Status> returnStatus = device1->takePicture();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
returnStatus = device1->cancelPicture();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
stopPreviewAndClose(device1);
}
}
}
// Image capture cancel is a no-op when image capture is not running.
TEST_P(CameraHidlTest, cancelPictureNOP) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
startPreview(device1);
Return<Status> returnStatus = device1->cancelPicture();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
stopPreviewAndClose(device1);
}
}
}
// Test basic video recording.
TEST_P(CameraHidlTest, startStopRecording) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
{
std::unique_lock<std::mutex> l(mLock);
mDataMessageTypeReceived = DataCallbackMsg::RAW_IMAGE_NOTIFY;
}
enableMsgType((unsigned int)DataCallbackMsg::PREVIEW_FRAME, device1);
startPreview(device1);
{
std::unique_lock<std::mutex> l(mLock);
waitForFrameLocked(DataCallbackMsg::PREVIEW_FRAME, l);
mDataMessageTypeReceived = DataCallbackMsg::RAW_IMAGE_NOTIFY;
mVideoBufferIndex = UINT32_MAX;
}
disableMsgType((unsigned int)DataCallbackMsg::PREVIEW_FRAME, device1);
bool videoMetaEnabled = false;
Return<Status> returnStatus = device1->storeMetaDataInBuffers(true);
ASSERT_TRUE(returnStatus.isOk());
// It is allowed for devices to not support this feature
ASSERT_TRUE((Status::OK == returnStatus) ||
(Status::OPERATION_NOT_SUPPORTED == returnStatus));
if (Status::OK == returnStatus) {
videoMetaEnabled = true;
}
enableMsgType((unsigned int)DataCallbackMsg::VIDEO_FRAME, device1);
Return<bool> returnBoolStatus = device1->recordingEnabled();
ASSERT_TRUE(returnBoolStatus.isOk());
ASSERT_FALSE(returnBoolStatus);
returnStatus = device1->startRecording();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
{
std::unique_lock<std::mutex> l(mLock);
waitForFrameLocked(DataCallbackMsg::VIDEO_FRAME, l);
ASSERT_NE(UINT32_MAX, mVideoBufferIndex);
disableMsgType((unsigned int)DataCallbackMsg::VIDEO_FRAME, device1);
}
returnBoolStatus = device1->recordingEnabled();
ASSERT_TRUE(returnBoolStatus.isOk());
ASSERT_TRUE(returnBoolStatus);
Return<void> ret;
if (videoMetaEnabled) {
ret = device1->releaseRecordingFrameHandle(mVideoData, mVideoBufferIndex,
mVideoNativeHandle);
ASSERT_TRUE(ret.isOk());
} else {
ret = device1->releaseRecordingFrame(mVideoData, mVideoBufferIndex);
ASSERT_TRUE(ret.isOk());
}
ret = device1->stopRecording();
ASSERT_TRUE(ret.isOk());
stopPreviewAndClose(device1);
}
}
}
// It shouldn't be possible to start recording without enabling preview first.
TEST_P(CameraHidlTest, startRecordingFail) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
Return<bool> returnBoolStatus = device1->recordingEnabled();
ASSERT_TRUE(returnBoolStatus.isOk());
ASSERT_FALSE(returnBoolStatus);
Return<Status> returnStatus = device1->startRecording();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_NE(Status::OK, returnStatus);
Return<void> ret = device1->close();
ASSERT_TRUE(ret.isOk());
}
}
}
// Check autofocus support if available.
TEST_P(CameraHidlTest, autoFocus) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<const char*> focusModes = {CameraParameters::FOCUS_MODE_AUTO,
CameraParameters::FOCUS_MODE_CONTINUOUS_PICTURE,
CameraParameters::FOCUS_MODE_CONTINUOUS_VIDEO};
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
CameraParameters cameraParams;
getParameters(device1, &cameraParams /*out*/);
if (Status::OK !=
isAutoFocusModeAvailable(cameraParams, CameraParameters::FOCUS_MODE_AUTO)) {
Return<void> ret = device1->close();
ASSERT_TRUE(ret.isOk());
continue;
}
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
startPreview(device1);
enableMsgType((unsigned int)NotifyCallbackMsg::FOCUS, device1);
for (auto& iter : focusModes) {
if (Status::OK != isAutoFocusModeAvailable(cameraParams, iter)) {
continue;
}
cameraParams.set(CameraParameters::KEY_FOCUS_MODE, iter);
setParameters(device1, cameraParams);
{
std::unique_lock<std::mutex> l(mLock);
mNotifyMessage = NotifyCallbackMsg::ERROR;
}
Return<Status> returnStatus = device1->autoFocus();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
{
std::unique_lock<std::mutex> l(mLock);
while (NotifyCallbackMsg::FOCUS != mNotifyMessage) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kAutoFocusTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mResultCondition.wait_until(l, timeout));
}
}
}
disableMsgType((unsigned int)NotifyCallbackMsg::FOCUS, device1);
stopPreviewAndClose(device1);
}
}
}
// In case autofocus is supported verify that it can be cancelled.
TEST_P(CameraHidlTest, cancelAutoFocus) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
CameraParameters cameraParams;
getParameters(device1, &cameraParams /*out*/);
if (Status::OK !=
isAutoFocusModeAvailable(cameraParams, CameraParameters::FOCUS_MODE_AUTO)) {
Return<void> ret = device1->close();
ASSERT_TRUE(ret.isOk());
continue;
}
// It should be fine to call before preview starts.
ASSERT_EQ(Status::OK, device1->cancelAutoFocus());
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
startPreview(device1);
// It should be fine to call after preview starts too.
Return<Status> returnStatus = device1->cancelAutoFocus();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
returnStatus = device1->autoFocus();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
returnStatus = device1->cancelAutoFocus();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
stopPreviewAndClose(device1);
}
}
}
// Check whether face detection is available and try to enable&disable.
TEST_P(CameraHidlTest, sendCommandFaceDetection) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
CameraParameters cameraParams;
getParameters(device1, &cameraParams /*out*/);
int32_t hwFaces = cameraParams.getInt(CameraParameters::KEY_MAX_NUM_DETECTED_FACES_HW);
int32_t swFaces = cameraParams.getInt(CameraParameters::KEY_MAX_NUM_DETECTED_FACES_SW);
if ((0 >= hwFaces) && (0 >= swFaces)) {
Return<void> ret = device1->close();
ASSERT_TRUE(ret.isOk());
continue;
}
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
startPreview(device1);
if (0 < hwFaces) {
Return<Status> returnStatus = device1->sendCommand(
CommandType::START_FACE_DETECTION, CAMERA_FACE_DETECTION_HW, 0);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
// TODO(epeev) : Enable and check for face notifications
returnStatus = device1->sendCommand(CommandType::STOP_FACE_DETECTION,
CAMERA_FACE_DETECTION_HW, 0);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
}
if (0 < swFaces) {
Return<Status> returnStatus = device1->sendCommand(
CommandType::START_FACE_DETECTION, CAMERA_FACE_DETECTION_SW, 0);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
// TODO(epeev) : Enable and check for face notifications
returnStatus = device1->sendCommand(CommandType::STOP_FACE_DETECTION,
CAMERA_FACE_DETECTION_SW, 0);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
}
stopPreviewAndClose(device1);
}
}
}
// Check whether smooth zoom is available and try to enable&disable.
TEST_P(CameraHidlTest, sendCommandSmoothZoom) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
CameraParameters cameraParams;
getParameters(device1, &cameraParams /*out*/);
const char* smoothZoomStr =
cameraParams.get(CameraParameters::KEY_SMOOTH_ZOOM_SUPPORTED);
bool smoothZoomSupported =
((nullptr != smoothZoomStr) && (strcmp(smoothZoomStr, CameraParameters::TRUE) == 0))
? true
: false;
if (!smoothZoomSupported) {
Return<void> ret = device1->close();
ASSERT_TRUE(ret.isOk());
continue;
}
int32_t maxZoom = cameraParams.getInt(CameraParameters::KEY_MAX_ZOOM);
ASSERT_TRUE(0 < maxZoom);
sp<BufferItemConsumer> bufferItemConsumer;
sp<BufferItemHander> bufferHandler;
setupPreviewWindow(device1, &bufferItemConsumer /*out*/, &bufferHandler /*out*/);
startPreview(device1);
setParameters(device1, cameraParams);
Return<Status> returnStatus =
device1->sendCommand(CommandType::START_SMOOTH_ZOOM, maxZoom, 0);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
// TODO(epeev) : Enable and check for face notifications
returnStatus = device1->sendCommand(CommandType::STOP_SMOOTH_ZOOM, 0, 0);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
stopPreviewAndClose(device1);
}
}
}
// Basic correctness tests related to camera parameters.
TEST_P(CameraHidlTest, getSetParameters) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
if (getCameraDeviceVersion(name, mProviderType) == CAMERA_DEVICE_API_VERSION_1_0) {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
CameraParameters cameraParams;
getParameters(device1, &cameraParams /*out*/);
int32_t width, height;
cameraParams.getPictureSize(&width, &height);
ASSERT_TRUE((0 < width) && (0 < height));
cameraParams.getPreviewSize(&width, &height);
ASSERT_TRUE((0 < width) && (0 < height));
int32_t minFps, maxFps;
cameraParams.getPreviewFpsRange(&minFps, &maxFps);
ASSERT_TRUE((0 < minFps) && (0 < maxFps));
ASSERT_NE(nullptr, cameraParams.getPreviewFormat());
ASSERT_NE(nullptr, cameraParams.getPictureFormat());
ASSERT_TRUE(
strcmp(CameraParameters::PIXEL_FORMAT_JPEG, cameraParams.getPictureFormat()) == 0);
const char* flashMode = cameraParams.get(CameraParameters::KEY_FLASH_MODE);
ASSERT_TRUE((nullptr == flashMode) ||
(strcmp(CameraParameters::FLASH_MODE_OFF, flashMode) == 0));
const char* wbMode = cameraParams.get(CameraParameters::KEY_WHITE_BALANCE);
ASSERT_TRUE((nullptr == wbMode) ||
(strcmp(CameraParameters::WHITE_BALANCE_AUTO, wbMode) == 0));
const char* effect = cameraParams.get(CameraParameters::KEY_EFFECT);
ASSERT_TRUE((nullptr == effect) ||
(strcmp(CameraParameters::EFFECT_NONE, effect) == 0));
::android::Vector<Size> previewSizes;
cameraParams.getSupportedPreviewSizes(previewSizes);
ASSERT_FALSE(previewSizes.empty());
::android::Vector<Size> pictureSizes;
cameraParams.getSupportedPictureSizes(pictureSizes);
ASSERT_FALSE(pictureSizes.empty());
const char* previewFormats =
cameraParams.get(CameraParameters::KEY_SUPPORTED_PREVIEW_FORMATS);
ASSERT_NE(nullptr, previewFormats);
::android::String8 previewFormatsString(previewFormats);
ASSERT_TRUE(previewFormatsString.contains(CameraParameters::PIXEL_FORMAT_YUV420SP));
ASSERT_NE(nullptr, cameraParams.get(CameraParameters::KEY_SUPPORTED_PICTURE_FORMATS));
ASSERT_NE(nullptr,
cameraParams.get(CameraParameters::KEY_SUPPORTED_PREVIEW_FRAME_RATES));
const char* focusModes = cameraParams.get(CameraParameters::KEY_SUPPORTED_FOCUS_MODES);
ASSERT_NE(nullptr, focusModes);
::android::String8 focusModesString(focusModes);
const char* focusMode = cameraParams.get(CameraParameters::KEY_FOCUS_MODE);
ASSERT_NE(nullptr, focusMode);
// Auto focus mode should be default
if (focusModesString.contains(CameraParameters::FOCUS_MODE_AUTO)) {
ASSERT_TRUE(strcmp(CameraParameters::FOCUS_MODE_AUTO, focusMode) == 0);
}
ASSERT_TRUE(0 < cameraParams.getInt(CameraParameters::KEY_FOCAL_LENGTH));
int32_t horizontalViewAngle =
cameraParams.getInt(CameraParameters::KEY_HORIZONTAL_VIEW_ANGLE);
ASSERT_TRUE((0 < horizontalViewAngle) && (360 >= horizontalViewAngle));
int32_t verticalViewAngle =
cameraParams.getInt(CameraParameters::KEY_VERTICAL_VIEW_ANGLE);
ASSERT_TRUE((0 < verticalViewAngle) && (360 >= verticalViewAngle));
int32_t jpegQuality = cameraParams.getInt(CameraParameters::KEY_JPEG_QUALITY);
ASSERT_TRUE((1 <= jpegQuality) && (100 >= jpegQuality));
int32_t jpegThumbQuality =
cameraParams.getInt(CameraParameters::KEY_JPEG_THUMBNAIL_QUALITY);
ASSERT_TRUE((1 <= jpegThumbQuality) && (100 >= jpegThumbQuality));
cameraParams.setPictureSize(pictureSizes[0].width, pictureSizes[0].height);
cameraParams.setPreviewSize(previewSizes[0].width, previewSizes[0].height);
setParameters(device1, cameraParams);
getParameters(device1, &cameraParams /*out*/);
cameraParams.getPictureSize(&width, &height);
ASSERT_TRUE((pictureSizes[0].width == width) && (pictureSizes[0].height == height));
cameraParams.getPreviewSize(&width, &height);
ASSERT_TRUE((previewSizes[0].width == width) && (previewSizes[0].height == height));
Return<void> ret = device1->close();
ASSERT_TRUE(ret.isOk());
}
}
}
TEST_P(CameraHidlTest, systemCameraTest) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::map<std::string, std::list<SystemCameraKind>> hiddenPhysicalIdToLogicalMap;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice> device3_x;
ALOGI("getCameraCharacteristics: Testing camera device %s", name.c_str());
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
ret = device3_x->getCameraCharacteristics([&](auto status, const auto& chars) {
ASSERT_EQ(status, Status::OK);
const camera_metadata_t* staticMeta =
reinterpret_cast<const camera_metadata_t*>(chars.data());
ASSERT_NE(staticMeta, nullptr);
Status rc = isLogicalMultiCamera(staticMeta);
ASSERT_TRUE(Status::OK == rc || Status::METHOD_NOT_SUPPORTED == rc);
if (Status::METHOD_NOT_SUPPORTED == rc) {
return;
}
std::unordered_set<std::string> physicalIds;
ASSERT_EQ(Status::OK, getPhysicalCameraIds(staticMeta, &physicalIds));
SystemCameraKind systemCameraKind = SystemCameraKind::PUBLIC;
rc = getSystemCameraKind(staticMeta, &systemCameraKind);
ASSERT_EQ(rc, Status::OK);
for (auto physicalId : physicalIds) {
bool isPublicId = false;
for (auto& deviceName : cameraDeviceNames) {
std::string publicVersion, publicId;
ASSERT_TRUE(::matchDeviceName(deviceName, mProviderType, &publicVersion,
&publicId));
if (physicalId == publicId) {
isPublicId = true;
break;
}
}
// For hidden physical cameras, collect their associated logical cameras
// and store the system camera kind.
if (!isPublicId) {
auto it = hiddenPhysicalIdToLogicalMap.find(physicalId);
if (it == hiddenPhysicalIdToLogicalMap.end()) {
hiddenPhysicalIdToLogicalMap.insert(std::make_pair(
physicalId, std::list<SystemCameraKind>(systemCameraKind)));
} else {
it->second.push_back(systemCameraKind);
}
}
}
});
ASSERT_TRUE(ret.isOk());
} break;
case CAMERA_DEVICE_API_VERSION_1_0: {
// Not applicable
} break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
} break;
}
}
// Check that the system camera kind of the logical cameras associated with
// each hidden physical camera is the same.
for (const auto& it : hiddenPhysicalIdToLogicalMap) {
SystemCameraKind neededSystemCameraKind = it.second.front();
for (auto foundSystemCamera : it.second) {
ASSERT_EQ(neededSystemCameraKind, foundSystemCamera);
}
}
}
// Verify that the static camera characteristics can be retrieved
// successfully.
TEST_P(CameraHidlTest, getCameraCharacteristics) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice> device3_x;
ALOGI("getCameraCharacteristics: Testing camera device %s", name.c_str());
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
ret = device3_x->getCameraCharacteristics([&](auto status, const auto& chars) {
verifyCameraCharacteristics(status, chars);
verifyMonochromeCharacteristics(chars, deviceVersion);
verifyRecommendedConfigs(chars);
verifyLogicalOrUltraHighResCameraMetadata(name, device3_x, chars, deviceVersion,
cameraDeviceNames);
});
ASSERT_TRUE(ret.isOk());
//getPhysicalCameraCharacteristics will fail for publicly
//advertised camera IDs.
if (deviceVersion >= CAMERA_DEVICE_API_VERSION_3_5) {
auto castResult = device::V3_5::ICameraDevice::castFrom(device3_x);
ASSERT_TRUE(castResult.isOk());
::android::sp<::android::hardware::camera::device::V3_5::ICameraDevice>
device3_5 = castResult;
ASSERT_NE(device3_5, nullptr);
std::string version, cameraId;
ASSERT_TRUE(::matchDeviceName(name, mProviderType, &version, &cameraId));
Return<void> ret = device3_5->getPhysicalCameraCharacteristics(cameraId,
[&](auto status, const auto& chars) {
ASSERT_TRUE(Status::ILLEGAL_ARGUMENT == status);
ASSERT_EQ(0, chars.size());
});
ASSERT_TRUE(ret.isOk());
}
}
break;
case CAMERA_DEVICE_API_VERSION_1_0: {
//Not applicable
}
break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
}
break;
}
}
}
//In case it is supported verify that torch can be enabled.
//Check for corresponding toch callbacks as well.
TEST_P(CameraHidlTest, setTorchMode) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
bool torchControlSupported = false;
Return<void> ret;
ret = mProvider->isSetTorchModeSupported([&](auto status, bool support) {
ALOGI("isSetTorchModeSupported returns status:%d supported:%d", (int)status, support);
ASSERT_EQ(Status::OK, status);
torchControlSupported = support;
});
sp<TorchProviderCb> cb = new TorchProviderCb(this);
Return<Status> returnStatus = mProvider->setCallback(cb);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice> device3_x;
ALOGI("setTorchMode: Testing camera device %s", name.c_str());
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
mTorchStatus = TorchModeStatus::NOT_AVAILABLE;
returnStatus = device3_x->setTorchMode(TorchMode::ON);
ASSERT_TRUE(returnStatus.isOk());
if (!torchControlSupported) {
ASSERT_EQ(Status::METHOD_NOT_SUPPORTED, returnStatus);
} else {
ASSERT_TRUE(returnStatus == Status::OK ||
returnStatus == Status::OPERATION_NOT_SUPPORTED);
if (returnStatus == Status::OK) {
{
std::unique_lock<std::mutex> l(mTorchLock);
while (TorchModeStatus::NOT_AVAILABLE == mTorchStatus) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kTorchTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mTorchCond.wait_until(l, timeout));
}
ASSERT_EQ(TorchModeStatus::AVAILABLE_ON, mTorchStatus);
mTorchStatus = TorchModeStatus::NOT_AVAILABLE;
}
returnStatus = device3_x->setTorchMode(TorchMode::OFF);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
{
std::unique_lock<std::mutex> l(mTorchLock);
while (TorchModeStatus::NOT_AVAILABLE == mTorchStatus) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kTorchTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mTorchCond.wait_until(l, timeout));
}
ASSERT_EQ(TorchModeStatus::AVAILABLE_OFF, mTorchStatus);
}
}
}
}
break;
case CAMERA_DEVICE_API_VERSION_1_0: {
::android::sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
ALOGI("dumpState: Testing camera device %s", name.c_str());
ret = mProvider->getCameraDeviceInterface_V1_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V1_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device1 = device;
});
ASSERT_TRUE(ret.isOk());
mTorchStatus = TorchModeStatus::NOT_AVAILABLE;
returnStatus = device1->setTorchMode(TorchMode::ON);
ASSERT_TRUE(returnStatus.isOk());
if (!torchControlSupported) {
ASSERT_EQ(Status::METHOD_NOT_SUPPORTED, returnStatus);
} else {
ASSERT_TRUE(returnStatus == Status::OK ||
returnStatus == Status::OPERATION_NOT_SUPPORTED);
if (returnStatus == Status::OK) {
{
std::unique_lock<std::mutex> l(mTorchLock);
while (TorchModeStatus::NOT_AVAILABLE == mTorchStatus) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kTorchTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mTorchCond.wait_until(l,
timeout));
}
ASSERT_EQ(TorchModeStatus::AVAILABLE_ON, mTorchStatus);
mTorchStatus = TorchModeStatus::NOT_AVAILABLE;
}
returnStatus = device1->setTorchMode(TorchMode::OFF);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
{
std::unique_lock<std::mutex> l(mTorchLock);
while (TorchModeStatus::NOT_AVAILABLE == mTorchStatus) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kTorchTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mTorchCond.wait_until(l,
timeout));
}
ASSERT_EQ(TorchModeStatus::AVAILABLE_OFF, mTorchStatus);
}
}
}
ret = device1->close();
ASSERT_TRUE(ret.isOk());
}
break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
}
break;
}
}
returnStatus = mProvider->setCallback(nullptr);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
}
// Check dump functionality.
TEST_P(CameraHidlTest, dumpState) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
Return<void> ret;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
::android::sp<ICameraDevice> device3_x;
ALOGI("dumpState: Testing camera device %s", name.c_str());
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
native_handle_t* raw_handle = native_handle_create(1, 0);
raw_handle->data[0] = open(kDumpOutput, O_RDWR);
ASSERT_GE(raw_handle->data[0], 0);
hidl_handle handle = raw_handle;
ret = device3_x->dumpState(handle);
ASSERT_TRUE(ret.isOk());
close(raw_handle->data[0]);
native_handle_delete(raw_handle);
}
break;
case CAMERA_DEVICE_API_VERSION_1_0: {
::android::sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
ALOGI("dumpState: Testing camera device %s", name.c_str());
ret = mProvider->getCameraDeviceInterface_V1_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V1_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device1 = device;
});
ASSERT_TRUE(ret.isOk());
native_handle_t* raw_handle = native_handle_create(1, 0);
raw_handle->data[0] = open(kDumpOutput, O_RDWR);
ASSERT_GE(raw_handle->data[0], 0);
hidl_handle handle = raw_handle;
Return<Status> returnStatus = device1->dumpState(handle);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
close(raw_handle->data[0]);
native_handle_delete(raw_handle);
}
break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
}
break;
}
}
}
// Open, dumpStates, then close
TEST_P(CameraHidlTest, openClose) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
Return<void> ret;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice> device3_x;
ALOGI("openClose: Testing camera device %s", name.c_str());
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
sp<EmptyDeviceCb> cb = new EmptyDeviceCb;
sp<ICameraDeviceSession> session;
ret = device3_x->open(cb, [&](auto status, const auto& newSession) {
ALOGI("device::open returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(newSession, nullptr);
session = newSession;
});
ASSERT_TRUE(ret.isOk());
// Ensure that a device labeling itself as 3.3/3.4 can have its session interface
// cast the 3.3/3.4 interface, and that lower versions can't be cast to it.
sp<device::V3_3::ICameraDeviceSession> sessionV3_3;
sp<device::V3_4::ICameraDeviceSession> sessionV3_4;
sp<device::V3_5::ICameraDeviceSession> sessionV3_5;
sp<device::V3_6::ICameraDeviceSession> sessionV3_6;
sp<device::V3_7::ICameraDeviceSession> sessionV3_7;
castSession(session, deviceVersion, &sessionV3_3, &sessionV3_4, &sessionV3_5,
&sessionV3_6, &sessionV3_7);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_3_7) {
ASSERT_TRUE(sessionV3_7.get() != nullptr);
} else if (deviceVersion == CAMERA_DEVICE_API_VERSION_3_6) {
ASSERT_TRUE(sessionV3_6.get() != nullptr);
} else if (deviceVersion == CAMERA_DEVICE_API_VERSION_3_5) {
ASSERT_TRUE(sessionV3_5.get() != nullptr);
} else if (deviceVersion == CAMERA_DEVICE_API_VERSION_3_4) {
ASSERT_TRUE(sessionV3_4.get() != nullptr);
} else if (deviceVersion == CAMERA_DEVICE_API_VERSION_3_3) {
ASSERT_TRUE(sessionV3_3.get() != nullptr);
} else { // V3_2
ASSERT_TRUE(sessionV3_3.get() == nullptr);
ASSERT_TRUE(sessionV3_4.get() == nullptr);
ASSERT_TRUE(sessionV3_5.get() == nullptr);
}
native_handle_t* raw_handle = native_handle_create(1, 0);
raw_handle->data[0] = open(kDumpOutput, O_RDWR);
ASSERT_GE(raw_handle->data[0], 0);
hidl_handle handle = raw_handle;
ret = device3_x->dumpState(handle);
ASSERT_TRUE(ret.isOk());
close(raw_handle->data[0]);
native_handle_delete(raw_handle);
ret = session->close();
ASSERT_TRUE(ret.isOk());
// TODO: test all session API calls return INTERNAL_ERROR after close
// TODO: keep a wp copy here and verify session cannot be promoted out of this scope
}
break;
case CAMERA_DEVICE_API_VERSION_1_0: {
sp<::android::hardware::camera::device::V1_0::ICameraDevice> device1;
openCameraDevice(name, mProvider, &device1 /*out*/);
ASSERT_NE(nullptr, device1.get());
native_handle_t* raw_handle = native_handle_create(1, 0);
raw_handle->data[0] = open(kDumpOutput, O_RDWR);
ASSERT_GE(raw_handle->data[0], 0);
hidl_handle handle = raw_handle;
Return<Status> returnStatus = device1->dumpState(handle);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
close(raw_handle->data[0]);
native_handle_delete(raw_handle);
ret = device1->close();
ASSERT_TRUE(ret.isOk());
}
break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
}
break;
}
}
}
// Check whether all common default request settings can be sucessfully
// constructed.
TEST_P(CameraHidlTest, constructDefaultRequestSettings) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7:
case CAMERA_DEVICE_API_VERSION_3_6:
case CAMERA_DEVICE_API_VERSION_3_5:
case CAMERA_DEVICE_API_VERSION_3_4:
case CAMERA_DEVICE_API_VERSION_3_3:
case CAMERA_DEVICE_API_VERSION_3_2: {
::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice> device3_x;
Return<void> ret;
ALOGI("constructDefaultRequestSettings: Testing camera device %s", name.c_str());
ret = mProvider->getCameraDeviceInterface_V3_x(
name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
sp<EmptyDeviceCb> cb = new EmptyDeviceCb;
sp<ICameraDeviceSession> session;
ret = device3_x->open(cb, [&](auto status, const auto& newSession) {
ALOGI("device::open returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(newSession, nullptr);
session = newSession;
});
ASSERT_TRUE(ret.isOk());
for (uint32_t t = (uint32_t)RequestTemplate::PREVIEW;
t <= (uint32_t)RequestTemplate::MANUAL; t++) {
RequestTemplate reqTemplate = (RequestTemplate)t;
ret =
session->constructDefaultRequestSettings(
reqTemplate, [&](auto status, const auto& req) {
ALOGI("constructDefaultRequestSettings returns status:%d",
(int)status);
if (reqTemplate == RequestTemplate::ZERO_SHUTTER_LAG ||
reqTemplate == RequestTemplate::MANUAL) {
// optional templates
ASSERT_TRUE((status == Status::OK) ||
(status == Status::ILLEGAL_ARGUMENT));
} else {
ASSERT_EQ(Status::OK, status);
}
if (status == Status::OK) {
const camera_metadata_t* metadata =
(camera_metadata_t*) req.data();
size_t expectedSize = req.size();
int result = validate_camera_metadata_structure(
metadata, &expectedSize);
ASSERT_TRUE((result == 0) ||
(result == CAMERA_METADATA_VALIDATION_SHIFTED));
verifyRequestTemplate(metadata, reqTemplate);
} else {
ASSERT_EQ(0u, req.size());
}
});
ASSERT_TRUE(ret.isOk());
}
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
break;
case CAMERA_DEVICE_API_VERSION_1_0: {
//Not applicable
}
break;
default: {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
}
break;
}
}
}
// Verify that all supported stream formats and sizes can be configured
// successfully.
TEST_P(CameraHidlTest, configureStreamsAvailableOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputStreams;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<device::V3_2::ICameraDevice> cameraDevice;
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
openEmptyDeviceSession(name, mProvider,
&session /*out*/, &staticMeta /*out*/, &cameraDevice /*out*/);
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
castDevice(cameraDevice, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
outputStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMeta, outputStreams));
ASSERT_NE(0u, outputStreams.size());
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMeta, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
uint32_t streamConfigCounter = 0;
for (auto& it : outputStreams) {
V3_2::Stream stream3_2;
V3_2::DataspaceFlags dataspaceFlag = getDataspace(static_cast<PixelFormat>(it.format));
stream3_2 = {streamId,
StreamType::OUTPUT,
static_cast<uint32_t>(it.width),
static_cast<uint32_t>(it.height),
static_cast<PixelFormat>(it.format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
dataspaceFlag,
StreamRotation::ROTATION_0};
::android::hardware::hidl_vec<V3_2::Stream> streams3_2 = {stream3_2};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams3_2, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
bool expectStreamCombQuery = (isLogicalMultiCamera(staticMeta) == Status::OK);
verifyStreamCombination(cameraDevice3_7, config3_7, cameraDevice3_5, config3_4,
/*expectedStatus*/ true, expectStreamCombQuery);
}
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7,
[streamId](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_4.v3_3.v3_2.id, streamId);
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[streamId](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_3.v3_2.id, streamId);
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[streamId](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_3.v3_2.id, streamId);
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[streamId](Status s, device::V3_3::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_2.id, streamId);
});
} else {
ret = session->configureStreams(config3_2,
[streamId](Status s, HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].id, streamId);
});
}
ASSERT_TRUE(ret.isOk());
streamId++;
}
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Verify that mandatory concurrent streams and outputs are supported.
TEST_P(CameraHidlTest, configureConcurrentStreamsAvailableOutputs) {
struct CameraTestInfo {
camera_metadata_t* staticMeta = nullptr;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<device::V3_2::ICameraDevice> cameraDevice;
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
};
if (mProvider2_6 == nullptr) {
// This test is provider@2.6 specific
ALOGW("%s provider not 2_6, skipping", __func__);
return;
}
std::map<hidl_string, hidl_string> idToNameMap = getCameraDeviceIdToNameMap(mProvider2_6);
hidl_vec<hidl_vec<hidl_string>> concurrentDeviceCombinations =
getConcurrentDeviceCombinations(mProvider2_6);
std::vector<AvailableStream> outputStreams;
for (const auto& cameraDeviceIds : concurrentDeviceCombinations) {
std::vector<CameraIdAndStreamCombination> cameraIdsAndStreamCombinations;
std::vector<CameraTestInfo> cameraTestInfos;
size_t i = 0;
for (const auto& id : cameraDeviceIds) {
CameraTestInfo cti;
Return<void> ret;
auto it = idToNameMap.find(id);
ASSERT_TRUE(idToNameMap.end() != it);
hidl_string name = it->second;
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
openEmptyDeviceSession(name, mProvider2_6, &cti.session /*out*/,
&cti.staticMeta /*out*/, &cti.cameraDevice /*out*/);
castSession(cti.session, deviceVersion, &cti.session3_3, &cti.session3_4,
&cti.session3_5, &cti.session3_6, &cti.session3_7);
castDevice(cti.cameraDevice, deviceVersion, &cti.cameraDevice3_5, &cti.cameraDevice3_7);
outputStreams.clear();
ASSERT_EQ(Status::OK, getMandatoryConcurrentStreams(cti.staticMeta, &outputStreams));
ASSERT_NE(0u, outputStreams.size());
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(cti.staticMeta, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
::android::hardware::hidl_vec<V3_2::Stream> streams3_2(outputStreams.size());
size_t j = 0;
for (const auto& it : outputStreams) {
V3_2::Stream stream3_2;
V3_2::DataspaceFlags dataspaceFlag = getDataspace(
static_cast<PixelFormat>(it.format));
stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(it.width),
static_cast<uint32_t>(it.height),
static_cast<PixelFormat>(it.format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
dataspaceFlag,
StreamRotation::ROTATION_0};
streams3_2[j] = stream3_2;
j++;
}
// Add the created stream configs to cameraIdsAndStreamCombinations
createStreamConfiguration(streams3_2, StreamConfigurationMode::NORMAL_MODE,
&cti.config3_2, &cti.config3_4, &cti.config3_5,
&cti.config3_7, jpegBufferSize);
cti.config3_5.streamConfigCounter = outputStreams.size();
CameraIdAndStreamCombination cameraIdAndStreamCombination;
cameraIdAndStreamCombination.cameraId = id;
cameraIdAndStreamCombination.streamConfiguration = cti.config3_4;
cameraIdsAndStreamCombinations.push_back(cameraIdAndStreamCombination);
i++;
cameraTestInfos.push_back(cti);
}
// Now verify that concurrent streams are supported
auto cb = [](Status s, bool supported) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(supported, true);
};
auto ret = mProvider2_6->isConcurrentStreamCombinationSupported(
cameraIdsAndStreamCombinations, cb);
// Test the stream can actually be configured
for (const auto& cti : cameraTestInfos) {
if (cti.session3_5 != nullptr) {
bool expectStreamCombQuery = (isLogicalMultiCamera(cti.staticMeta) == Status::OK);
verifyStreamCombination(cti.cameraDevice3_7, cti.config3_7, cti.cameraDevice3_5,
cti.config3_4,
/*expectedStatus*/ true, expectStreamCombQuery);
}
if (cti.session3_7 != nullptr) {
ret = cti.session3_7->configureStreams_3_7(
cti.config3_7,
[&cti](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(cti.config3_7.streams.size(), halConfig.streams.size());
});
} else if (cti.session3_5 != nullptr) {
ret = cti.session3_5->configureStreams_3_5(
cti.config3_5,
[&cti](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(cti.config3_5.v3_4.streams.size(), halConfig.streams.size());
});
} else if (cti.session3_4 != nullptr) {
ret = cti.session3_4->configureStreams_3_4(
cti.config3_4,
[&cti](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(cti.config3_4.streams.size(), halConfig.streams.size());
});
} else if (cti.session3_3 != nullptr) {
ret = cti.session3_3->configureStreams_3_3(
cti.config3_2,
[&cti](Status s, device::V3_3::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(cti.config3_2.streams.size(), halConfig.streams.size());
});
} else {
ret = cti.session->configureStreams(
cti.config3_2, [&cti](Status s, HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(cti.config3_2.streams.size(), halConfig.streams.size());
});
}
ASSERT_TRUE(ret.isOk());
}
for (const auto& cti : cameraTestInfos) {
free_camera_metadata(cti.staticMeta);
ret = cti.session->close();
ASSERT_TRUE(ret.isOk());
}
}
}
// Check for correct handling of invalid/incorrect configuration parameters.
TEST_P(CameraHidlTest, configureStreamsInvalidOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputStreams;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<device::V3_2::ICameraDevice> cameraDevice;
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMeta /*out*/,
&cameraDevice /*out*/);
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
castDevice(cameraDevice, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
outputStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMeta, outputStreams));
ASSERT_NE(0u, outputStreams.size());
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMeta, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
V3_2::Stream stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(0),
static_cast<uint32_t>(0),
static_cast<PixelFormat>(outputStreams[0].format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
uint32_t streamConfigCounter = 0;
::android::hardware::hidl_vec<V3_2::Stream> streams = {stream3_2};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
verifyStreamCombination(cameraDevice3_7, config3_7, cameraDevice3_5, config3_4,
/*expectedStatus*/ false, /*expectStreamCombQuery*/ false);
}
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7, [](Status s, device::V3_6::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
}
ASSERT_TRUE(ret.isOk());
stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(UINT32_MAX),
static_cast<uint32_t>(UINT32_MAX),
static_cast<PixelFormat>(outputStreams[0].format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
streams[0] = stream3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5, [](Status s,
device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if(session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4, [](Status s,
device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if(session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2, [](Status s,
device::V3_3::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else {
ret = session->configureStreams(config3_2, [](Status s,
HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
}
ASSERT_TRUE(ret.isOk());
for (auto& it : outputStreams) {
stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(it.width),
static_cast<uint32_t>(it.height),
static_cast<PixelFormat>(UINT32_MAX),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
streams[0] = stream3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if(session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if(session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
}
ASSERT_TRUE(ret.isOk());
stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(it.width),
static_cast<uint32_t>(it.height),
static_cast<PixelFormat>(it.format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
static_cast<StreamRotation>(UINT32_MAX)};
streams[0] = stream3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if(session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if(session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
}
ASSERT_TRUE(ret.isOk());
}
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Check whether all supported ZSL output stream combinations can be
// configured successfully.
TEST_P(CameraHidlTest, configureStreamsZSLInputOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> inputStreams;
std::vector<AvailableZSLInputOutput> inputOutputMap;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<device::V3_2::ICameraDevice> cameraDevice;
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMeta /*out*/,
&cameraDevice /*out*/);
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
castDevice(cameraDevice, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
Status rc = isZSLModeAvailable(staticMeta);
if (Status::METHOD_NOT_SUPPORTED == rc) {
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
ASSERT_EQ(Status::OK, rc);
inputStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMeta, inputStreams));
ASSERT_NE(0u, inputStreams.size());
inputOutputMap.clear();
ASSERT_EQ(Status::OK, getZSLInputOutputMap(staticMeta, inputOutputMap));
ASSERT_NE(0u, inputOutputMap.size());
bool supportMonoY8 = false;
if (Status::OK == isMonochromeCamera(staticMeta)) {
for (auto& it : inputStreams) {
if (it.format == static_cast<uint32_t>(PixelFormat::Y8)) {
supportMonoY8 = true;
break;
}
}
}
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMeta, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
bool hasPrivToY8 = false, hasY8ToY8 = false, hasY8ToBlob = false;
uint32_t streamConfigCounter = 0;
for (auto& inputIter : inputOutputMap) {
AvailableStream input;
ASSERT_EQ(Status::OK, findLargestSize(inputStreams, inputIter.inputFormat,
input));
ASSERT_NE(0u, inputStreams.size());
if (inputIter.inputFormat == static_cast<uint32_t>(PixelFormat::IMPLEMENTATION_DEFINED)
&& inputIter.outputFormat == static_cast<uint32_t>(PixelFormat::Y8)) {
hasPrivToY8 = true;
} else if (inputIter.inputFormat == static_cast<uint32_t>(PixelFormat::Y8)) {
if (inputIter.outputFormat == static_cast<uint32_t>(PixelFormat::BLOB)) {
hasY8ToBlob = true;
} else if (inputIter.outputFormat == static_cast<uint32_t>(PixelFormat::Y8)) {
hasY8ToY8 = true;
}
}
AvailableStream outputThreshold = {INT32_MAX, INT32_MAX,
inputIter.outputFormat};
std::vector<AvailableStream> outputStreams;
ASSERT_EQ(Status::OK,
getAvailableOutputStreams(staticMeta, outputStreams,
&outputThreshold));
for (auto& outputIter : outputStreams) {
V3_2::DataspaceFlags outputDataSpace =
getDataspace(static_cast<PixelFormat>(outputIter.format));
V3_2::Stream zslStream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(input.width),
static_cast<uint32_t>(input.height),
static_cast<PixelFormat>(input.format),
GRALLOC_USAGE_HW_CAMERA_ZSL,
0,
StreamRotation::ROTATION_0};
V3_2::Stream inputStream = {streamId++,
StreamType::INPUT,
static_cast<uint32_t>(input.width),
static_cast<uint32_t>(input.height),
static_cast<PixelFormat>(input.format),
0,
0,
StreamRotation::ROTATION_0};
V3_2::Stream outputStream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(outputIter.width),
static_cast<uint32_t>(outputIter.height),
static_cast<PixelFormat>(outputIter.format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
outputDataSpace,
StreamRotation::ROTATION_0};
::android::hardware::hidl_vec<V3_2::Stream> streams = {inputStream, zslStream,
outputStream};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
verifyStreamCombination(cameraDevice3_7, config3_7, cameraDevice3_5, config3_4,
/*expectedStatus*/ true,
/*expectStreamCombQuery*/ false);
}
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7,
[](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(3u, halConfig.streams.size());
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(3u, halConfig.streams.size());
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(3u, halConfig.streams.size());
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(3u, halConfig.streams.size());
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(3u, halConfig.streams.size());
});
}
ASSERT_TRUE(ret.isOk());
}
}
if (supportMonoY8) {
if (Status::OK == isZSLModeAvailable(staticMeta, PRIV_REPROCESS)) {
ASSERT_TRUE(hasPrivToY8);
}
if (Status::OK == isZSLModeAvailable(staticMeta, YUV_REPROCESS)) {
ASSERT_TRUE(hasY8ToY8);
ASSERT_TRUE(hasY8ToBlob);
}
}
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Check whether session parameters are supported. If Hal support for them
// exist, then try to configure a preview stream using them.
TEST_P(CameraHidlTest, configureStreamsWithSessionParameters) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputPreviewStreams;
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
} else if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_4) {
continue;
}
camera_metadata_t* staticMetaBuffer;
Return<void> ret;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMetaBuffer /*out*/);
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_3_4) {
ASSERT_NE(session3_4, nullptr);
} else {
ASSERT_NE(session3_5, nullptr);
}
std::unordered_set<int32_t> availableSessionKeys;
auto rc = getSupportedKeys(staticMetaBuffer, ANDROID_REQUEST_AVAILABLE_SESSION_KEYS,
&availableSessionKeys);
ASSERT_TRUE(Status::OK == rc);
if (availableSessionKeys.empty()) {
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
android::hardware::camera::common::V1_0::helper::CameraMetadata previewRequestSettings;
android::hardware::camera::common::V1_0::helper::CameraMetadata sessionParams,
modifiedSessionParams;
constructFilteredSettings(session, availableSessionKeys, RequestTemplate::PREVIEW,
&previewRequestSettings, &sessionParams);
if (sessionParams.isEmpty()) {
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
outputPreviewStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMetaBuffer, outputPreviewStreams,
&previewThreshold));
ASSERT_NE(0u, outputPreviewStreams.size());
V3_4::Stream previewStream;
previewStream.v3_2 = {0,
StreamType::OUTPUT,
static_cast<uint32_t>(outputPreviewStreams[0].width),
static_cast<uint32_t>(outputPreviewStreams[0].height),
static_cast<PixelFormat>(outputPreviewStreams[0].format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
previewStream.bufferSize = 0;
::android::hardware::hidl_vec<V3_4::Stream> streams = {previewStream};
::android::hardware::camera::device::V3_4::StreamConfiguration config;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
config.streams = streams;
config.operationMode = StreamConfigurationMode::NORMAL_MODE;
modifiedSessionParams = sessionParams;
auto sessionParamsBuffer = sessionParams.release();
config.sessionParams.setToExternal(reinterpret_cast<uint8_t *> (sessionParamsBuffer),
get_camera_metadata_size(sessionParamsBuffer));
config3_5.v3_4 = config;
config3_5.streamConfigCounter = 0;
config3_7.streams = {{previewStream, -1, {ANDROID_SENSOR_PIXEL_MODE_DEFAULT}}};
config3_7.operationMode = config.operationMode;
config3_7.sessionParams.setToExternal(reinterpret_cast<uint8_t*>(sessionParamsBuffer),
get_camera_metadata_size(sessionParamsBuffer));
config3_7.streamConfigCounter = 0;
config3_7.multiResolutionInputImage = false;
if (session3_5 != nullptr) {
bool newSessionParamsAvailable = false;
for (const auto& it : availableSessionKeys) {
if (modifiedSessionParams.exists(it)) {
modifiedSessionParams.erase(it);
newSessionParamsAvailable = true;
break;
}
}
if (newSessionParamsAvailable) {
auto modifiedSessionParamsBuffer = modifiedSessionParams.release();
verifySessionReconfigurationQuery(session3_5, sessionParamsBuffer,
modifiedSessionParamsBuffer);
modifiedSessionParams.acquire(modifiedSessionParamsBuffer);
}
}
if (session3_7 != nullptr) {
ret = session3_7->configureStreams_3_7(
config3_7, [](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
});
} else if (session3_5 != nullptr) {
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
});
} else {
ret = session3_4->configureStreams_3_4(config,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
});
}
sessionParams.acquire(sessionParamsBuffer);
ASSERT_TRUE(ret.isOk());
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Verify that all supported preview + still capture stream combinations
// can be configured successfully.
TEST_P(CameraHidlTest, configureStreamsPreviewStillOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputBlobStreams;
std::vector<AvailableStream> outputPreviewStreams;
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
AvailableStream blobThreshold = {INT32_MAX, INT32_MAX,
static_cast<int32_t>(PixelFormat::BLOB)};
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<device::V3_2::ICameraDevice> cameraDevice;
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMeta /*out*/,
&cameraDevice /*out*/);
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
castDevice(cameraDevice, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
// Check if camera support depth only
if (isDepthOnly(staticMeta)) {
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
outputBlobStreams.clear();
ASSERT_EQ(Status::OK,
getAvailableOutputStreams(staticMeta, outputBlobStreams,
&blobThreshold));
ASSERT_NE(0u, outputBlobStreams.size());
outputPreviewStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMeta, outputPreviewStreams,
&previewThreshold));
ASSERT_NE(0u, outputPreviewStreams.size());
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMeta, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
uint32_t streamConfigCounter = 0;
for (auto& blobIter : outputBlobStreams) {
for (auto& previewIter : outputPreviewStreams) {
V3_2::Stream previewStream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(previewIter.width),
static_cast<uint32_t>(previewIter.height),
static_cast<PixelFormat>(previewIter.format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
V3_2::Stream blobStream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(blobIter.width),
static_cast<uint32_t>(blobIter.height),
static_cast<PixelFormat>(blobIter.format),
GRALLOC1_CONSUMER_USAGE_CPU_READ,
static_cast<V3_2::DataspaceFlags>(Dataspace::V0_JFIF),
StreamRotation::ROTATION_0};
::android::hardware::hidl_vec<V3_2::Stream> streams = {previewStream,
blobStream};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
verifyStreamCombination(cameraDevice3_7, config3_7, cameraDevice3_5, config3_4,
/*expectedStatus*/ true,
/*expectStreamCombQuery*/ false);
}
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7,
[](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
}
ASSERT_TRUE(ret.isOk());
}
}
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// In case constrained mode is supported, test whether it can be
// configured. Additionally check for common invalid inputs when
// using this mode.
TEST_P(CameraHidlTest, configureStreamsConstrainedOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<device::V3_2::ICameraDevice> cameraDevice;
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMeta /*out*/,
&cameraDevice /*out*/);
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
castDevice(cameraDevice, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
Status rc = isConstrainedModeAvailable(staticMeta);
if (Status::METHOD_NOT_SUPPORTED == rc) {
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
ASSERT_EQ(Status::OK, rc);
AvailableStream hfrStream;
rc = pickConstrainedModeSize(staticMeta, hfrStream);
ASSERT_EQ(Status::OK, rc);
// Check that HAL does not advertise multiple preview rates
// for the same recording rate and size.
camera_metadata_ro_entry entry;
std::unordered_map<RecordingRateSizePair, int32_t, RecordingRateSizePairHasher> fpsRangeMap;
auto retCode = find_camera_metadata_ro_entry(staticMeta,
ANDROID_CONTROL_AVAILABLE_HIGH_SPEED_VIDEO_CONFIGURATIONS, &entry);
ASSERT_EQ(retCode, 0);
ASSERT_GT(entry.count, 0);
for (size_t i = 0; i < entry.count; i+=5) {
RecordingRateSizePair recordingRateSizePair;
recordingRateSizePair.width = entry.data.i32[i];
recordingRateSizePair.height = entry.data.i32[i+1];
int32_t previewFps = entry.data.i32[i+2];
int32_t recordingFps = entry.data.i32[i+3];
recordingRateSizePair.recordingRate = recordingFps;
if (recordingFps != previewFps) {
auto it = fpsRangeMap.find(recordingRateSizePair);
if (it == fpsRangeMap.end()) {
fpsRangeMap.insert(std::make_pair(recordingRateSizePair,previewFps));
ALOGV("Added RecordingRateSizePair:%d , %d, %d PreviewRate: %d",
recordingFps, recordingRateSizePair.width, recordingRateSizePair.height,
previewFps);
} else {
ASSERT_EQ(previewFps, it->second);
}
}
}
int32_t streamId = 0;
uint32_t streamConfigCounter = 0;
V3_2::Stream stream = {streamId,
StreamType::OUTPUT,
static_cast<uint32_t>(hfrStream.width),
static_cast<uint32_t>(hfrStream.height),
static_cast<PixelFormat>(hfrStream.format),
GRALLOC1_CONSUMER_USAGE_VIDEO_ENCODER,
0,
StreamRotation::ROTATION_0};
::android::hardware::hidl_vec<V3_2::Stream> streams = {stream};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams, StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE,
&config3_2, &config3_4, &config3_5, &config3_7);
if (session3_5 != nullptr) {
verifyStreamCombination(cameraDevice3_7, config3_7, cameraDevice3_5, config3_4,
/*expectedStatus*/ true, /*expectStreamCombQuery*/ false);
}
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7,
[streamId](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_4.v3_3.v3_2.id, streamId);
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[streamId](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_3.v3_2.id, streamId);
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[streamId](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_3.v3_2.id, streamId);
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[streamId](Status s, device::V3_3::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].v3_2.id, streamId);
});
} else {
ret = session->configureStreams(config3_2,
[streamId](Status s, HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
ASSERT_EQ(halConfig.streams[0].id, streamId);
});
}
ASSERT_TRUE(ret.isOk());
stream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(0),
static_cast<uint32_t>(0),
static_cast<PixelFormat>(hfrStream.format),
GRALLOC1_CONSUMER_USAGE_VIDEO_ENCODER,
0,
StreamRotation::ROTATION_0};
streams[0] = stream;
createStreamConfiguration(streams, StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE,
&config3_2, &config3_4, &config3_5, &config3_7);
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7, [](Status s, device::V3_6::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration) {
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) ||
(Status::INTERNAL_ERROR == s));
});
}
ASSERT_TRUE(ret.isOk());
stream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(UINT32_MAX),
static_cast<uint32_t>(UINT32_MAX),
static_cast<PixelFormat>(hfrStream.format),
GRALLOC1_CONSUMER_USAGE_VIDEO_ENCODER,
0,
StreamRotation::ROTATION_0};
streams[0] = stream;
createStreamConfiguration(streams, StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE,
&config3_2, &config3_4, &config3_5, &config3_7);
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7, [](Status s, device::V3_6::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
}
ASSERT_TRUE(ret.isOk());
stream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(hfrStream.width),
static_cast<uint32_t>(hfrStream.height),
static_cast<PixelFormat>(UINT32_MAX),
GRALLOC1_CONSUMER_USAGE_VIDEO_ENCODER,
0,
StreamRotation::ROTATION_0};
streams[0] = stream;
createStreamConfiguration(streams, StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE,
&config3_2, &config3_4, &config3_5, &config3_7);
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7, [](Status s, device::V3_6::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
});
}
ASSERT_TRUE(ret.isOk());
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Verify that all supported video + snapshot stream combinations can
// be configured successfully.
TEST_P(CameraHidlTest, configureStreamsVideoStillOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputBlobStreams;
std::vector<AvailableStream> outputVideoStreams;
AvailableStream videoThreshold = {kMaxVideoWidth, kMaxVideoHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
AvailableStream blobThreshold = {kMaxVideoWidth, kMaxVideoHeight,
static_cast<int32_t>(PixelFormat::BLOB)};
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<device::V3_2::ICameraDevice> cameraDevice;
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMeta /*out*/,
&cameraDevice /*out*/);
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
castDevice(cameraDevice, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
// Check if camera support depth only
if (isDepthOnly(staticMeta)) {
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
outputBlobStreams.clear();
ASSERT_EQ(Status::OK,
getAvailableOutputStreams(staticMeta, outputBlobStreams,
&blobThreshold));
ASSERT_NE(0u, outputBlobStreams.size());
outputVideoStreams.clear();
ASSERT_EQ(Status::OK,
getAvailableOutputStreams(staticMeta, outputVideoStreams,
&videoThreshold));
ASSERT_NE(0u, outputVideoStreams.size());
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMeta, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
uint32_t streamConfigCounter = 0;
for (auto& blobIter : outputBlobStreams) {
for (auto& videoIter : outputVideoStreams) {
V3_2::Stream videoStream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(videoIter.width),
static_cast<uint32_t>(videoIter.height),
static_cast<PixelFormat>(videoIter.format),
GRALLOC1_CONSUMER_USAGE_VIDEO_ENCODER,
0,
StreamRotation::ROTATION_0};
V3_2::Stream blobStream = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(blobIter.width),
static_cast<uint32_t>(blobIter.height),
static_cast<PixelFormat>(blobIter.format),
GRALLOC1_CONSUMER_USAGE_CPU_READ,
static_cast<V3_2::DataspaceFlags>(Dataspace::V0_JFIF),
StreamRotation::ROTATION_0};
::android::hardware::hidl_vec<V3_2::Stream> streams = {videoStream, blobStream};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_5 != nullptr) {
verifyStreamCombination(cameraDevice3_7, config3_7, cameraDevice3_5, config3_4,
/*expectedStatus*/ true,
/*expectStreamCombQuery*/ false);
}
if (session3_7 != nullptr) {
config3_7.streamConfigCounter = streamConfigCounter++;
ret = session3_7->configureStreams_3_7(
config3_7,
[](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else if (session3_5 != nullptr) {
config3_5.streamConfigCounter = streamConfigCounter++;
ret = session3_5->configureStreams_3_5(config3_5,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else if (session3_4 != nullptr) {
ret = session3_4->configureStreams_3_4(config3_4,
[](Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[](Status s, device::V3_3::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
} else {
ret = session->configureStreams(config3_2,
[](Status s, HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(2u, halConfig.streams.size());
});
}
ASSERT_TRUE(ret.isOk());
}
}
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Generate and verify a camera capture request
TEST_P(CameraHidlTest, processCaptureRequestPreview) {
processCaptureRequestInternal(GRALLOC1_CONSUMER_USAGE_HWCOMPOSER, RequestTemplate::PREVIEW,
false /*secureOnlyCameras*/);
}
// Generate and verify a secure camera capture request
TEST_P(CameraHidlTest, processSecureCaptureRequest) {
processCaptureRequestInternal(GRALLOC1_PRODUCER_USAGE_PROTECTED, RequestTemplate::STILL_CAPTURE,
true /*secureOnlyCameras*/);
}
void CameraHidlTest::processCaptureRequestInternal(uint64_t bufferUsage,
RequestTemplate reqTemplate,
bool useSecureOnlyCameras) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider, useSecureOnlyCameras);
AvailableStream streamThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
uint64_t bufferId = 1;
uint32_t frameNumber = 1;
::android::hardware::hidl_vec<uint8_t> settings;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
V3_2::Stream testStream;
HalStreamConfiguration halStreamConfig;
sp<ICameraDeviceSession> session;
sp<DeviceCb> cb;
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
configureSingleStream(name, deviceVersion, mProvider, &streamThreshold, bufferUsage,
reqTemplate, &session /*out*/, &testStream /*out*/,
&halStreamConfig /*out*/, &supportsPartialResults /*out*/,
&partialResultCount /*out*/, &useHalBufManager /*out*/, &cb /*out*/);
std::shared_ptr<ResultMetadataQueue> resultQueue;
auto resultQueueRet =
session->getCaptureResultMetadataQueue(
[&resultQueue](const auto& descriptor) {
resultQueue = std::make_shared<ResultMetadataQueue>(
descriptor);
if (!resultQueue->isValid() ||
resultQueue->availableToWrite() <= 0) {
ALOGE("%s: HAL returns empty result metadata fmq,"
" not use it", __func__);
resultQueue = nullptr;
// Don't use the queue onwards.
}
});
ASSERT_TRUE(resultQueueRet.isOk());
InFlightRequest inflightReq = {1, false, supportsPartialResults,
partialResultCount, resultQueue};
Return<void> ret;
ret = session->constructDefaultRequestSettings(reqTemplate,
[&](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
settings = req;
});
ASSERT_TRUE(ret.isOk());
overrideRotateAndCrop(&settings);
hidl_handle buffer_handle;
StreamBuffer outputBuffer;
if (useHalBufManager) {
outputBuffer = {halStreamConfig.streams[0].id,
/*bufferId*/ 0,
buffer_handle,
BufferStatus::OK,
nullptr,
nullptr};
} else {
allocateGraphicBuffer(testStream.width, testStream.height,
/* We don't look at halStreamConfig.streams[0].consumerUsage
* since that is 0 for output streams
*/
android_convertGralloc1To0Usage(
halStreamConfig.streams[0].producerUsage, bufferUsage),
halStreamConfig.streams[0].overrideFormat, &buffer_handle);
outputBuffer = {halStreamConfig.streams[0].id,
bufferId,
buffer_handle,
BufferStatus::OK,
nullptr,
nullptr};
}
::android::hardware::hidl_vec<StreamBuffer> outputBuffers = {outputBuffer};
StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr,
nullptr};
CaptureRequest request = {frameNumber, 0 /* fmqSettingsSize */, settings,
emptyInputBuffer, outputBuffers};
{
std::unique_lock<std::mutex> l(mLock);
mInflightMap.clear();
mInflightMap.add(frameNumber, &inflightReq);
}
Status status = Status::INTERNAL_ERROR;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
Return<void> returnStatus = session->processCaptureRequest(
{request}, cachesToRemove, [&status, &numRequestProcessed](auto s,
uint32_t n) {
status = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, status);
ASSERT_EQ(numRequestProcessed, 1u);
{
std::unique_lock<std::mutex> l(mLock);
while (!inflightReq.errorCodeValid &&
((0 < inflightReq.numBuffersLeft) ||
(!inflightReq.haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout,
mResultCondition.wait_until(l, timeout));
}
ASSERT_FALSE(inflightReq.errorCodeValid);
ASSERT_NE(inflightReq.resultOutputBuffers.size(), 0u);
ASSERT_EQ(testStream.id, inflightReq.resultOutputBuffers[0].streamId);
request.frameNumber++;
// Empty settings should be supported after the first call
// for repeating requests.
request.settings.setToExternal(nullptr, 0, true);
// The buffer has been registered to HAL by bufferId, so per
// API contract we should send a null handle for this buffer
request.outputBuffers[0].buffer = nullptr;
mInflightMap.clear();
inflightReq = {1, false, supportsPartialResults, partialResultCount,
resultQueue};
mInflightMap.add(request.frameNumber, &inflightReq);
}
returnStatus = session->processCaptureRequest(
{request}, cachesToRemove, [&status, &numRequestProcessed](auto s,
uint32_t n) {
status = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, status);
ASSERT_EQ(numRequestProcessed, 1u);
{
std::unique_lock<std::mutex> l(mLock);
while (!inflightReq.errorCodeValid &&
((0 < inflightReq.numBuffersLeft) ||
(!inflightReq.haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout,
mResultCondition.wait_until(l, timeout));
}
ASSERT_FALSE(inflightReq.errorCodeValid);
ASSERT_NE(inflightReq.resultOutputBuffers.size(), 0u);
ASSERT_EQ(testStream.id, inflightReq.resultOutputBuffers[0].streamId);
}
if (useHalBufManager) {
verifyBuffersReturned(session, deviceVersion, testStream.id, cb);
}
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Generate and verify a multi-camera capture request
TEST_P(CameraHidlTest, processMultiCaptureRequestPreview) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::YCBCR_420_888)};
uint64_t bufferId = 1;
uint32_t frameNumber = 1;
::android::hardware::hidl_vec<uint8_t> settings;
::android::hardware::hidl_vec<uint8_t> emptySettings;
hidl_string invalidPhysicalId = "-1";
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_5) {
continue;
}
std::string version, deviceId;
ASSERT_TRUE(::matchDeviceName(name, mProviderType, &version, &deviceId));
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMeta /*out*/);
Status rc = isLogicalMultiCamera(staticMeta);
if (Status::METHOD_NOT_SUPPORTED == rc) {
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
std::unordered_set<std::string> physicalIds;
rc = getPhysicalCameraIds(staticMeta, &physicalIds);
ASSERT_TRUE(Status::OK == rc);
ASSERT_TRUE(physicalIds.size() > 1);
std::unordered_set<int32_t> physicalRequestKeyIDs;
rc = getSupportedKeys(staticMeta,
ANDROID_REQUEST_AVAILABLE_PHYSICAL_CAMERA_REQUEST_KEYS, &physicalRequestKeyIDs);
ASSERT_TRUE(Status::OK == rc);
if (physicalRequestKeyIDs.empty()) {
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
// The logical camera doesn't support any individual physical requests.
continue;
}
android::hardware::camera::common::V1_0::helper::CameraMetadata defaultPreviewSettings;
android::hardware::camera::common::V1_0::helper::CameraMetadata filteredSettings;
constructFilteredSettings(session, physicalRequestKeyIDs, RequestTemplate::PREVIEW,
&defaultPreviewSettings, &filteredSettings);
if (filteredSettings.isEmpty()) {
// No physical device settings in default request.
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
const camera_metadata_t *settingsBuffer = defaultPreviewSettings.getAndLock();
settings.setToExternal(
reinterpret_cast<uint8_t *> (const_cast<camera_metadata_t *> (settingsBuffer)),
get_camera_metadata_size(settingsBuffer));
overrideRotateAndCrop(&settings);
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
// Leave only 2 physical devices in the id set.
auto it = physicalIds.begin();
std::string physicalDeviceId = *it; it++;
physicalIds.erase(++it, physicalIds.end());
ASSERT_EQ(physicalIds.size(), 2u);
V3_4::HalStreamConfiguration halStreamConfig;
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
V3_2::Stream previewStream;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<DeviceCb> cb;
configurePreviewStreams3_4(name, deviceVersion, mProvider, &previewThreshold, physicalIds,
&session3_4, &session3_5, &previewStream, &halStreamConfig /*out*/,
&supportsPartialResults /*out*/, &partialResultCount /*out*/,
&useHalBufManager /*out*/, &cb /*out*/, 0 /*streamConfigCounter*/,
true /*allowUnsupport*/);
if (session3_5 == nullptr) {
ret = session3_4->close();
ASSERT_TRUE(ret.isOk());
continue;
}
std::shared_ptr<ResultMetadataQueue> resultQueue;
auto resultQueueRet =
session3_4->getCaptureResultMetadataQueue(
[&resultQueue](const auto& descriptor) {
resultQueue = std::make_shared<ResultMetadataQueue>(
descriptor);
if (!resultQueue->isValid() ||
resultQueue->availableToWrite() <= 0) {
ALOGE("%s: HAL returns empty result metadata fmq,"
" not use it", __func__);
resultQueue = nullptr;
// Don't use the queue onwards.
}
});
ASSERT_TRUE(resultQueueRet.isOk());
InFlightRequest inflightReq = {static_cast<ssize_t> (halStreamConfig.streams.size()), false,
supportsPartialResults, partialResultCount, physicalIds, resultQueue};
std::vector<hidl_handle> graphicBuffers;
graphicBuffers.reserve(halStreamConfig.streams.size());
::android::hardware::hidl_vec<StreamBuffer> outputBuffers;
outputBuffers.resize(halStreamConfig.streams.size());
size_t k = 0;
for (const auto& halStream : halStreamConfig.streams) {
hidl_handle buffer_handle;
if (useHalBufManager) {
outputBuffers[k] = {halStream.v3_3.v3_2.id, /*bufferId*/0, buffer_handle,
BufferStatus::OK, nullptr, nullptr};
} else {
allocateGraphicBuffer(previewStream.width, previewStream.height,
android_convertGralloc1To0Usage(halStream.v3_3.v3_2.producerUsage,
halStream.v3_3.v3_2.consumerUsage),
halStream.v3_3.v3_2.overrideFormat, &buffer_handle);
graphicBuffers.push_back(buffer_handle);
outputBuffers[k] = {halStream.v3_3.v3_2.id, bufferId, buffer_handle,
BufferStatus::OK, nullptr, nullptr};
bufferId++;
}
k++;
}
hidl_vec<V3_4::PhysicalCameraSetting> camSettings(1);
const camera_metadata_t *filteredSettingsBuffer = filteredSettings.getAndLock();
camSettings[0].settings.setToExternal(
reinterpret_cast<uint8_t *> (const_cast<camera_metadata_t *> (
filteredSettingsBuffer)),
get_camera_metadata_size(filteredSettingsBuffer));
overrideRotateAndCrop(&camSettings[0].settings);
camSettings[0].fmqSettingsSize = 0;
camSettings[0].physicalCameraId = physicalDeviceId;
StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr, nullptr};
V3_4::CaptureRequest request = {{frameNumber, 0 /* fmqSettingsSize */, settings,
emptyInputBuffer, outputBuffers}, camSettings};
{
std::unique_lock<std::mutex> l(mLock);
mInflightMap.clear();
mInflightMap.add(frameNumber, &inflightReq);
}
Status stat = Status::INTERNAL_ERROR;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
Return<void> returnStatus = session3_4->processCaptureRequest_3_4(
{request}, cachesToRemove, [&stat, &numRequestProcessed](auto s, uint32_t n) {
stat = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, stat);
ASSERT_EQ(numRequestProcessed, 1u);
{
std::unique_lock<std::mutex> l(mLock);
while (!inflightReq.errorCodeValid &&
((0 < inflightReq.numBuffersLeft) ||
(!inflightReq.haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout,
mResultCondition.wait_until(l, timeout));
}
ASSERT_FALSE(inflightReq.errorCodeValid);
ASSERT_NE(inflightReq.resultOutputBuffers.size(), 0u);
request.v3_2.frameNumber++;
// Empty settings should be supported after the first call
// for repeating requests.
request.v3_2.settings.setToExternal(nullptr, 0, true);
request.physicalCameraSettings[0].settings.setToExternal(nullptr, 0, true);
// The buffer has been registered to HAL by bufferId, so per
// API contract we should send a null handle for this buffer
request.v3_2.outputBuffers[0].buffer = nullptr;
mInflightMap.clear();
inflightReq = {static_cast<ssize_t> (physicalIds.size()), false,
supportsPartialResults, partialResultCount, physicalIds, resultQueue};
mInflightMap.add(request.v3_2.frameNumber, &inflightReq);
}
returnStatus = session3_4->processCaptureRequest_3_4(
{request}, cachesToRemove, [&stat, &numRequestProcessed](auto s, uint32_t n) {
stat = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, stat);
ASSERT_EQ(numRequestProcessed, 1u);
{
std::unique_lock<std::mutex> l(mLock);
while (!inflightReq.errorCodeValid &&
((0 < inflightReq.numBuffersLeft) ||
(!inflightReq.haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout,
mResultCondition.wait_until(l, timeout));
}
ASSERT_FALSE(inflightReq.errorCodeValid);
ASSERT_NE(inflightReq.resultOutputBuffers.size(), 0u);
}
// Invalid physical camera id should fail process requests
frameNumber++;
camSettings[0].physicalCameraId = invalidPhysicalId;
camSettings[0].settings = settings;
request = {{frameNumber, 0 /* fmqSettingsSize */, settings,
emptyInputBuffer, outputBuffers}, camSettings};
returnStatus = session3_4->processCaptureRequest_3_4(
{request}, cachesToRemove, [&stat, &numRequestProcessed](auto s, uint32_t n) {
stat = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, stat);
defaultPreviewSettings.unlock(settingsBuffer);
filteredSettings.unlock(filteredSettingsBuffer);
if (useHalBufManager) {
hidl_vec<int32_t> streamIds(halStreamConfig.streams.size());
for (size_t i = 0; i < streamIds.size(); i++) {
streamIds[i] = halStreamConfig.streams[i].v3_3.v3_2.id;
}
verifyBuffersReturned(session3_4, streamIds, cb);
}
ret = session3_4->close();
ASSERT_TRUE(ret.isOk());
}
}
// Generate and verify an ultra high resolution capture request
TEST_P(CameraHidlTest, processUltraHighResolutionRequest) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
uint64_t bufferId = 1;
uint32_t frameNumber = 1;
::android::hardware::hidl_vec<uint8_t> settings;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_7) {
continue;
}
std::string version, deviceId;
ASSERT_TRUE(::matchDeviceName(name, mProviderType, &version, &deviceId));
camera_metadata_t* staticMeta;
Return<void> ret;
sp<ICameraDeviceSession> session;
openEmptyDeviceSession(name, mProvider, &session, &staticMeta);
if (!isUltraHighResolution(staticMeta)) {
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
android::hardware::camera::common::V1_0::helper::CameraMetadata defaultSettings;
ret = session->constructDefaultRequestSettings(
RequestTemplate::STILL_CAPTURE,
[&defaultSettings](auto status, const auto& req) mutable {
ASSERT_EQ(Status::OK, status);
const camera_metadata_t* metadata =
reinterpret_cast<const camera_metadata_t*>(req.data());
size_t expectedSize = req.size();
int result = validate_camera_metadata_structure(metadata, &expectedSize);
ASSERT_TRUE((result == 0) || (result == CAMERA_METADATA_VALIDATION_SHIFTED));
size_t entryCount = get_camera_metadata_entry_count(metadata);
ASSERT_GT(entryCount, 0u);
defaultSettings = metadata;
});
ASSERT_TRUE(ret.isOk());
uint8_t sensorPixelMode =
static_cast<uint8_t>(ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION);
ASSERT_EQ(::android::OK,
defaultSettings.update(ANDROID_SENSOR_PIXEL_MODE, &sensorPixelMode, 1));
const camera_metadata_t* settingsBuffer = defaultSettings.getAndLock();
settings.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(settingsBuffer)),
get_camera_metadata_size(settingsBuffer));
overrideRotateAndCrop(&settings);
free_camera_metadata(staticMeta);
ret = session->close();
ASSERT_TRUE(ret.isOk());
V3_6::HalStreamConfiguration halStreamConfig;
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
V3_2::Stream previewStream;
sp<device::V3_7::ICameraDeviceSession> session3_7;
sp<DeviceCb> cb;
std::list<PixelFormat> pixelFormats = {PixelFormat::YCBCR_420_888, PixelFormat::RAW16};
for (PixelFormat format : pixelFormats) {
configureStreams3_7(name, deviceVersion, mProvider, format, &session3_7, &previewStream,
&halStreamConfig, &supportsPartialResults, &partialResultCount,
&useHalBufManager, &cb, 0, /*maxResolution*/ true);
ASSERT_NE(session3_7, nullptr);
std::shared_ptr<ResultMetadataQueue> resultQueue;
auto resultQueueRet = session3_7->getCaptureResultMetadataQueue(
[&resultQueue](const auto& descriptor) {
resultQueue = std::make_shared<ResultMetadataQueue>(descriptor);
if (!resultQueue->isValid() || resultQueue->availableToWrite() <= 0) {
ALOGE("%s: HAL returns empty result metadata fmq,"
" not use it",
__func__);
resultQueue = nullptr;
// Don't use the queue onwards.
}
});
ASSERT_TRUE(resultQueueRet.isOk());
std::vector<hidl_handle> graphicBuffers;
graphicBuffers.reserve(halStreamConfig.streams.size());
::android::hardware::hidl_vec<StreamBuffer> outputBuffers;
outputBuffers.resize(halStreamConfig.streams.size());
InFlightRequest inflightReq = {static_cast<ssize_t>(halStreamConfig.streams.size()),
false,
supportsPartialResults,
partialResultCount,
std::unordered_set<std::string>(),
resultQueue};
size_t k = 0;
for (const auto& halStream : halStreamConfig.streams) {
hidl_handle buffer_handle;
if (useHalBufManager) {
outputBuffers[k] = {halStream.v3_4.v3_3.v3_2.id,
0,
buffer_handle,
BufferStatus::OK,
nullptr,
nullptr};
} else {
allocateGraphicBuffer(
previewStream.width, previewStream.height,
android_convertGralloc1To0Usage(halStream.v3_4.v3_3.v3_2.producerUsage,
halStream.v3_4.v3_3.v3_2.consumerUsage),
halStream.v3_4.v3_3.v3_2.overrideFormat, &buffer_handle);
graphicBuffers.push_back(buffer_handle);
outputBuffers[k] = {halStream.v3_4.v3_3.v3_2.id,
bufferId,
buffer_handle,
BufferStatus::OK,
nullptr,
nullptr};
bufferId++;
}
k++;
}
StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr, nullptr};
V3_4::CaptureRequest request3_4;
request3_4.v3_2.frameNumber = frameNumber;
request3_4.v3_2.fmqSettingsSize = 0;
request3_4.v3_2.settings = settings;
request3_4.v3_2.inputBuffer = emptyInputBuffer;
request3_4.v3_2.outputBuffers = outputBuffers;
V3_7::CaptureRequest request3_7;
request3_7.v3_4 = request3_4;
request3_7.inputWidth = 0;
request3_7.inputHeight = 0;
{
std::unique_lock<std::mutex> l(mLock);
mInflightMap.clear();
mInflightMap.add(frameNumber, &inflightReq);
}
Status stat = Status::INTERNAL_ERROR;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
Return<void> returnStatus = session3_7->processCaptureRequest_3_7(
{request3_7}, cachesToRemove,
[&stat, &numRequestProcessed](auto s, uint32_t n) {
stat = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, stat);
ASSERT_EQ(numRequestProcessed, 1u);
{
std::unique_lock<std::mutex> l(mLock);
while (!inflightReq.errorCodeValid &&
((0 < inflightReq.numBuffersLeft) || (!inflightReq.haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mResultCondition.wait_until(l, timeout));
}
ASSERT_FALSE(inflightReq.errorCodeValid);
ASSERT_NE(inflightReq.resultOutputBuffers.size(), 0u);
}
if (useHalBufManager) {
hidl_vec<int32_t> streamIds(halStreamConfig.streams.size());
for (size_t i = 0; i < streamIds.size(); i++) {
streamIds[i] = halStreamConfig.streams[i].v3_4.v3_3.v3_2.id;
}
verifyBuffersReturned(session3_7, streamIds, cb);
}
ret = session3_7->close();
ASSERT_TRUE(ret.isOk());
}
}
}
// Generate and verify a burst containing alternating sensor sensitivity values
TEST_P(CameraHidlTest, processCaptureRequestBurstISO) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
uint64_t bufferId = 1;
uint32_t frameNumber = 1;
float isoTol = .03f;
::android::hardware::hidl_vec<uint8_t> settings;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMetaBuffer;
Return<void> ret;
sp<ICameraDeviceSession> session;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMetaBuffer /*out*/);
::android::hardware::camera::common::V1_0::helper::CameraMetadata staticMeta(
staticMetaBuffer);
camera_metadata_entry_t hwLevel = staticMeta.find(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL);
ASSERT_TRUE(0 < hwLevel.count);
if (ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED == hwLevel.data.u8[0] ||
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL == hwLevel.data.u8[0]) {
// Limited/External devices can skip this test
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
camera_metadata_entry_t isoRange = staticMeta.find(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE);
ASSERT_EQ(isoRange.count, 2u);
ret = session->close();
ASSERT_TRUE(ret.isOk());
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
V3_2::Stream previewStream;
HalStreamConfiguration halStreamConfig;
sp<DeviceCb> cb;
configurePreviewStream(name, deviceVersion, mProvider, &previewThreshold,
&session /*out*/, &previewStream /*out*/, &halStreamConfig /*out*/,
&supportsPartialResults /*out*/, &partialResultCount /*out*/,
&useHalBufManager /*out*/, &cb /*out*/);
std::shared_ptr<ResultMetadataQueue> resultQueue;
auto resultQueueRet = session->getCaptureResultMetadataQueue(
[&resultQueue](const auto& descriptor) {
resultQueue = std::make_shared<ResultMetadataQueue>(descriptor);
if (!resultQueue->isValid() || resultQueue->availableToWrite() <= 0) {
ALOGE("%s: HAL returns empty result metadata fmq,"
" not use it", __func__);
resultQueue = nullptr;
// Don't use the queue onwards.
}
});
ASSERT_TRUE(resultQueueRet.isOk());
ASSERT_NE(nullptr, resultQueue);
ret = session->constructDefaultRequestSettings(RequestTemplate::PREVIEW,
[&](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
settings = req; });
ASSERT_TRUE(ret.isOk());
::android::hardware::camera::common::V1_0::helper::CameraMetadata requestMeta;
StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr, nullptr};
hidl_handle buffers[kBurstFrameCount];
StreamBuffer outputBuffers[kBurstFrameCount];
CaptureRequest requests[kBurstFrameCount];
InFlightRequest inflightReqs[kBurstFrameCount];
int32_t isoValues[kBurstFrameCount];
hidl_vec<uint8_t> requestSettings[kBurstFrameCount];
for (uint32_t i = 0; i < kBurstFrameCount; i++) {
std::unique_lock<std::mutex> l(mLock);
isoValues[i] = ((i % 2) == 0) ? isoRange.data.i32[0] : isoRange.data.i32[1];
if (useHalBufManager) {
outputBuffers[i] = {halStreamConfig.streams[0].id, /*bufferId*/0,
nullptr, BufferStatus::OK, nullptr, nullptr};
} else {
allocateGraphicBuffer(previewStream.width, previewStream.height,
android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
halStreamConfig.streams[0].consumerUsage),
halStreamConfig.streams[0].overrideFormat, &buffers[i]);
outputBuffers[i] = {halStreamConfig.streams[0].id, bufferId + i,
buffers[i], BufferStatus::OK, nullptr, nullptr};
}
requestMeta.append(reinterpret_cast<camera_metadata_t *> (settings.data()));
// Disable all 3A routines
uint8_t mode = static_cast<uint8_t>(ANDROID_CONTROL_MODE_OFF);
ASSERT_EQ(::android::OK, requestMeta.update(ANDROID_CONTROL_MODE, &mode, 1));
ASSERT_EQ(::android::OK, requestMeta.update(ANDROID_SENSOR_SENSITIVITY, &isoValues[i],
1));
camera_metadata_t *metaBuffer = requestMeta.release();
requestSettings[i].setToExternal(reinterpret_cast<uint8_t *> (metaBuffer),
get_camera_metadata_size(metaBuffer), true);
overrideRotateAndCrop(&requestSettings[i]);
requests[i] = {frameNumber + i, 0 /* fmqSettingsSize */, requestSettings[i],
emptyInputBuffer, {outputBuffers[i]}};
inflightReqs[i] = {1, false, supportsPartialResults, partialResultCount, resultQueue};
mInflightMap.add(frameNumber + i, &inflightReqs[i]);
}
Status status = Status::INTERNAL_ERROR;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
hidl_vec<CaptureRequest> burstRequest;
burstRequest.setToExternal(requests, kBurstFrameCount);
Return<void> returnStatus = session->processCaptureRequest(burstRequest, cachesToRemove,
[&status, &numRequestProcessed] (auto s, uint32_t n) {
status = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, status);
ASSERT_EQ(numRequestProcessed, kBurstFrameCount);
for (size_t i = 0; i < kBurstFrameCount; i++) {
std::unique_lock<std::mutex> l(mLock);
while (!inflightReqs[i].errorCodeValid && ((0 < inflightReqs[i].numBuffersLeft) ||
(!inflightReqs[i].haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mResultCondition.wait_until(l, timeout));
}
ASSERT_FALSE(inflightReqs[i].errorCodeValid);
ASSERT_NE(inflightReqs[i].resultOutputBuffers.size(), 0u);
ASSERT_EQ(previewStream.id, inflightReqs[i].resultOutputBuffers[0].streamId);
ASSERT_FALSE(inflightReqs[i].collectedResult.isEmpty());
ASSERT_TRUE(inflightReqs[i].collectedResult.exists(ANDROID_SENSOR_SENSITIVITY));
camera_metadata_entry_t isoResult = inflightReqs[i].collectedResult.find(
ANDROID_SENSOR_SENSITIVITY);
ASSERT_TRUE(std::abs(isoResult.data.i32[0] - isoValues[i]) <=
std::round(isoValues[i]*isoTol));
}
if (useHalBufManager) {
verifyBuffersReturned(session, deviceVersion, previewStream.id, cb);
}
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Test whether an incorrect capture request with missing settings will
// be reported correctly.
TEST_P(CameraHidlTest, processCaptureRequestInvalidSinglePreview) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputPreviewStreams;
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
uint64_t bufferId = 1;
uint32_t frameNumber = 1;
::android::hardware::hidl_vec<uint8_t> settings;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
V3_2::Stream previewStream;
HalStreamConfiguration halStreamConfig;
sp<ICameraDeviceSession> session;
sp<DeviceCb> cb;
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
configurePreviewStream(name, deviceVersion, mProvider, &previewThreshold, &session /*out*/,
&previewStream /*out*/, &halStreamConfig /*out*/,
&supportsPartialResults /*out*/,
&partialResultCount /*out*/, &useHalBufManager /*out*/, &cb /*out*/);
hidl_handle buffer_handle;
if (useHalBufManager) {
bufferId = 0;
} else {
allocateGraphicBuffer(previewStream.width, previewStream.height,
android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
halStreamConfig.streams[0].consumerUsage),
halStreamConfig.streams[0].overrideFormat, &buffer_handle);
}
StreamBuffer outputBuffer = {halStreamConfig.streams[0].id,
bufferId,
buffer_handle,
BufferStatus::OK,
nullptr,
nullptr};
::android::hardware::hidl_vec<StreamBuffer> outputBuffers = {outputBuffer};
StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr,
nullptr};
CaptureRequest request = {frameNumber, 0 /* fmqSettingsSize */, settings,
emptyInputBuffer, outputBuffers};
// Settings were not correctly initialized, we should fail here
Status status = Status::OK;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
Return<void> ret = session->processCaptureRequest(
{request}, cachesToRemove, [&status, &numRequestProcessed](auto s,
uint32_t n) {
status = s;
numRequestProcessed = n;
});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, status);
ASSERT_EQ(numRequestProcessed, 0u);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Verify camera offline session behavior
TEST_P(CameraHidlTest, switchToOffline) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
AvailableStream threshold = {kMaxStillWidth, kMaxStillHeight,
static_cast<int32_t>(PixelFormat::BLOB)};
uint64_t bufferId = 1;
uint32_t frameNumber = 1;
::android::hardware::hidl_vec<uint8_t> settings;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
camera_metadata_t* staticMetaBuffer;
{
Return<void> ret;
sp<ICameraDeviceSession> session;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMetaBuffer /*out*/);
::android::hardware::camera::common::V1_0::helper::CameraMetadata staticMeta(
staticMetaBuffer);
if (isOfflineSessionSupported(staticMetaBuffer) != Status::OK) {
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
bool supportsPartialResults = false;
uint32_t partialResultCount = 0;
V3_2::Stream stream;
V3_6::HalStreamConfiguration halStreamConfig;
sp<V3_6::ICameraDeviceSession> session;
sp<DeviceCb> cb;
uint32_t jpegBufferSize;
bool useHalBufManager;
configureOfflineStillStream(name, deviceVersion, mProvider, &threshold,
&session /*out*/, &stream /*out*/, &halStreamConfig /*out*/,
&supportsPartialResults /*out*/, &partialResultCount /*out*/, &cb /*out*/,
&jpegBufferSize /*out*/, &useHalBufManager /*out*/);
auto ret = session->constructDefaultRequestSettings(RequestTemplate::STILL_CAPTURE,
[&](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
settings = req; });
ASSERT_TRUE(ret.isOk());
std::shared_ptr<ResultMetadataQueue> resultQueue;
auto resultQueueRet =
session->getCaptureResultMetadataQueue(
[&resultQueue](const auto& descriptor) {
resultQueue = std::make_shared<ResultMetadataQueue>(
descriptor);
if (!resultQueue->isValid() ||
resultQueue->availableToWrite() <= 0) {
ALOGE("%s: HAL returns empty result metadata fmq,"
" not use it", __func__);
resultQueue = nullptr;
// Don't use the queue onwards.
}
});
ASSERT_TRUE(resultQueueRet.isOk());
::android::hardware::camera::common::V1_0::helper::CameraMetadata requestMeta;
StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr, nullptr};
hidl_handle buffers[kBurstFrameCount];
StreamBuffer outputBuffers[kBurstFrameCount];
CaptureRequest requests[kBurstFrameCount];
InFlightRequest inflightReqs[kBurstFrameCount];
hidl_vec<uint8_t> requestSettings[kBurstFrameCount];
auto halStreamConfig3_2 = halStreamConfig.streams[0].v3_4.v3_3.v3_2;
for (uint32_t i = 0; i < kBurstFrameCount; i++) {
std::unique_lock<std::mutex> l(mLock);
if (useHalBufManager) {
outputBuffers[i] = {halStreamConfig3_2.id, /*bufferId*/ 0,
buffers[i], BufferStatus::OK, nullptr, nullptr};
} else {
// jpeg buffer (w,h) = (blobLen, 1)
allocateGraphicBuffer(jpegBufferSize, /*height*/1,
android_convertGralloc1To0Usage(halStreamConfig3_2.producerUsage,
halStreamConfig3_2.consumerUsage),
halStreamConfig3_2.overrideFormat, &buffers[i]);
outputBuffers[i] = {halStreamConfig3_2.id, bufferId + i,
buffers[i], BufferStatus::OK, nullptr, nullptr};
}
requestMeta.clear();
requestMeta.append(reinterpret_cast<camera_metadata_t *> (settings.data()));
camera_metadata_t *metaBuffer = requestMeta.release();
requestSettings[i].setToExternal(reinterpret_cast<uint8_t *> (metaBuffer),
get_camera_metadata_size(metaBuffer), true);
overrideRotateAndCrop(&requestSettings[i]);
requests[i] = {frameNumber + i, 0 /* fmqSettingsSize */, requestSettings[i],
emptyInputBuffer, {outputBuffers[i]}};
inflightReqs[i] = {1, false, supportsPartialResults, partialResultCount,
resultQueue};
mInflightMap.add(frameNumber + i, &inflightReqs[i]);
}
Status status = Status::INTERNAL_ERROR;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
hidl_vec<CaptureRequest> burstRequest;
burstRequest.setToExternal(requests, kBurstFrameCount);
Return<void> returnStatus = session->processCaptureRequest(burstRequest, cachesToRemove,
[&status, &numRequestProcessed] (auto s, uint32_t n) {
status = s;
numRequestProcessed = n;
});
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, status);
ASSERT_EQ(numRequestProcessed, kBurstFrameCount);
hidl_vec<int32_t> offlineStreamIds = {halStreamConfig3_2.id};
V3_6::CameraOfflineSessionInfo offlineSessionInfo;
sp<device::V3_6::ICameraOfflineSession> offlineSession;
returnStatus = session->switchToOffline(offlineStreamIds,
[&status, &offlineSessionInfo, &offlineSession] (auto stat, auto info,
auto offSession) {
status = stat;
offlineSessionInfo = info;
offlineSession = offSession;
});
ASSERT_TRUE(returnStatus.isOk());
if (!halStreamConfig.streams[0].supportOffline) {
ASSERT_EQ(status, Status::ILLEGAL_ARGUMENT);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
ASSERT_EQ(status, Status::OK);
// Hal might be unable to find any requests qualified for offline mode.
if (offlineSession == nullptr) {
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
ASSERT_EQ(offlineSessionInfo.offlineStreams.size(), 1u);
ASSERT_EQ(offlineSessionInfo.offlineStreams[0].id, halStreamConfig3_2.id);
ASSERT_NE(offlineSessionInfo.offlineRequests.size(), 0u);
// close device session to make sure offline session does not rely on it
ret = session->close();
ASSERT_TRUE(ret.isOk());
std::shared_ptr<ResultMetadataQueue> offlineResultQueue;
auto offlineResultQueueRet =
offlineSession->getCaptureResultMetadataQueue(
[&offlineResultQueue](const auto& descriptor) {
offlineResultQueue = std::make_shared<ResultMetadataQueue>(
descriptor);
if (!offlineResultQueue->isValid() ||
offlineResultQueue->availableToWrite() <= 0) {
ALOGE("%s: offline session returns empty result metadata fmq,"
" not use it", __func__);
offlineResultQueue = nullptr;
// Don't use the queue onwards.
}
});
ASSERT_TRUE(offlineResultQueueRet.isOk());
updateInflightResultQueue(offlineResultQueue);
ret = offlineSession->setCallback(cb);
ASSERT_TRUE(ret.isOk());
for (size_t i = 0; i < kBurstFrameCount; i++) {
std::unique_lock<std::mutex> l(mLock);
while (!inflightReqs[i].errorCodeValid && ((0 < inflightReqs[i].numBuffersLeft) ||
(!inflightReqs[i].haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mResultCondition.wait_until(l, timeout));
}
ASSERT_FALSE(inflightReqs[i].errorCodeValid);
ASSERT_NE(inflightReqs[i].resultOutputBuffers.size(), 0u);
ASSERT_EQ(stream.id, inflightReqs[i].resultOutputBuffers[0].streamId);
ASSERT_FALSE(inflightReqs[i].collectedResult.isEmpty());
}
ret = offlineSession->close();
ASSERT_TRUE(ret.isOk());
}
}
// Check whether an invalid capture request with missing output buffers
// will be reported correctly.
TEST_P(CameraHidlTest, processCaptureRequestInvalidBuffer) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputBlobStreams;
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
uint32_t frameNumber = 1;
::android::hardware::hidl_vec<uint8_t> settings;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
V3_2::Stream previewStream;
HalStreamConfiguration halStreamConfig;
sp<ICameraDeviceSession> session;
sp<DeviceCb> cb;
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
configurePreviewStream(name, deviceVersion, mProvider, &previewThreshold, &session /*out*/,
&previewStream /*out*/, &halStreamConfig /*out*/,
&supportsPartialResults /*out*/,
&partialResultCount /*out*/, &useHalBufManager /*out*/, &cb /*out*/);
RequestTemplate reqTemplate = RequestTemplate::PREVIEW;
Return<void> ret;
ret = session->constructDefaultRequestSettings(reqTemplate,
[&](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
settings = req;
});
ASSERT_TRUE(ret.isOk());
overrideRotateAndCrop(&settings);
::android::hardware::hidl_vec<StreamBuffer> emptyOutputBuffers;
StreamBuffer emptyInputBuffer = {-1, 0, nullptr, BufferStatus::ERROR, nullptr,
nullptr};
CaptureRequest request = {frameNumber, 0 /* fmqSettingsSize */, settings,
emptyInputBuffer, emptyOutputBuffers};
// Output buffers are missing, we should fail here
Status status = Status::OK;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
ret = session->processCaptureRequest(
{request}, cachesToRemove, [&status, &numRequestProcessed](auto s,
uint32_t n) {
status = s;
numRequestProcessed = n;
});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, status);
ASSERT_EQ(numRequestProcessed, 0u);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Generate, trigger and flush a preview request
TEST_P(CameraHidlTest, flushPreviewRequest) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputPreviewStreams;
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
uint64_t bufferId = 1;
uint32_t frameNumber = 1;
::android::hardware::hidl_vec<uint8_t> settings;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
V3_2::Stream previewStream;
HalStreamConfiguration halStreamConfig;
sp<ICameraDeviceSession> session;
sp<DeviceCb> cb;
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
configurePreviewStream(name, deviceVersion, mProvider, &previewThreshold, &session /*out*/,
&previewStream /*out*/, &halStreamConfig /*out*/,
&supportsPartialResults /*out*/,
&partialResultCount /*out*/, &useHalBufManager /*out*/, &cb /*out*/);
std::shared_ptr<ResultMetadataQueue> resultQueue;
auto resultQueueRet =
session->getCaptureResultMetadataQueue(
[&resultQueue](const auto& descriptor) {
resultQueue = std::make_shared<ResultMetadataQueue>(
descriptor);
if (!resultQueue->isValid() ||
resultQueue->availableToWrite() <= 0) {
ALOGE("%s: HAL returns empty result metadata fmq,"
" not use it", __func__);
resultQueue = nullptr;
// Don't use the queue onwards.
}
});
ASSERT_TRUE(resultQueueRet.isOk());
InFlightRequest inflightReq = {1, false, supportsPartialResults,
partialResultCount, resultQueue};
RequestTemplate reqTemplate = RequestTemplate::PREVIEW;
Return<void> ret;
ret = session->constructDefaultRequestSettings(reqTemplate,
[&](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
settings = req;
});
ASSERT_TRUE(ret.isOk());
overrideRotateAndCrop(&settings);
hidl_handle buffer_handle;
if (useHalBufManager) {
bufferId = 0;
} else {
allocateGraphicBuffer(previewStream.width, previewStream.height,
android_convertGralloc1To0Usage(halStreamConfig.streams[0].producerUsage,
halStreamConfig.streams[0].consumerUsage),
halStreamConfig.streams[0].overrideFormat, &buffer_handle);
}
StreamBuffer outputBuffer = {halStreamConfig.streams[0].id,
bufferId,
buffer_handle,
BufferStatus::OK,
nullptr,
nullptr};
::android::hardware::hidl_vec<StreamBuffer> outputBuffers = {outputBuffer};
const StreamBuffer emptyInputBuffer = {-1, 0, nullptr,
BufferStatus::ERROR, nullptr, nullptr};
CaptureRequest request = {frameNumber, 0 /* fmqSettingsSize */, settings,
emptyInputBuffer, outputBuffers};
{
std::unique_lock<std::mutex> l(mLock);
mInflightMap.clear();
mInflightMap.add(frameNumber, &inflightReq);
}
Status status = Status::INTERNAL_ERROR;
uint32_t numRequestProcessed = 0;
hidl_vec<BufferCache> cachesToRemove;
ret = session->processCaptureRequest(
{request}, cachesToRemove, [&status, &numRequestProcessed](auto s,
uint32_t n) {
status = s;
numRequestProcessed = n;
});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(Status::OK, status);
ASSERT_EQ(numRequestProcessed, 1u);
// Flush before waiting for request to complete.
Return<Status> returnStatus = session->flush();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
{
std::unique_lock<std::mutex> l(mLock);
while (!inflightReq.errorCodeValid &&
((0 < inflightReq.numBuffersLeft) ||
(!inflightReq.haveResultMetadata))) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout, mResultCondition.wait_until(l,
timeout));
}
if (!inflightReq.errorCodeValid) {
ASSERT_NE(inflightReq.resultOutputBuffers.size(), 0u);
ASSERT_EQ(previewStream.id, inflightReq.resultOutputBuffers[0].streamId);
} else {
switch (inflightReq.errorCode) {
case ErrorCode::ERROR_REQUEST:
case ErrorCode::ERROR_RESULT:
case ErrorCode::ERROR_BUFFER:
// Expected
break;
case ErrorCode::ERROR_DEVICE:
default:
FAIL() << "Unexpected error:"
<< static_cast<uint32_t>(inflightReq.errorCode);
}
}
}
if (useHalBufManager) {
verifyBuffersReturned(session, deviceVersion, previewStream.id, cb);
}
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Verify that camera flushes correctly without any pending requests.
TEST_P(CameraHidlTest, flushEmpty) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputPreviewStreams;
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion == CAMERA_DEVICE_API_VERSION_1_0) {
continue;
} else if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
}
V3_2::Stream previewStream;
HalStreamConfiguration halStreamConfig;
sp<ICameraDeviceSession> session;
sp<DeviceCb> cb;
bool supportsPartialResults = false;
bool useHalBufManager = false;
uint32_t partialResultCount = 0;
configurePreviewStream(name, deviceVersion, mProvider, &previewThreshold, &session /*out*/,
&previewStream /*out*/, &halStreamConfig /*out*/,
&supportsPartialResults /*out*/,
&partialResultCount /*out*/, &useHalBufManager /*out*/, &cb /*out*/);
Return<Status> returnStatus = session->flush();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
{
std::unique_lock<std::mutex> l(mLock);
auto timeout = std::chrono::system_clock::now() +
std::chrono::milliseconds(kEmptyFlushTimeoutMSec);
ASSERT_EQ(std::cv_status::timeout, mResultCondition.wait_until(l, timeout));
}
Return<void> ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Test camera provider@2.5 notify method
TEST_P(CameraHidlTest, providerDeviceStateNotification) {
notifyDeviceState(provider::V2_5::DeviceState::BACK_COVERED);
notifyDeviceState(provider::V2_5::DeviceState::NORMAL);
}
// Verify that all supported stream formats and sizes can be configured
// successfully for injection camera.
TEST_P(CameraHidlTest, configureInjectionStreamsAvailableOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputStreams;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
} else if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_7) {
continue;
}
camera_metadata_t* staticMetaBuffer;
Return<void> ret;
Status s;
sp<ICameraDeviceSession> session;
sp<device::V3_7::ICameraInjectionSession> injectionSession3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMetaBuffer /*out*/);
castInjectionSession(session, &injectionSession3_7);
if (injectionSession3_7 == nullptr) {
ALOGW("%s: The provider %s doesn't support ICameraInjectionSession", __func__,
mProviderType.c_str());
continue;
}
::android::hardware::camera::device::V3_2::CameraMetadata hidlChars = {};
hidlChars.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(staticMetaBuffer)),
get_camera_metadata_size(staticMetaBuffer));
outputStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMetaBuffer, outputStreams));
ASSERT_NE(0u, outputStreams.size());
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMetaBuffer, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
uint32_t streamConfigCounter = 0;
for (auto& it : outputStreams) {
V3_2::Stream stream3_2;
V3_2::DataspaceFlags dataspaceFlag = getDataspace(static_cast<PixelFormat>(it.format));
stream3_2 = {streamId,
StreamType::OUTPUT,
static_cast<uint32_t>(it.width),
static_cast<uint32_t>(it.height),
static_cast<PixelFormat>(it.format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
dataspaceFlag,
StreamRotation::ROTATION_0};
::android::hardware::hidl_vec<V3_2::Stream> streams3_2 = {stream3_2};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams3_2, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
config3_7.streamConfigCounter = streamConfigCounter++;
s = injectionSession3_7->configureInjectionStreams(config3_7, hidlChars);
ASSERT_EQ(Status::OK, s);
streamId++;
}
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Check for correct handling of invalid/incorrect configuration parameters for injection camera.
TEST_P(CameraHidlTest, configureInjectionStreamsInvalidOutputs) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputStreams;
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
} else if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_7) {
continue;
}
camera_metadata_t* staticMetaBuffer;
Return<void> ret;
Status s;
sp<ICameraDeviceSession> session;
sp<device::V3_7::ICameraInjectionSession> injectionSession3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMetaBuffer /*out*/);
castInjectionSession(session, &injectionSession3_7);
if (injectionSession3_7 == nullptr) {
ALOGW("%s: The provider %s doesn't support ICameraInjectionSession", __func__,
mProviderType.c_str());
continue;
}
::android::hardware::camera::device::V3_2::CameraMetadata hidlChars = {};
hidlChars.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(staticMetaBuffer)),
get_camera_metadata_size(staticMetaBuffer));
outputStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMetaBuffer, outputStreams));
ASSERT_NE(0u, outputStreams.size());
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMetaBuffer, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
int32_t streamId = 0;
V3_2::Stream stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(0),
static_cast<uint32_t>(0),
static_cast<PixelFormat>(outputStreams[0].format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
uint32_t streamConfigCounter = 0;
::android::hardware::hidl_vec<V3_2::Stream> streams = {stream3_2};
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
config3_7.streamConfigCounter = streamConfigCounter++;
s = injectionSession3_7->configureInjectionStreams(config3_7, hidlChars);
ASSERT_TRUE((Status::ILLEGAL_ARGUMENT == s) || (Status::INTERNAL_ERROR == s));
stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(UINT32_MAX),
static_cast<uint32_t>(UINT32_MAX),
static_cast<PixelFormat>(outputStreams[0].format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
streams[0] = stream3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
config3_7.streamConfigCounter = streamConfigCounter++;
s = injectionSession3_7->configureInjectionStreams(config3_7, hidlChars);
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
for (auto& it : outputStreams) {
stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(it.width),
static_cast<uint32_t>(it.height),
static_cast<PixelFormat>(UINT32_MAX),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
streams[0] = stream3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
config3_7.streamConfigCounter = streamConfigCounter++;
s = injectionSession3_7->configureInjectionStreams(config3_7, hidlChars);
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
stream3_2 = {streamId++,
StreamType::OUTPUT,
static_cast<uint32_t>(it.width),
static_cast<uint32_t>(it.height),
static_cast<PixelFormat>(it.format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
static_cast<StreamRotation>(UINT32_MAX)};
streams[0] = stream3_2;
createStreamConfiguration(streams, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
config3_7.streamConfigCounter = streamConfigCounter++;
s = injectionSession3_7->configureInjectionStreams(config3_7, hidlChars);
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, s);
}
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Check whether session parameters are supported for injection camera. If Hal support for them
// exist, then try to configure a preview stream using them.
TEST_P(CameraHidlTest, configureInjectionStreamsWithSessionParameters) {
hidl_vec<hidl_string> cameraDeviceNames = getCameraDeviceNames(mProvider);
std::vector<AvailableStream> outputPreviewStreams;
AvailableStream previewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
for (const auto& name : cameraDeviceNames) {
int deviceVersion = getCameraDeviceVersion(name, mProviderType);
if (deviceVersion <= 0) {
ALOGE("%s: Unsupported device version %d", __func__, deviceVersion);
ADD_FAILURE();
return;
} else if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_7) {
continue;
}
camera_metadata_t* staticMetaBuffer;
Return<void> ret;
Status s;
sp<ICameraDeviceSession> session;
sp<device::V3_7::ICameraInjectionSession> injectionSession3_7;
openEmptyDeviceSession(name, mProvider, &session /*out*/, &staticMetaBuffer /*out*/);
castInjectionSession(session, &injectionSession3_7);
if (injectionSession3_7 == nullptr) {
ALOGW("%s: The provider %s doesn't support ICameraInjectionSession", __func__,
mProviderType.c_str());
continue;
}
::android::hardware::camera::device::V3_2::CameraMetadata hidlChars = {};
hidlChars.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(staticMetaBuffer)),
get_camera_metadata_size(staticMetaBuffer));
std::unordered_set<int32_t> availableSessionKeys;
auto rc = getSupportedKeys(staticMetaBuffer, ANDROID_REQUEST_AVAILABLE_SESSION_KEYS,
&availableSessionKeys);
ASSERT_TRUE(Status::OK == rc);
if (availableSessionKeys.empty()) {
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
android::hardware::camera::common::V1_0::helper::CameraMetadata previewRequestSettings;
android::hardware::camera::common::V1_0::helper::CameraMetadata sessionParams,
modifiedSessionParams;
constructFilteredSettings(session, availableSessionKeys, RequestTemplate::PREVIEW,
&previewRequestSettings, &sessionParams);
if (sessionParams.isEmpty()) {
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
continue;
}
outputPreviewStreams.clear();
ASSERT_EQ(Status::OK, getAvailableOutputStreams(staticMetaBuffer, outputPreviewStreams,
&previewThreshold));
ASSERT_NE(0u, outputPreviewStreams.size());
V3_4::Stream previewStream;
previewStream.v3_2 = {0,
StreamType::OUTPUT,
static_cast<uint32_t>(outputPreviewStreams[0].width),
static_cast<uint32_t>(outputPreviewStreams[0].height),
static_cast<PixelFormat>(outputPreviewStreams[0].format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER,
0,
StreamRotation::ROTATION_0};
previewStream.bufferSize = 0;
::android::hardware::hidl_vec<V3_4::Stream> streams = {previewStream};
::android::hardware::camera::device::V3_4::StreamConfiguration config;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
config.streams = streams;
config.operationMode = StreamConfigurationMode::NORMAL_MODE;
modifiedSessionParams = sessionParams;
auto sessionParamsBuffer = sessionParams.release();
config.sessionParams.setToExternal(reinterpret_cast<uint8_t*>(sessionParamsBuffer),
get_camera_metadata_size(sessionParamsBuffer));
config3_5.v3_4 = config;
config3_5.streamConfigCounter = 0;
config3_7.streams = {{previewStream, -1, {ANDROID_SENSOR_PIXEL_MODE_DEFAULT}}};
config3_7.operationMode = config.operationMode;
config3_7.sessionParams.setToExternal(reinterpret_cast<uint8_t*>(sessionParamsBuffer),
get_camera_metadata_size(sessionParamsBuffer));
config3_7.streamConfigCounter = 0;
config3_7.multiResolutionInputImage = false;
s = injectionSession3_7->configureInjectionStreams(config3_7, hidlChars);
sessionParams.acquire(sessionParamsBuffer);
ASSERT_EQ(Status::OK, s);
free_camera_metadata(staticMetaBuffer);
ret = session->close();
ASSERT_TRUE(ret.isOk());
}
}
// Retrieve all valid output stream resolutions from the camera
// static characteristics.
Status CameraHidlTest::getAvailableOutputStreams(const camera_metadata_t* staticMeta,
std::vector<AvailableStream>& outputStreams,
const AvailableStream* threshold,
bool maxResolution) {
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
int scalerTag = maxResolution
? ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_MAXIMUM_RESOLUTION
: ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS;
int depthTag = maxResolution
? ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_MAXIMUM_RESOLUTION
: ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS;
camera_metadata_ro_entry scalarEntry;
camera_metadata_ro_entry depthEntry;
int foundScalar = find_camera_metadata_ro_entry(staticMeta, scalerTag, &scalarEntry);
int foundDepth = find_camera_metadata_ro_entry(staticMeta, depthTag, &depthEntry);
if ((0 != foundScalar || (0 != (scalarEntry.count % 4))) &&
(0 != foundDepth || (0 != (depthEntry.count % 4)))) {
return Status::ILLEGAL_ARGUMENT;
}
if(foundScalar == 0 && (0 == (scalarEntry.count % 4))) {
fillOutputStreams(&scalarEntry, outputStreams, threshold,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
}
if(foundDepth == 0 && (0 == (depthEntry.count % 4))) {
AvailableStream depthPreviewThreshold = {kMaxPreviewWidth, kMaxPreviewHeight,
static_cast<int32_t>(PixelFormat::Y16)};
const AvailableStream* depthThreshold =
isDepthOnly(staticMeta) ? &depthPreviewThreshold : threshold;
fillOutputStreams(&depthEntry, outputStreams, depthThreshold,
ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT);
}
return Status::OK;
}
static Size getMinSize(Size a, Size b) {
if (a.width * a.height < b.width * b.height) {
return a;
}
return b;
}
// TODO: Add more combinations
Status CameraHidlTest::getMandatoryConcurrentStreams(const camera_metadata_t* staticMeta,
std::vector<AvailableStream>* outputStreams) {
if (nullptr == staticMeta || nullptr == outputStreams) {
return Status::ILLEGAL_ARGUMENT;
}
if (isDepthOnly(staticMeta)) {
Size y16MaxSize(640, 480);
Size maxAvailableY16Size;
getMaxOutputSizeForFormat(staticMeta, PixelFormat::Y16, &maxAvailableY16Size);
Size y16ChosenSize = getMinSize(y16MaxSize, maxAvailableY16Size);
AvailableStream y16Stream = {.width = y16ChosenSize.width,
.height = y16ChosenSize.height,
.format = static_cast<int32_t>(PixelFormat::Y16)};
outputStreams->push_back(y16Stream);
return Status::OK;
}
Size yuvMaxSize(1280, 720);
Size jpegMaxSize(1920, 1440);
Size maxAvailableYuvSize;
Size maxAvailableJpegSize;
getMaxOutputSizeForFormat(staticMeta, PixelFormat::YCBCR_420_888, &maxAvailableYuvSize);
getMaxOutputSizeForFormat(staticMeta, PixelFormat::BLOB, &maxAvailableJpegSize);
Size yuvChosenSize = getMinSize(yuvMaxSize, maxAvailableYuvSize);
Size jpegChosenSize = getMinSize(jpegMaxSize, maxAvailableJpegSize);
AvailableStream yuvStream = {.width = yuvChosenSize.width,
.height = yuvChosenSize.height,
.format = static_cast<int32_t>(PixelFormat::YCBCR_420_888)};
AvailableStream jpegStream = {.width = jpegChosenSize.width,
.height = jpegChosenSize.height,
.format = static_cast<int32_t>(PixelFormat::BLOB)};
outputStreams->push_back(yuvStream);
outputStreams->push_back(jpegStream);
return Status::OK;
}
Status CameraHidlTest::getMaxOutputSizeForFormat(const camera_metadata_t* staticMeta,
PixelFormat format, Size* size,
bool maxResolution) {
std::vector<AvailableStream> outputStreams;
if (size == nullptr ||
getAvailableOutputStreams(staticMeta, outputStreams,
/*threshold*/ nullptr, maxResolution) != Status::OK) {
return Status::ILLEGAL_ARGUMENT;
}
Size maxSize;
bool found = false;
for (auto& outputStream : outputStreams) {
if (static_cast<int32_t>(format) == outputStream.format &&
(outputStream.width * outputStream.height > maxSize.width * maxSize.height)) {
maxSize.width = outputStream.width;
maxSize.height = outputStream.height;
found = true;
}
}
if (!found) {
ALOGE("%s :chosen format %d not found", __FUNCTION__, static_cast<int32_t>(format));
return Status::ILLEGAL_ARGUMENT;
}
*size = maxSize;
return Status::OK;
}
void CameraHidlTest::fillOutputStreams(camera_metadata_ro_entry_t* entry,
std::vector<AvailableStream>& outputStreams, const AvailableStream* threshold,
const int32_t availableConfigOutputTag) {
for (size_t i = 0; i < entry->count; i+=4) {
if (availableConfigOutputTag == entry->data.i32[i + 3]) {
if(nullptr == threshold) {
AvailableStream s = {entry->data.i32[i+1],
entry->data.i32[i+2], entry->data.i32[i]};
outputStreams.push_back(s);
} else {
if ((threshold->format == entry->data.i32[i]) &&
(threshold->width >= entry->data.i32[i+1]) &&
(threshold->height >= entry->data.i32[i+2])) {
AvailableStream s = {entry->data.i32[i+1],
entry->data.i32[i+2], threshold->format};
outputStreams.push_back(s);
}
}
}
}
}
// Get max jpeg buffer size in android.jpeg.maxSize
Status CameraHidlTest::getJpegBufferSize(camera_metadata_t *staticMeta, uint32_t* outBufSize) {
if (nullptr == staticMeta || nullptr == outBufSize) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_JPEG_MAX_SIZE, &entry);
if ((0 != rc) || (1 != entry.count)) {
return Status::ILLEGAL_ARGUMENT;
}
*outBufSize = static_cast<uint32_t>(entry.data.i32[0]);
return Status::OK;
}
// Check if the camera device has logical multi-camera capability.
Status CameraHidlTest::isLogicalMultiCamera(const camera_metadata_t *staticMeta) {
Status ret = Status::METHOD_NOT_SUPPORTED;
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
if (0 != rc) {
return Status::ILLEGAL_ARGUMENT;
}
for (size_t i = 0; i < entry.count; i++) {
if (ANDROID_REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA == entry.data.u8[i]) {
ret = Status::OK;
break;
}
}
return ret;
}
bool CameraHidlTest::isTorchStrengthControlSupported(const camera_metadata_t *staticMetadata) {
int32_t maxLevel = 0;
camera_metadata_ro_entry maxEntry;
int rc = find_camera_metadata_ro_entry(staticMetadata,
ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL, &maxEntry);
if (rc != 0) {
return false;
}
maxLevel = *maxEntry.data.i32;
if (maxLevel > 1) {
ALOGI("Torch strength control supported.");
return true;
}
return false;
}
// Check if the camera device has logical multi-camera capability.
Status CameraHidlTest::isOfflineSessionSupported(const camera_metadata_t *staticMeta) {
Status ret = Status::METHOD_NOT_SUPPORTED;
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
if (0 != rc) {
return Status::ILLEGAL_ARGUMENT;
}
for (size_t i = 0; i < entry.count; i++) {
if (ANDROID_REQUEST_AVAILABLE_CAPABILITIES_OFFLINE_PROCESSING == entry.data.u8[i]) {
ret = Status::OK;
break;
}
}
return ret;
}
// Generate a list of physical camera ids backing a logical multi-camera.
Status CameraHidlTest::getPhysicalCameraIds(const camera_metadata_t *staticMeta,
std::unordered_set<std::string> *physicalIds) {
if ((nullptr == staticMeta) || (nullptr == physicalIds)) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta, ANDROID_LOGICAL_MULTI_CAMERA_PHYSICAL_IDS,
&entry);
if (0 != rc) {
return Status::ILLEGAL_ARGUMENT;
}
const uint8_t* ids = entry.data.u8;
size_t start = 0;
for (size_t i = 0; i < entry.count; i++) {
if (ids[i] == '\0') {
if (start != i) {
std::string currentId(reinterpret_cast<const char *> (ids + start));
physicalIds->emplace(currentId);
}
start = i + 1;
}
}
return Status::OK;
}
// Generate a set of suported camera key ids.
Status CameraHidlTest::getSupportedKeys(camera_metadata_t *staticMeta,
uint32_t tagId, std::unordered_set<int32_t> *requestIDs) {
if ((nullptr == staticMeta) || (nullptr == requestIDs)) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta, tagId, &entry);
if ((0 != rc) || (entry.count == 0)) {
return Status::OK;
}
requestIDs->insert(entry.data.i32, entry.data.i32 + entry.count);
return Status::OK;
}
void CameraHidlTest::constructFilteredSettings(const sp<ICameraDeviceSession>& session,
const std::unordered_set<int32_t>& availableKeys, RequestTemplate reqTemplate,
android::hardware::camera::common::V1_0::helper::CameraMetadata* defaultSettings,
android::hardware::camera::common::V1_0::helper::CameraMetadata* filteredSettings) {
ASSERT_NE(defaultSettings, nullptr);
ASSERT_NE(filteredSettings, nullptr);
auto ret = session->constructDefaultRequestSettings(reqTemplate,
[&defaultSettings] (auto status, const auto& req) mutable {
ASSERT_EQ(Status::OK, status);
const camera_metadata_t *metadata = reinterpret_cast<const camera_metadata_t*> (
req.data());
size_t expectedSize = req.size();
int result = validate_camera_metadata_structure(metadata, &expectedSize);
ASSERT_TRUE((result == 0) || (result == CAMERA_METADATA_VALIDATION_SHIFTED));
size_t entryCount = get_camera_metadata_entry_count(metadata);
ASSERT_GT(entryCount, 0u);
*defaultSettings = metadata;
});
ASSERT_TRUE(ret.isOk());
const android::hardware::camera::common::V1_0::helper::CameraMetadata &constSettings =
*defaultSettings;
for (const auto& keyIt : availableKeys) {
camera_metadata_ro_entry entry = constSettings.find(keyIt);
if (entry.count > 0) {
filteredSettings->update(entry);
}
}
}
// Check if constrained mode is supported by using the static
// camera characteristics.
Status CameraHidlTest::isConstrainedModeAvailable(camera_metadata_t *staticMeta) {
Status ret = Status::METHOD_NOT_SUPPORTED;
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
if (0 != rc) {
return Status::ILLEGAL_ARGUMENT;
}
for (size_t i = 0; i < entry.count; i++) {
if (ANDROID_REQUEST_AVAILABLE_CAPABILITIES_CONSTRAINED_HIGH_SPEED_VIDEO ==
entry.data.u8[i]) {
ret = Status::OK;
break;
}
}
return ret;
}
// Pick the largest supported HFR mode from the static camera
// characteristics.
Status CameraHidlTest::pickConstrainedModeSize(camera_metadata_t *staticMeta,
AvailableStream &hfrStream) {
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_CONTROL_AVAILABLE_HIGH_SPEED_VIDEO_CONFIGURATIONS, &entry);
if (0 != rc) {
return Status::METHOD_NOT_SUPPORTED;
} else if (0 != (entry.count % 5)) {
return Status::ILLEGAL_ARGUMENT;
}
hfrStream = {0, 0,
static_cast<uint32_t>(PixelFormat::IMPLEMENTATION_DEFINED)};
for (size_t i = 0; i < entry.count; i+=5) {
int32_t w = entry.data.i32[i];
int32_t h = entry.data.i32[i+1];
if ((hfrStream.width * hfrStream.height) < (w *h)) {
hfrStream.width = w;
hfrStream.height = h;
}
}
return Status::OK;
}
// Check whether ZSL is available using the static camera
// characteristics.
Status CameraHidlTest::isZSLModeAvailable(const camera_metadata_t *staticMeta) {
if (Status::OK == isZSLModeAvailable(staticMeta, PRIV_REPROCESS)) {
return Status::OK;
} else {
return isZSLModeAvailable(staticMeta, YUV_REPROCESS);
}
}
Status CameraHidlTest::isZSLModeAvailable(const camera_metadata_t *staticMeta,
ReprocessType reprocType) {
Status ret = Status::METHOD_NOT_SUPPORTED;
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
if (0 != rc) {
return Status::ILLEGAL_ARGUMENT;
}
for (size_t i = 0; i < entry.count; i++) {
if ((reprocType == PRIV_REPROCESS &&
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_PRIVATE_REPROCESSING == entry.data.u8[i]) ||
(reprocType == YUV_REPROCESS &&
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_YUV_REPROCESSING == entry.data.u8[i])) {
ret = Status::OK;
break;
}
}
return ret;
}
Status CameraHidlTest::getSystemCameraKind(const camera_metadata_t* staticMeta,
SystemCameraKind* systemCameraKind) {
Status ret = Status::OK;
if (nullptr == staticMeta || nullptr == systemCameraKind) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta, ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
&entry);
if (0 != rc) {
return Status::ILLEGAL_ARGUMENT;
}
if (entry.count == 1 &&
entry.data.u8[0] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SECURE_IMAGE_DATA) {
*systemCameraKind = SystemCameraKind::HIDDEN_SECURE_CAMERA;
return ret;
}
// Go through the capabilities and check if it has
// ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA
for (size_t i = 0; i < entry.count; ++i) {
uint8_t capability = entry.data.u8[i];
if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA) {
*systemCameraKind = SystemCameraKind::SYSTEM_ONLY_CAMERA;
return ret;
}
}
*systemCameraKind = SystemCameraKind::PUBLIC;
return ret;
}
void CameraHidlTest::getMultiResolutionStreamConfigurations(
camera_metadata_ro_entry* multiResStreamConfigs, camera_metadata_ro_entry* streamConfigs,
camera_metadata_ro_entry* maxResolutionStreamConfigs,
const camera_metadata_t* staticMetadata) {
ASSERT_NE(multiResStreamConfigs, nullptr);
ASSERT_NE(streamConfigs, nullptr);
ASSERT_NE(maxResolutionStreamConfigs, nullptr);
ASSERT_NE(staticMetadata, nullptr);
int retcode = find_camera_metadata_ro_entry(
staticMetadata, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, streamConfigs);
ASSERT_TRUE(0 == retcode);
retcode = find_camera_metadata_ro_entry(
staticMetadata, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_MAXIMUM_RESOLUTION,
maxResolutionStreamConfigs);
ASSERT_TRUE(-ENOENT == retcode || 0 == retcode);
retcode = find_camera_metadata_ro_entry(
staticMetadata, ANDROID_SCALER_PHYSICAL_CAMERA_MULTI_RESOLUTION_STREAM_CONFIGURATIONS,
multiResStreamConfigs);
ASSERT_TRUE(-ENOENT == retcode || 0 == retcode);
}
void CameraHidlTest::getPrivacyTestPatternModes(
const camera_metadata_t* staticMetadata,
std::unordered_set<int32_t>* privacyTestPatternModes/*out*/) {
ASSERT_NE(staticMetadata, nullptr);
ASSERT_NE(privacyTestPatternModes, nullptr);
camera_metadata_ro_entry entry;
int retcode = find_camera_metadata_ro_entry(
staticMetadata, ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES, &entry);
ASSERT_TRUE(0 == retcode);
for (auto i = 0; i < entry.count; i++) {
if (entry.data.i32[i] == ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR ||
entry.data.i32[i] == ANDROID_SENSOR_TEST_PATTERN_MODE_BLACK) {
privacyTestPatternModes->insert(entry.data.i32[i]);
}
}
}
// Select an appropriate dataspace given a specific pixel format.
V3_2::DataspaceFlags CameraHidlTest::getDataspace(PixelFormat format) {
switch (format) {
case PixelFormat::BLOB:
return static_cast<V3_2::DataspaceFlags>(Dataspace::V0_JFIF);
case PixelFormat::Y16:
return static_cast<V3_2::DataspaceFlags>(Dataspace::DEPTH);
case PixelFormat::RAW16:
case PixelFormat::RAW_OPAQUE:
case PixelFormat::RAW10:
case PixelFormat::RAW12:
return static_cast<V3_2::DataspaceFlags>(Dataspace::ARBITRARY);
default:
return static_cast<V3_2::DataspaceFlags>(Dataspace::UNKNOWN);
}
}
// Check whether this is a monochrome camera using the static camera characteristics.
Status CameraHidlTest::isMonochromeCamera(const camera_metadata_t *staticMeta) {
Status ret = Status::METHOD_NOT_SUPPORTED;
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
if (0 != rc) {
return Status::ILLEGAL_ARGUMENT;
}
for (size_t i = 0; i < entry.count; i++) {
if (ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MONOCHROME == entry.data.u8[i]) {
ret = Status::OK;
break;
}
}
return ret;
}
// Retrieve the reprocess input-output format map from the static
// camera characteristics.
Status CameraHidlTest::getZSLInputOutputMap(camera_metadata_t *staticMeta,
std::vector<AvailableZSLInputOutput> &inputOutputMap) {
if (nullptr == staticMeta) {
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_ro_entry entry;
int rc = find_camera_metadata_ro_entry(staticMeta,
ANDROID_SCALER_AVAILABLE_INPUT_OUTPUT_FORMATS_MAP, &entry);
if ((0 != rc) || (0 >= entry.count)) {
return Status::ILLEGAL_ARGUMENT;
}
const int32_t* contents = &entry.data.i32[0];
for (size_t i = 0; i < entry.count; ) {
int32_t inputFormat = contents[i++];
int32_t length = contents[i++];
for (int32_t j = 0; j < length; j++) {
int32_t outputFormat = contents[i+j];
AvailableZSLInputOutput zslEntry = {inputFormat, outputFormat};
inputOutputMap.push_back(zslEntry);
}
i += length;
}
return Status::OK;
}
// Search for the largest stream size for a given format.
Status CameraHidlTest::findLargestSize(
const std::vector<AvailableStream> &streamSizes, int32_t format,
AvailableStream &result) {
result = {0, 0, 0};
for (auto &iter : streamSizes) {
if (format == iter.format) {
if ((result.width * result.height) < (iter.width * iter.height)) {
result = iter;
}
}
}
return (result.format == format) ? Status::OK : Status::ILLEGAL_ARGUMENT;
}
// Check whether the camera device supports specific focus mode.
Status CameraHidlTest::isAutoFocusModeAvailable(
CameraParameters &cameraParams,
const char *mode) {
::android::String8 focusModes(cameraParams.get(
CameraParameters::KEY_SUPPORTED_FOCUS_MODES));
if (focusModes.contains(mode)) {
return Status::OK;
}
return Status::METHOD_NOT_SUPPORTED;
}
void CameraHidlTest::createStreamConfiguration(
const ::android::hardware::hidl_vec<V3_2::Stream>& streams3_2,
StreamConfigurationMode configMode,
::android::hardware::camera::device::V3_2::StreamConfiguration* config3_2 /*out*/,
::android::hardware::camera::device::V3_4::StreamConfiguration* config3_4 /*out*/,
::android::hardware::camera::device::V3_5::StreamConfiguration* config3_5 /*out*/,
::android::hardware::camera::device::V3_7::StreamConfiguration* config3_7 /*out*/,
uint32_t jpegBufferSize) {
ASSERT_NE(nullptr, config3_2);
ASSERT_NE(nullptr, config3_4);
ASSERT_NE(nullptr, config3_5);
ASSERT_NE(nullptr, config3_7);
::android::hardware::hidl_vec<V3_4::Stream> streams3_4(streams3_2.size());
::android::hardware::hidl_vec<V3_7::Stream> streams3_7(streams3_2.size());
size_t idx = 0;
for (auto& stream3_2 : streams3_2) {
V3_4::Stream stream;
stream.v3_2 = stream3_2;
stream.bufferSize = 0;
if (stream3_2.format == PixelFormat::BLOB &&
stream3_2.dataSpace == static_cast<V3_2::DataspaceFlags>(Dataspace::V0_JFIF)) {
stream.bufferSize = jpegBufferSize;
}
streams3_4[idx] = stream;
streams3_7[idx] = {stream, /*groupId*/ -1, {ANDROID_SENSOR_PIXEL_MODE_DEFAULT}};
idx++;
}
// Caller is responsible to fill in non-zero config3_5->streamConfigCounter after this returns
*config3_7 = {streams3_7, configMode, {}, 0, false};
*config3_5 = {{streams3_4, configMode, {}}, 0};
*config3_4 = config3_5->v3_4;
*config3_2 = {streams3_2, configMode};
}
// Configure streams
void CameraHidlTest::configureStreams3_7(
const std::string& name, int32_t deviceVersion, sp<ICameraProvider> provider,
PixelFormat format, sp<device::V3_7::ICameraDeviceSession>* session3_7 /*out*/,
V3_2::Stream* previewStream /*out*/,
device::V3_6::HalStreamConfiguration* halStreamConfig /*out*/,
bool* supportsPartialResults /*out*/, uint32_t* partialResultCount /*out*/,
bool* useHalBufManager /*out*/, sp<DeviceCb>* outCb /*out*/, uint32_t streamConfigCounter,
bool maxResolution) {
ASSERT_NE(nullptr, session3_7);
ASSERT_NE(nullptr, halStreamConfig);
ASSERT_NE(nullptr, previewStream);
ASSERT_NE(nullptr, supportsPartialResults);
ASSERT_NE(nullptr, partialResultCount);
ASSERT_NE(nullptr, useHalBufManager);
ASSERT_NE(nullptr, outCb);
std::vector<AvailableStream> outputStreams;
::android::sp<ICameraDevice> device3_x;
ALOGI("configureStreams: Testing camera device %s", name.c_str());
Return<void> ret;
ret = provider->getCameraDeviceInterface_V3_x(name, [&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
camera_metadata_t* staticMeta;
ret = device3_x->getCameraCharacteristics([&](Status s, CameraMetadata metadata) {
ASSERT_EQ(Status::OK, s);
staticMeta =
clone_camera_metadata(reinterpret_cast<const camera_metadata_t*>(metadata.data()));
ASSERT_NE(nullptr, staticMeta);
});
ASSERT_TRUE(ret.isOk());
camera_metadata_ro_entry entry;
auto status =
find_camera_metadata_ro_entry(staticMeta, ANDROID_REQUEST_PARTIAL_RESULT_COUNT, &entry);
if ((0 == status) && (entry.count > 0)) {
*partialResultCount = entry.data.i32[0];
*supportsPartialResults = (*partialResultCount > 1);
}
sp<DeviceCb> cb = new DeviceCb(this, deviceVersion, staticMeta);
sp<ICameraDeviceSession> session;
ret = device3_x->open(cb, [&session](auto status, const auto& newSession) {
ALOGI("device::open returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(newSession, nullptr);
session = newSession;
});
ASSERT_TRUE(ret.isOk());
*outCb = cb;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
session3_7);
ASSERT_NE(nullptr, (*session3_7).get());
*useHalBufManager = false;
status = find_camera_metadata_ro_entry(
staticMeta, ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION, &entry);
if ((0 == status) && (entry.count == 1)) {
*useHalBufManager = (entry.data.u8[0] ==
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION_HIDL_DEVICE_3_5);
}
outputStreams.clear();
Size maxSize;
auto rc = getMaxOutputSizeForFormat(staticMeta, format, &maxSize, maxResolution);
ASSERT_EQ(Status::OK, rc);
free_camera_metadata(staticMeta);
::android::hardware::hidl_vec<V3_7::Stream> streams3_7(1);
streams3_7[0].groupId = -1;
streams3_7[0].sensorPixelModesUsed = {
CameraMetadataEnumAndroidSensorPixelMode::ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION};
streams3_7[0].v3_4.bufferSize = 0;
streams3_7[0].v3_4.v3_2.id = 0;
streams3_7[0].v3_4.v3_2.streamType = StreamType::OUTPUT;
streams3_7[0].v3_4.v3_2.width = static_cast<uint32_t>(maxSize.width);
streams3_7[0].v3_4.v3_2.height = static_cast<uint32_t>(maxSize.height);
streams3_7[0].v3_4.v3_2.format = static_cast<PixelFormat>(format);
streams3_7[0].v3_4.v3_2.usage = GRALLOC1_CONSUMER_USAGE_CPU_READ;
streams3_7[0].v3_4.v3_2.dataSpace = 0;
streams3_7[0].v3_4.v3_2.rotation = StreamRotation::ROTATION_0;
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
config3_7.streams = streams3_7;
config3_7.operationMode = StreamConfigurationMode::NORMAL_MODE;
config3_7.streamConfigCounter = streamConfigCounter;
config3_7.multiResolutionInputImage = false;
RequestTemplate reqTemplate = RequestTemplate::STILL_CAPTURE;
ret = (*session3_7)
->constructDefaultRequestSettings(reqTemplate,
[&config3_7](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
config3_7.sessionParams = req;
});
ASSERT_TRUE(ret.isOk());
ASSERT_TRUE(deviceVersion >= CAMERA_DEVICE_API_VERSION_3_7);
sp<device::V3_5::ICameraDevice> cameraDevice3_5 = nullptr;
sp<device::V3_7::ICameraDevice> cameraDevice3_7 = nullptr;
castDevice(device3_x, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
ASSERT_NE(cameraDevice3_7, nullptr);
bool supported = false;
ret = cameraDevice3_7->isStreamCombinationSupported_3_7(
config3_7, [&supported](Status s, bool combStatus) {
ASSERT_TRUE((Status::OK == s) || (Status::METHOD_NOT_SUPPORTED == s));
if (Status::OK == s) {
supported = combStatus;
}
});
ASSERT_TRUE(ret.isOk());
ASSERT_EQ(supported, true);
if (*session3_7 != nullptr) {
ret = (*session3_7)
->configureStreams_3_7(
config3_7,
[&](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
*halStreamConfig = halConfig;
if (*useHalBufManager) {
hidl_vec<V3_4::Stream> streams(1);
hidl_vec<V3_2::HalStream> halStreams(1);
streams[0] = streams3_7[0].v3_4;
halStreams[0] = halConfig.streams[0].v3_4.v3_3.v3_2;
cb->setCurrentStreamConfig(streams, halStreams);
}
});
}
*previewStream = streams3_7[0].v3_4.v3_2;
ASSERT_TRUE(ret.isOk());
}
// Configure multiple preview streams using different physical ids.
void CameraHidlTest::configurePreviewStreams3_4(const std::string &name, int32_t deviceVersion,
sp<ICameraProvider> provider,
const AvailableStream *previewThreshold,
const std::unordered_set<std::string>& physicalIds,
sp<device::V3_4::ICameraDeviceSession> *session3_4 /*out*/,
sp<device::V3_5::ICameraDeviceSession> *session3_5 /*out*/,
V3_2::Stream *previewStream /*out*/,
device::V3_4::HalStreamConfiguration *halStreamConfig /*out*/,
bool *supportsPartialResults /*out*/,
uint32_t *partialResultCount /*out*/,
bool *useHalBufManager /*out*/,
sp<DeviceCb> *outCb /*out*/,
uint32_t streamConfigCounter,
bool allowUnsupport) {
ASSERT_NE(nullptr, session3_4);
ASSERT_NE(nullptr, session3_5);
ASSERT_NE(nullptr, halStreamConfig);
ASSERT_NE(nullptr, previewStream);
ASSERT_NE(nullptr, supportsPartialResults);
ASSERT_NE(nullptr, partialResultCount);
ASSERT_NE(nullptr, useHalBufManager);
ASSERT_NE(nullptr, outCb);
ASSERT_FALSE(physicalIds.empty());
std::vector<AvailableStream> outputPreviewStreams;
::android::sp<ICameraDevice> device3_x;
ALOGI("configureStreams: Testing camera device %s", name.c_str());
Return<void> ret;
ret = provider->getCameraDeviceInterface_V3_x(
name,
[&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d",
(int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
camera_metadata_t *staticMeta;
ret = device3_x->getCameraCharacteristics([&] (Status s,
CameraMetadata metadata) {
ASSERT_EQ(Status::OK, s);
staticMeta = clone_camera_metadata(
reinterpret_cast<const camera_metadata_t*>(metadata.data()));
ASSERT_NE(nullptr, staticMeta);
});
ASSERT_TRUE(ret.isOk());
camera_metadata_ro_entry entry;
auto status = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT, &entry);
if ((0 == status) && (entry.count > 0)) {
*partialResultCount = entry.data.i32[0];
*supportsPartialResults = (*partialResultCount > 1);
}
sp<DeviceCb> cb = new DeviceCb(this, deviceVersion, staticMeta);
sp<ICameraDeviceSession> session;
ret = device3_x->open(
cb,
[&session](auto status, const auto& newSession) {
ALOGI("device::open returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(newSession, nullptr);
session = newSession;
});
ASSERT_TRUE(ret.isOk());
*outCb = cb;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
castSession(session, deviceVersion, &session3_3, session3_4, session3_5, &session3_6,
&session3_7);
ASSERT_NE(nullptr, (*session3_4).get());
*useHalBufManager = false;
status = find_camera_metadata_ro_entry(staticMeta,
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION, &entry);
if ((0 == status) && (entry.count == 1)) {
*useHalBufManager = (entry.data.u8[0] ==
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION_HIDL_DEVICE_3_5);
}
outputPreviewStreams.clear();
auto rc = getAvailableOutputStreams(staticMeta,
outputPreviewStreams, previewThreshold);
free_camera_metadata(staticMeta);
ASSERT_EQ(Status::OK, rc);
ASSERT_FALSE(outputPreviewStreams.empty());
::android::hardware::hidl_vec<V3_4::Stream> streams3_4(physicalIds.size());
int32_t streamId = 0;
for (auto const& physicalId : physicalIds) {
V3_4::Stream stream3_4 = {{streamId, StreamType::OUTPUT,
static_cast<uint32_t> (outputPreviewStreams[0].width),
static_cast<uint32_t> (outputPreviewStreams[0].height),
static_cast<PixelFormat> (outputPreviewStreams[0].format),
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER, 0, StreamRotation::ROTATION_0},
physicalId.c_str(), /*bufferSize*/ 0};
streams3_4[streamId++] = stream3_4;
}
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
config3_4 = {streams3_4, StreamConfigurationMode::NORMAL_MODE, {}};
RequestTemplate reqTemplate = RequestTemplate::PREVIEW;
ret = (*session3_4)->constructDefaultRequestSettings(reqTemplate,
[&config3_4](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
config3_4.sessionParams = req;
});
ASSERT_TRUE(ret.isOk());
ASSERT_TRUE(!allowUnsupport || deviceVersion >= CAMERA_DEVICE_API_VERSION_3_5);
if (allowUnsupport) {
sp<device::V3_5::ICameraDevice> cameraDevice3_5;
sp<device::V3_7::ICameraDevice> cameraDevice3_7;
castDevice(device3_x, deviceVersion, &cameraDevice3_5, &cameraDevice3_7);
bool supported = false;
ret = cameraDevice3_5->isStreamCombinationSupported(config3_4,
[&supported](Status s, bool combStatus) {
ASSERT_TRUE((Status::OK == s) ||
(Status::METHOD_NOT_SUPPORTED == s));
if (Status::OK == s) {
supported = combStatus;
}
});
ASSERT_TRUE(ret.isOk());
// If stream combination is not supported, return null session.
if (!supported) {
*session3_5 = nullptr;
return;
}
}
if (*session3_5 != nullptr) {
config3_5.v3_4 = config3_4;
config3_5.streamConfigCounter = streamConfigCounter;
ret = (*session3_5)->configureStreams_3_5(config3_5,
[&] (Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(physicalIds.size(), halConfig.streams.size());
*halStreamConfig = halConfig;
if (*useHalBufManager) {
hidl_vec<V3_4::Stream> streams(physicalIds.size());
hidl_vec<V3_2::HalStream> halStreams(physicalIds.size());
for (size_t i = 0; i < physicalIds.size(); i++) {
streams[i] = streams3_4[i];
halStreams[i] = halConfig.streams[i].v3_3.v3_2;
}
cb->setCurrentStreamConfig(streams, halStreams);
}
});
} else {
ret = (*session3_4)->configureStreams_3_4(config3_4,
[&] (Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(physicalIds.size(), halConfig.streams.size());
*halStreamConfig = halConfig;
});
}
*previewStream = streams3_4[0].v3_2;
ASSERT_TRUE(ret.isOk());
}
// Configure preview stream with possible offline session support
void CameraHidlTest::configureOfflineStillStream(const std::string &name,
int32_t deviceVersion,
sp<ICameraProvider> provider,
const AvailableStream *threshold,
sp<device::V3_6::ICameraDeviceSession> *session/*out*/,
V3_2::Stream *stream /*out*/,
device::V3_6::HalStreamConfiguration *halStreamConfig /*out*/,
bool *supportsPartialResults /*out*/,
uint32_t *partialResultCount /*out*/,
sp<DeviceCb> *outCb /*out*/,
uint32_t *jpegBufferSize /*out*/,
bool *useHalBufManager /*out*/) {
ASSERT_NE(nullptr, session);
ASSERT_NE(nullptr, halStreamConfig);
ASSERT_NE(nullptr, stream);
ASSERT_NE(nullptr, supportsPartialResults);
ASSERT_NE(nullptr, partialResultCount);
ASSERT_NE(nullptr, outCb);
ASSERT_NE(nullptr, jpegBufferSize);
ASSERT_NE(nullptr, useHalBufManager);
std::vector<AvailableStream> outputStreams;
::android::sp<device::V3_6::ICameraDevice> cameraDevice;
ALOGI("configureStreams: Testing camera device %s", name.c_str());
Return<void> ret;
ret = provider->getCameraDeviceInterface_V3_x(
name,
[&cameraDevice](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d",
(int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
auto castResult = device::V3_6::ICameraDevice::castFrom(device);
ASSERT_TRUE(castResult.isOk());
cameraDevice = castResult;
});
ASSERT_TRUE(ret.isOk());
camera_metadata_t *staticMeta;
ret = cameraDevice->getCameraCharacteristics([&] (Status s,
CameraMetadata metadata) {
ASSERT_EQ(Status::OK, s);
staticMeta = clone_camera_metadata(
reinterpret_cast<const camera_metadata_t*>(metadata.data()));
ASSERT_NE(nullptr, staticMeta);
});
ASSERT_TRUE(ret.isOk());
camera_metadata_ro_entry entry;
auto status = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT, &entry);
if ((0 == status) && (entry.count > 0)) {
*partialResultCount = entry.data.i32[0];
*supportsPartialResults = (*partialResultCount > 1);
}
*useHalBufManager = false;
status = find_camera_metadata_ro_entry(staticMeta,
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION, &entry);
if ((0 == status) && (entry.count == 1)) {
*useHalBufManager = (entry.data.u8[0] ==
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION_HIDL_DEVICE_3_5);
}
auto st = getJpegBufferSize(staticMeta, jpegBufferSize);
ASSERT_EQ(st, Status::OK);
sp<DeviceCb> cb = new DeviceCb(this, deviceVersion, staticMeta);
ret = cameraDevice->open(cb, [&session](auto status, const auto& newSession) {
ALOGI("device::open returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(newSession, nullptr);
auto castResult = device::V3_6::ICameraDeviceSession::castFrom(newSession);
ASSERT_TRUE(castResult.isOk());
*session = castResult;
});
ASSERT_TRUE(ret.isOk());
*outCb = cb;
outputStreams.clear();
auto rc = getAvailableOutputStreams(staticMeta,
outputStreams, threshold);
size_t idx = 0;
int currLargest = outputStreams[0].width * outputStreams[0].height;
for (size_t i = 0; i < outputStreams.size(); i++) {
int area = outputStreams[i].width * outputStreams[i].height;
if (area > currLargest) {
idx = i;
currLargest = area;
}
}
free_camera_metadata(staticMeta);
ASSERT_EQ(Status::OK, rc);
ASSERT_FALSE(outputStreams.empty());
V3_2::DataspaceFlags dataspaceFlag = getDataspace(
static_cast<PixelFormat>(outputStreams[idx].format));
::android::hardware::hidl_vec<V3_4::Stream> streams3_4(/*size*/1);
V3_4::Stream stream3_4 = {{ 0 /*streamId*/, StreamType::OUTPUT,
static_cast<uint32_t> (outputStreams[idx].width),
static_cast<uint32_t> (outputStreams[idx].height),
static_cast<PixelFormat> (outputStreams[idx].format),
GRALLOC1_CONSUMER_USAGE_CPU_READ, dataspaceFlag, StreamRotation::ROTATION_0},
nullptr /*physicalId*/, /*bufferSize*/ *jpegBufferSize};
streams3_4[0] = stream3_4;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
config3_4 = {streams3_4, StreamConfigurationMode::NORMAL_MODE, {}};
config3_5.v3_4 = config3_4;
config3_5.streamConfigCounter = 0;
ret = (*session)->configureStreams_3_6(config3_5,
[&] (Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
*halStreamConfig = halConfig;
if (*useHalBufManager) {
hidl_vec<V3_2::HalStream> halStreams3_2(1);
halStreams3_2[0] = halConfig.streams[0].v3_4.v3_3.v3_2;
cb->setCurrentStreamConfig(streams3_4, halStreams3_2);
}
});
*stream = streams3_4[0].v3_2;
ASSERT_TRUE(ret.isOk());
}
bool CameraHidlTest::isUltraHighResolution(const camera_metadata_t* staticMeta) {
camera_metadata_ro_entry scalarEntry;
int rc = find_camera_metadata_ro_entry(staticMeta, ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
&scalarEntry);
if (rc == 0) {
for (uint32_t i = 0; i < scalarEntry.count; i++) {
if (scalarEntry.data.u8[i] ==
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_ULTRA_HIGH_RESOLUTION_SENSOR) {
return true;
}
}
}
return false;
}
bool CameraHidlTest::isDepthOnly(const camera_metadata_t* staticMeta) {
camera_metadata_ro_entry scalarEntry;
camera_metadata_ro_entry depthEntry;
int rc = find_camera_metadata_ro_entry(
staticMeta, ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &scalarEntry);
if (rc == 0) {
for (uint32_t i = 0; i < scalarEntry.count; i++) {
if (scalarEntry.data.u8[i] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE) {
return false;
}
}
}
for (uint32_t i = 0; i < scalarEntry.count; i++) {
if (scalarEntry.data.u8[i] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DEPTH_OUTPUT) {
rc = find_camera_metadata_ro_entry(
staticMeta, ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS, &depthEntry);
size_t i = 0;
if (rc == 0 && depthEntry.data.i32[i] == static_cast<int32_t>(PixelFormat::Y16)) {
// only Depth16 format is supported now
return true;
}
break;
}
}
return false;
}
void CameraHidlTest::updateInflightResultQueue(std::shared_ptr<ResultMetadataQueue> resultQueue) {
std::unique_lock<std::mutex> l(mLock);
for (size_t i = 0; i < mInflightMap.size(); i++) {
auto& req = mInflightMap.editValueAt(i);
req->resultQueue = resultQueue;
}
}
// Open a device session and configure a preview stream.
void CameraHidlTest::configurePreviewStream(const std::string &name, int32_t deviceVersion,
sp<ICameraProvider> provider,
const AvailableStream *previewThreshold,
sp<ICameraDeviceSession> *session /*out*/,
V3_2::Stream *previewStream /*out*/,
HalStreamConfiguration *halStreamConfig /*out*/,
bool *supportsPartialResults /*out*/,
uint32_t *partialResultCount /*out*/,
bool *useHalBufManager /*out*/,
sp<DeviceCb> *outCb /*out*/,
uint32_t streamConfigCounter) {
configureSingleStream(name, deviceVersion, provider, previewThreshold,
GRALLOC1_CONSUMER_USAGE_HWCOMPOSER, RequestTemplate::PREVIEW, session,
previewStream, halStreamConfig, supportsPartialResults,
partialResultCount, useHalBufManager, outCb, streamConfigCounter);
}
// Open a device session and configure a preview stream.
void CameraHidlTest::configureSingleStream(
const std::string& name, int32_t deviceVersion, sp<ICameraProvider> provider,
const AvailableStream* previewThreshold, uint64_t bufferUsage, RequestTemplate reqTemplate,
sp<ICameraDeviceSession>* session /*out*/, V3_2::Stream* previewStream /*out*/,
HalStreamConfiguration* halStreamConfig /*out*/, bool* supportsPartialResults /*out*/,
uint32_t* partialResultCount /*out*/, bool* useHalBufManager /*out*/,
sp<DeviceCb>* outCb /*out*/, uint32_t streamConfigCounter) {
ASSERT_NE(nullptr, session);
ASSERT_NE(nullptr, previewStream);
ASSERT_NE(nullptr, halStreamConfig);
ASSERT_NE(nullptr, supportsPartialResults);
ASSERT_NE(nullptr, partialResultCount);
ASSERT_NE(nullptr, useHalBufManager);
ASSERT_NE(nullptr, outCb);
std::vector<AvailableStream> outputPreviewStreams;
::android::sp<ICameraDevice> device3_x;
ALOGI("configureStreams: Testing camera device %s", name.c_str());
Return<void> ret;
ret = provider->getCameraDeviceInterface_V3_x(
name,
[&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d",
(int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
camera_metadata_t *staticMeta;
ret = device3_x->getCameraCharacteristics([&] (Status s,
CameraMetadata metadata) {
ASSERT_EQ(Status::OK, s);
staticMeta = clone_camera_metadata(
reinterpret_cast<const camera_metadata_t*>(metadata.data()));
ASSERT_NE(nullptr, staticMeta);
});
ASSERT_TRUE(ret.isOk());
camera_metadata_ro_entry entry;
auto status = find_camera_metadata_ro_entry(staticMeta,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT, &entry);
if ((0 == status) && (entry.count > 0)) {
*partialResultCount = entry.data.i32[0];
*supportsPartialResults = (*partialResultCount > 1);
}
sp<DeviceCb> cb = new DeviceCb(this, deviceVersion, staticMeta);
ret = device3_x->open(
cb,
[&](auto status, const auto& newSession) {
ALOGI("device::open returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(newSession, nullptr);
*session = newSession;
});
ASSERT_TRUE(ret.isOk());
*outCb = cb;
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
castSession(*session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
*useHalBufManager = false;
status = find_camera_metadata_ro_entry(staticMeta,
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION, &entry);
if ((0 == status) && (entry.count == 1)) {
*useHalBufManager = (entry.data.u8[0] ==
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION_HIDL_DEVICE_3_5);
}
outputPreviewStreams.clear();
auto rc = getAvailableOutputStreams(staticMeta,
outputPreviewStreams, previewThreshold);
uint32_t jpegBufferSize = 0;
ASSERT_EQ(Status::OK, getJpegBufferSize(staticMeta, &jpegBufferSize));
ASSERT_NE(0u, jpegBufferSize);
free_camera_metadata(staticMeta);
ASSERT_EQ(Status::OK, rc);
ASSERT_FALSE(outputPreviewStreams.empty());
V3_2::DataspaceFlags dataspaceFlag = 0;
switch (static_cast<PixelFormat>(outputPreviewStreams[0].format)) {
case PixelFormat::Y16:
dataspaceFlag = static_cast<V3_2::DataspaceFlags>(Dataspace::DEPTH);
break;
default:
dataspaceFlag = static_cast<V3_2::DataspaceFlags>(Dataspace::UNKNOWN);
}
V3_2::Stream stream3_2 = {0,
StreamType::OUTPUT,
static_cast<uint32_t>(outputPreviewStreams[0].width),
static_cast<uint32_t>(outputPreviewStreams[0].height),
static_cast<PixelFormat>(outputPreviewStreams[0].format),
bufferUsage,
dataspaceFlag,
StreamRotation::ROTATION_0};
::android::hardware::hidl_vec<V3_2::Stream> streams3_2 = {stream3_2};
::android::hardware::camera::device::V3_2::StreamConfiguration config3_2;
::android::hardware::camera::device::V3_4::StreamConfiguration config3_4;
::android::hardware::camera::device::V3_5::StreamConfiguration config3_5;
::android::hardware::camera::device::V3_7::StreamConfiguration config3_7;
createStreamConfiguration(streams3_2, StreamConfigurationMode::NORMAL_MODE, &config3_2,
&config3_4, &config3_5, &config3_7, jpegBufferSize);
if (session3_7 != nullptr) {
ret = session3_7->constructDefaultRequestSettings(
reqTemplate, [&config3_7](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
config3_7.sessionParams = req;
});
ASSERT_TRUE(ret.isOk());
config3_7.streamConfigCounter = streamConfigCounter;
ret = session3_7->configureStreams_3_7(
config3_7, [&](Status s, device::V3_6::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
halStreamConfig->streams.resize(1);
halStreamConfig->streams[0] = halConfig.streams[0].v3_4.v3_3.v3_2;
if (*useHalBufManager) {
hidl_vec<V3_4::Stream> streams(1);
hidl_vec<V3_2::HalStream> halStreams(1);
streams[0] = config3_4.streams[0];
halStreams[0] = halConfig.streams[0].v3_4.v3_3.v3_2;
cb->setCurrentStreamConfig(streams, halStreams);
}
});
} else if (session3_5 != nullptr) {
ret = session3_5->constructDefaultRequestSettings(reqTemplate,
[&config3_5](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
config3_5.v3_4.sessionParams = req;
});
ASSERT_TRUE(ret.isOk());
config3_5.streamConfigCounter = streamConfigCounter;
ret = session3_5->configureStreams_3_5(config3_5,
[&] (Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
halStreamConfig->streams.resize(1);
halStreamConfig->streams[0] = halConfig.streams[0].v3_3.v3_2;
if (*useHalBufManager) {
hidl_vec<V3_4::Stream> streams(1);
hidl_vec<V3_2::HalStream> halStreams(1);
streams[0] = config3_4.streams[0];
halStreams[0] = halConfig.streams[0].v3_3.v3_2;
cb->setCurrentStreamConfig(streams, halStreams);
}
});
} else if (session3_4 != nullptr) {
ret = session3_4->constructDefaultRequestSettings(reqTemplate,
[&config3_4](auto status, const auto& req) {
ASSERT_EQ(Status::OK, status);
config3_4.sessionParams = req;
});
ASSERT_TRUE(ret.isOk());
ret = session3_4->configureStreams_3_4(config3_4,
[&] (Status s, device::V3_4::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
halStreamConfig->streams.resize(halConfig.streams.size());
for (size_t i = 0; i < halConfig.streams.size(); i++) {
halStreamConfig->streams[i] = halConfig.streams[i].v3_3.v3_2;
}
});
} else if (session3_3 != nullptr) {
ret = session3_3->configureStreams_3_3(config3_2,
[&] (Status s, device::V3_3::HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
halStreamConfig->streams.resize(halConfig.streams.size());
for (size_t i = 0; i < halConfig.streams.size(); i++) {
halStreamConfig->streams[i] = halConfig.streams[i].v3_2;
}
});
} else {
ret = (*session)->configureStreams(config3_2,
[&] (Status s, HalStreamConfiguration halConfig) {
ASSERT_EQ(Status::OK, s);
ASSERT_EQ(1u, halConfig.streams.size());
*halStreamConfig = halConfig;
});
}
*previewStream = stream3_2;
ASSERT_TRUE(ret.isOk());
}
void CameraHidlTest::castDevice(const sp<device::V3_2::ICameraDevice>& device,
int32_t deviceVersion,
sp<device::V3_5::ICameraDevice>* device3_5 /*out*/,
sp<device::V3_7::ICameraDevice>* device3_7 /*out*/) {
ASSERT_NE(nullptr, device3_5);
ASSERT_NE(nullptr, device3_7);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7: {
auto castResult = device::V3_7::ICameraDevice::castFrom(device);
ASSERT_TRUE(castResult.isOk());
*device3_7 = castResult;
}
[[fallthrough]];
case CAMERA_DEVICE_API_VERSION_3_5: {
auto castResult = device::V3_5::ICameraDevice::castFrom(device);
ASSERT_TRUE(castResult.isOk());
*device3_5 = castResult;
break;
}
default:
// no-op
return;
}
}
//Cast camera provider to corresponding version if available
void CameraHidlTest::castProvider(const sp<ICameraProvider>& provider,
sp<provider::V2_5::ICameraProvider>* provider2_5 /*out*/,
sp<provider::V2_6::ICameraProvider>* provider2_6 /*out*/,
sp<provider::V2_7::ICameraProvider>* provider2_7 /*out*/) {
ASSERT_NE(nullptr, provider2_5);
auto castResult2_5 = provider::V2_5::ICameraProvider::castFrom(provider);
if (castResult2_5.isOk()) {
*provider2_5 = castResult2_5;
}
ASSERT_NE(nullptr, provider2_6);
auto castResult2_6 = provider::V2_6::ICameraProvider::castFrom(provider);
if (castResult2_6.isOk()) {
*provider2_6 = castResult2_6;
}
ASSERT_NE(nullptr, provider2_7);
auto castResult2_7 = provider::V2_7::ICameraProvider::castFrom(provider);
if (castResult2_7.isOk()) {
*provider2_7 = castResult2_7;
}
}
//Cast camera device session to corresponding version
void CameraHidlTest::castSession(const sp<ICameraDeviceSession>& session, int32_t deviceVersion,
sp<device::V3_3::ICameraDeviceSession>* session3_3 /*out*/,
sp<device::V3_4::ICameraDeviceSession>* session3_4 /*out*/,
sp<device::V3_5::ICameraDeviceSession>* session3_5 /*out*/,
sp<device::V3_6::ICameraDeviceSession>* session3_6 /*out*/,
sp<device::V3_7::ICameraDeviceSession>* session3_7 /*out*/) {
ASSERT_NE(nullptr, session3_3);
ASSERT_NE(nullptr, session3_4);
ASSERT_NE(nullptr, session3_5);
ASSERT_NE(nullptr, session3_6);
ASSERT_NE(nullptr, session3_7);
switch (deviceVersion) {
case CAMERA_DEVICE_API_VERSION_3_7: {
auto castResult = device::V3_7::ICameraDeviceSession::castFrom(session);
ASSERT_TRUE(castResult.isOk());
*session3_7 = castResult;
}
[[fallthrough]];
case CAMERA_DEVICE_API_VERSION_3_6: {
auto castResult = device::V3_6::ICameraDeviceSession::castFrom(session);
ASSERT_TRUE(castResult.isOk());
*session3_6 = castResult;
}
[[fallthrough]];
case CAMERA_DEVICE_API_VERSION_3_5: {
auto castResult = device::V3_5::ICameraDeviceSession::castFrom(session);
ASSERT_TRUE(castResult.isOk());
*session3_5 = castResult;
}
[[fallthrough]];
case CAMERA_DEVICE_API_VERSION_3_4: {
auto castResult = device::V3_4::ICameraDeviceSession::castFrom(session);
ASSERT_TRUE(castResult.isOk());
*session3_4 = castResult;
}
[[fallthrough]];
case CAMERA_DEVICE_API_VERSION_3_3: {
auto castResult = device::V3_3::ICameraDeviceSession::castFrom(session);
ASSERT_TRUE(castResult.isOk());
*session3_3 = castResult;
break;
}
default:
//no-op
return;
}
}
// Cast camera device session to injection session
void CameraHidlTest::castInjectionSession(
const sp<ICameraDeviceSession>& session,
sp<device::V3_7::ICameraInjectionSession>* injectionSession3_7 /*out*/) {
ASSERT_NE(nullptr, injectionSession3_7);
sp<device::V3_7::ICameraDeviceSession> session3_7;
auto castResult = device::V3_7::ICameraDeviceSession::castFrom(session);
ASSERT_TRUE(castResult.isOk());
session3_7 = castResult;
auto castInjectionResult = device::V3_7::ICameraInjectionSession::castFrom(session3_7);
ASSERT_TRUE(castInjectionResult.isOk());
*injectionSession3_7 = castInjectionResult;
}
void CameraHidlTest::verifyStreamCombination(
sp<device::V3_7::ICameraDevice> cameraDevice3_7,
const ::android::hardware::camera::device::V3_7::StreamConfiguration& config3_7,
sp<device::V3_5::ICameraDevice> cameraDevice3_5,
const ::android::hardware::camera::device::V3_4::StreamConfiguration& config3_4,
bool expectedStatus, bool expectMethodSupported) {
if (cameraDevice3_7.get() != nullptr) {
auto ret = cameraDevice3_7->isStreamCombinationSupported_3_7(
config3_7, [expectedStatus, expectMethodSupported](Status s, bool combStatus) {
ASSERT_TRUE((Status::OK == s) ||
(!expectMethodSupported && Status::METHOD_NOT_SUPPORTED == s));
if (Status::OK == s) {
ASSERT_TRUE(combStatus == expectedStatus);
}
});
ASSERT_TRUE(ret.isOk());
}
if (cameraDevice3_5.get() != nullptr) {
auto ret = cameraDevice3_5->isStreamCombinationSupported(config3_4,
[expectedStatus, expectMethodSupported] (Status s, bool combStatus) {
ASSERT_TRUE((Status::OK == s) ||
(!expectMethodSupported && Status::METHOD_NOT_SUPPORTED == s));
if (Status::OK == s) {
ASSERT_TRUE(combStatus == expectedStatus);
}
});
ASSERT_TRUE(ret.isOk());
}
}
// Verify logical or ultra high resolution camera static metadata
void CameraHidlTest::verifyLogicalOrUltraHighResCameraMetadata(
const std::string& cameraName,
const ::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice>& device,
const CameraMetadata& chars, int deviceVersion, const hidl_vec<hidl_string>& deviceNames) {
const camera_metadata_t* metadata = (camera_metadata_t*)chars.data();
ASSERT_NE(nullptr, metadata);
SystemCameraKind systemCameraKind = SystemCameraKind::PUBLIC;
Status rc = getSystemCameraKind(metadata, &systemCameraKind);
ASSERT_EQ(rc, Status::OK);
rc = isLogicalMultiCamera(metadata);
ASSERT_TRUE(Status::OK == rc || Status::METHOD_NOT_SUPPORTED == rc);
bool isMultiCamera = (Status::OK == rc);
bool isUltraHighResCamera = isUltraHighResolution(metadata);
if (!isMultiCamera && !isUltraHighResCamera) {
return;
}
camera_metadata_ro_entry entry;
int retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_CONTROL_ZOOM_RATIO_RANGE, &entry);
bool hasZoomRatioRange = (0 == retcode && entry.count == 2);
retcode = find_camera_metadata_ro_entry(
metadata, ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION, &entry);
bool hasHalBufferManager =
(0 == retcode && 1 == entry.count &&
entry.data.i32[0] == ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION_HIDL_DEVICE_3_5);
retcode = find_camera_metadata_ro_entry(
metadata, ANDROID_SCALER_MULTI_RESOLUTION_STREAM_SUPPORTED, &entry);
bool multiResolutionStreamSupported =
(0 == retcode && 1 == entry.count &&
entry.data.u8[0] == ANDROID_SCALER_MULTI_RESOLUTION_STREAM_SUPPORTED_TRUE);
if (multiResolutionStreamSupported) {
ASSERT_TRUE(hasHalBufferManager);
}
std::string version, cameraId;
ASSERT_TRUE(::matchDeviceName(cameraName, mProviderType, &version, &cameraId));
std::unordered_set<std::string> physicalIds;
rc = getPhysicalCameraIds(metadata, &physicalIds);
ASSERT_TRUE(isUltraHighResCamera || Status::OK == rc);
for (auto physicalId : physicalIds) {
ASSERT_NE(physicalId, cameraId);
}
if (physicalIds.size() == 0) {
ASSERT_TRUE(isUltraHighResCamera && !isMultiCamera);
physicalIds.insert(cameraId);
}
std::unordered_set<int32_t> physicalRequestKeyIDs;
rc = getSupportedKeys(const_cast<camera_metadata_t *>(metadata),
ANDROID_REQUEST_AVAILABLE_PHYSICAL_CAMERA_REQUEST_KEYS, &physicalRequestKeyIDs);
ASSERT_TRUE(Status::OK == rc);
bool hasTestPatternPhysicalRequestKey = physicalRequestKeyIDs.find(
ANDROID_SENSOR_TEST_PATTERN_MODE) != physicalRequestKeyIDs.end();
std::unordered_set<int32_t> privacyTestPatternModes;
getPrivacyTestPatternModes(metadata, &privacyTestPatternModes);
// Map from image format to number of multi-resolution sizes for that format
std::unordered_map<int32_t, size_t> multiResOutputFormatCounterMap;
std::unordered_map<int32_t, size_t> multiResInputFormatCounterMap;
for (auto physicalId : physicalIds) {
bool isPublicId = false;
std::string fullPublicId;
SystemCameraKind physSystemCameraKind = SystemCameraKind::PUBLIC;
for (auto& deviceName : deviceNames) {
std::string publicVersion, publicId;
ASSERT_TRUE(::matchDeviceName(deviceName, mProviderType, &publicVersion, &publicId));
if (physicalId == publicId) {
isPublicId = true;
fullPublicId = deviceName;
break;
}
}
camera_metadata_t* staticMetadata;
camera_metadata_ro_entry physicalMultiResStreamConfigs;
camera_metadata_ro_entry physicalStreamConfigs;
camera_metadata_ro_entry physicalMaxResolutionStreamConfigs;
bool isUltraHighRes = false;
std::unordered_set<int32_t> subCameraPrivacyTestPatterns;
if (isPublicId) {
::android::sp<::android::hardware::camera::device::V3_2::ICameraDevice> subDevice;
Return<void> ret;
ret = mProvider->getCameraDeviceInterface_V3_x(
fullPublicId, [&](auto status, const auto& device) {
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
subDevice = device;
});
ASSERT_TRUE(ret.isOk());
ret = subDevice->getCameraCharacteristics([&](auto status, const auto& chars) {
ASSERT_EQ(Status::OK, status);
staticMetadata = clone_camera_metadata(
reinterpret_cast<const camera_metadata_t*>(chars.data()));
ASSERT_NE(nullptr, staticMetadata);
rc = getSystemCameraKind(staticMetadata, &physSystemCameraKind);
ASSERT_EQ(rc, Status::OK);
// Make sure that the system camera kind of a non-hidden
// physical cameras is the same as the logical camera associated
// with it.
ASSERT_EQ(physSystemCameraKind, systemCameraKind);
retcode = find_camera_metadata_ro_entry(staticMetadata,
ANDROID_CONTROL_ZOOM_RATIO_RANGE, &entry);
bool subCameraHasZoomRatioRange = (0 == retcode && entry.count == 2);
ASSERT_EQ(hasZoomRatioRange, subCameraHasZoomRatioRange);
getMultiResolutionStreamConfigurations(
&physicalMultiResStreamConfigs, &physicalStreamConfigs,
&physicalMaxResolutionStreamConfigs, staticMetadata);
isUltraHighRes = isUltraHighResolution(staticMetadata);
getPrivacyTestPatternModes(staticMetadata, &subCameraPrivacyTestPatterns);
});
ASSERT_TRUE(ret.isOk());
} else {
ASSERT_TRUE(deviceVersion >= CAMERA_DEVICE_API_VERSION_3_5);
auto castResult = device::V3_5::ICameraDevice::castFrom(device);
ASSERT_TRUE(castResult.isOk());
::android::sp<::android::hardware::camera::device::V3_5::ICameraDevice> device3_5 =
castResult;
ASSERT_NE(device3_5, nullptr);
// Check camera characteristics for hidden camera id
Return<void> ret = device3_5->getPhysicalCameraCharacteristics(
physicalId, [&](auto status, const auto& chars) {
verifyCameraCharacteristics(status, chars);
verifyMonochromeCharacteristics(chars, deviceVersion);
staticMetadata = clone_camera_metadata(
reinterpret_cast<const camera_metadata_t*>(chars.data()));
ASSERT_NE(nullptr, staticMetadata);
retcode = find_camera_metadata_ro_entry(
staticMetadata, ANDROID_CONTROL_ZOOM_RATIO_RANGE, &entry);
bool subCameraHasZoomRatioRange = (0 == retcode && entry.count == 2);
ASSERT_EQ(hasZoomRatioRange, subCameraHasZoomRatioRange);
getMultiResolutionStreamConfigurations(
&physicalMultiResStreamConfigs, &physicalStreamConfigs,
&physicalMaxResolutionStreamConfigs, staticMetadata);
isUltraHighRes = isUltraHighResolution(staticMetadata);
getPrivacyTestPatternModes(staticMetadata, &subCameraPrivacyTestPatterns);
});
ASSERT_TRUE(ret.isOk());
// Check calling getCameraDeviceInterface_V3_x() on hidden camera id returns
// ILLEGAL_ARGUMENT.
std::stringstream s;
s << "device@" << version << "/" << mProviderType << "/" << physicalId;
hidl_string fullPhysicalId(s.str());
ret = mProvider->getCameraDeviceInterface_V3_x(
fullPhysicalId, [&](auto status, const auto& device3_x) {
ASSERT_EQ(Status::ILLEGAL_ARGUMENT, status);
ASSERT_EQ(device3_x, nullptr);
});
ASSERT_TRUE(ret.isOk());
}
if (hasTestPatternPhysicalRequestKey) {
ASSERT_TRUE(privacyTestPatternModes == subCameraPrivacyTestPatterns);
}
if (physicalMultiResStreamConfigs.count > 0) {
ASSERT_GE(deviceVersion, CAMERA_DEVICE_API_VERSION_3_7);
ASSERT_EQ(physicalMultiResStreamConfigs.count % 4, 0);
// Each supported size must be max size for that format,
for (size_t i = 0; i < physicalMultiResStreamConfigs.count / 4; i++) {
int32_t multiResFormat = physicalMultiResStreamConfigs.data.i32[i * 4];
int32_t multiResWidth = physicalMultiResStreamConfigs.data.i32[i * 4 + 1];
int32_t multiResHeight = physicalMultiResStreamConfigs.data.i32[i * 4 + 2];
int32_t multiResInput = physicalMultiResStreamConfigs.data.i32[i * 4 + 3];
// Check if the resolution is the max resolution in stream
// configuration map
bool supported = false;
bool isMaxSize = true;
for (size_t j = 0; j < physicalStreamConfigs.count / 4; j++) {
int32_t format = physicalStreamConfigs.data.i32[j * 4];
int32_t width = physicalStreamConfigs.data.i32[j * 4 + 1];
int32_t height = physicalStreamConfigs.data.i32[j * 4 + 2];
int32_t input = physicalStreamConfigs.data.i32[j * 4 + 3];
if (format == multiResFormat && input == multiResInput) {
if (width == multiResWidth && height == multiResHeight) {
supported = true;
} else if (width * height > multiResWidth * multiResHeight) {
isMaxSize = false;
}
}
}
// Check if the resolution is the max resolution in max
// resolution stream configuration map
bool supportedUltraHighRes = false;
bool isUltraHighResMaxSize = true;
for (size_t j = 0; j < physicalMaxResolutionStreamConfigs.count / 4; j++) {
int32_t format = physicalMaxResolutionStreamConfigs.data.i32[j * 4];
int32_t width = physicalMaxResolutionStreamConfigs.data.i32[j * 4 + 1];
int32_t height = physicalMaxResolutionStreamConfigs.data.i32[j * 4 + 2];
int32_t input = physicalMaxResolutionStreamConfigs.data.i32[j * 4 + 3];
if (format == multiResFormat && input == multiResInput) {
if (width == multiResWidth && height == multiResHeight) {
supportedUltraHighRes = true;
} else if (width * height > multiResWidth * multiResHeight) {
isUltraHighResMaxSize = false;
}
}
}
if (isUltraHighRes) {
// For ultra high resolution camera, the configuration must
// be the maximum size in stream configuration map, or max
// resolution stream configuration map
ASSERT_TRUE((supported && isMaxSize) ||
(supportedUltraHighRes && isUltraHighResMaxSize));
} else {
// The configuration must be the maximum size in stream
// configuration map
ASSERT_TRUE(supported && isMaxSize);
ASSERT_FALSE(supportedUltraHighRes);
}
// Increment the counter for the configuration's format.
auto& formatCounterMap = multiResInput ? multiResInputFormatCounterMap
: multiResOutputFormatCounterMap;
if (formatCounterMap.count(multiResFormat) == 0) {
formatCounterMap[multiResFormat] = 1;
} else {
formatCounterMap[multiResFormat]++;
}
}
// There must be no duplicates
for (size_t i = 0; i < physicalMultiResStreamConfigs.count / 4 - 1; i++) {
for (size_t j = i + 1; j < physicalMultiResStreamConfigs.count / 4; j++) {
// Input/output doesn't match
if (physicalMultiResStreamConfigs.data.i32[i * 4 + 3] !=
physicalMultiResStreamConfigs.data.i32[j * 4 + 3]) {
continue;
}
// Format doesn't match
if (physicalMultiResStreamConfigs.data.i32[i * 4] !=
physicalMultiResStreamConfigs.data.i32[j * 4]) {
continue;
}
// Width doesn't match
if (physicalMultiResStreamConfigs.data.i32[i * 4 + 1] !=
physicalMultiResStreamConfigs.data.i32[j * 4 + 1]) {
continue;
}
// Height doesn't match
if (physicalMultiResStreamConfigs.data.i32[i * 4 + 2] !=
physicalMultiResStreamConfigs.data.i32[j * 4 + 2]) {
continue;
}
// input/output, format, width, and height all match
ADD_FAILURE();
}
}
}
free_camera_metadata(staticMetadata);
}
// If a multi-resolution stream is supported, there must be at least one
// format with more than one resolutions
if (multiResolutionStreamSupported) {
size_t numMultiResFormats = 0;
for (const auto& [format, sizeCount] : multiResOutputFormatCounterMap) {
if (sizeCount >= 2) {
numMultiResFormats++;
}
}
for (const auto& [format, sizeCount] : multiResInputFormatCounterMap) {
if (sizeCount >= 2) {
numMultiResFormats++;
// If multi-resolution reprocessing is supported, the logical
// camera or ultra-high resolution sensor camera must support
// the corresponding reprocessing capability.
if (format == static_cast<uint32_t>(PixelFormat::IMPLEMENTATION_DEFINED)) {
ASSERT_EQ(isZSLModeAvailable(metadata, PRIV_REPROCESS), Status::OK);
} else if (format == static_cast<int32_t>(PixelFormat::YCBCR_420_888)) {
ASSERT_EQ(isZSLModeAvailable(metadata, YUV_REPROCESS), Status::OK);
}
}
}
ASSERT_GT(numMultiResFormats, 0);
}
// Make sure ANDROID_LOGICAL_MULTI_CAMERA_ACTIVE_PHYSICAL_ID is available in
// result keys.
if (isMultiCamera && deviceVersion >= CAMERA_DEVICE_API_VERSION_3_5) {
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, &entry);
if ((0 == retcode) && (entry.count > 0)) {
ASSERT_NE(std::find(entry.data.i32, entry.data.i32 + entry.count,
static_cast<int32_t>(
CameraMetadataTag::ANDROID_LOGICAL_MULTI_CAMERA_ACTIVE_PHYSICAL_ID)),
entry.data.i32 + entry.count);
} else {
ADD_FAILURE() << "Get camera availableResultKeys failed!";
}
}
}
void CameraHidlTest::verifyCameraCharacteristics(Status status, const CameraMetadata& chars) {
ASSERT_EQ(Status::OK, status);
const camera_metadata_t* metadata = (camera_metadata_t*)chars.data();
size_t expectedSize = chars.size();
int result = validate_camera_metadata_structure(metadata, &expectedSize);
ASSERT_TRUE((result == 0) || (result == CAMERA_METADATA_VALIDATION_SHIFTED));
size_t entryCount = get_camera_metadata_entry_count(metadata);
// TODO: we can do better than 0 here. Need to check how many required
// characteristics keys we've defined.
ASSERT_GT(entryCount, 0u);
camera_metadata_ro_entry entry;
int retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL, &entry);
if ((0 == retcode) && (entry.count > 0)) {
uint8_t hardwareLevel = entry.data.u8[0];
ASSERT_TRUE(
hardwareLevel == ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED ||
hardwareLevel == ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL ||
hardwareLevel == ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_3 ||
hardwareLevel == ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL);
} else {
ADD_FAILURE() << "Get camera hardware level failed!";
}
entry.count = 0;
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_CHARACTERISTIC_KEYS_NEEDING_PERMISSION, &entry);
if ((0 == retcode) || (entry.count > 0)) {
ADD_FAILURE() << "ANDROID_REQUEST_CHARACTERISTIC_KEYS_NEEDING_PERMISSION "
<< " per API contract should never be set by Hal!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STREAM_CONFIGURATIONS, &entry);
if ((0 == retcode) || (entry.count > 0)) {
ADD_FAILURE() << "ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STREAM_CONFIGURATIONS"
<< " per API contract should never be set by Hal!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_MIN_FRAME_DURATIONS, &entry);
if ((0 == retcode) || (entry.count > 0)) {
ADD_FAILURE() << "ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_MIN_FRAME_DURATIONS"
<< " per API contract should never be set by Hal!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STALL_DURATIONS, &entry);
if ((0 == retcode) || (entry.count > 0)) {
ADD_FAILURE() << "ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STALL_DURATIONS"
<< " per API contract should never be set by Hal!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS, &entry);
if (0 == retcode || entry.count > 0) {
ADD_FAILURE() << "ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS "
<< " per API contract should never be set by Hal!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_HEIC_AVAILABLE_HEIC_MIN_FRAME_DURATIONS, &entry);
if (0 == retcode || entry.count > 0) {
ADD_FAILURE() << "ANDROID_HEIC_AVAILABLE_HEIC_MIN_FRAME_DURATIONS "
<< " per API contract should never be set by Hal!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_HEIC_AVAILABLE_HEIC_STALL_DURATIONS, &entry);
if (0 == retcode || entry.count > 0) {
ADD_FAILURE() << "ANDROID_HEIC_AVAILABLE_HEIC_STALL_DURATIONS "
<< " per API contract should never be set by Hal!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_HEIC_INFO_SUPPORTED, &entry);
if (0 == retcode && entry.count > 0) {
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT, &entry);
if (0 == retcode && entry.count > 0) {
uint8_t maxJpegAppSegmentsCount = entry.data.u8[0];
ASSERT_TRUE(maxJpegAppSegmentsCount >= 1 &&
maxJpegAppSegmentsCount <= 16);
} else {
ADD_FAILURE() << "Get Heic maxJpegAppSegmentsCount failed!";
}
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_LENS_POSE_REFERENCE, &entry);
if (0 == retcode && entry.count > 0) {
uint8_t poseReference = entry.data.u8[0];
ASSERT_TRUE(poseReference <= ANDROID_LENS_POSE_REFERENCE_UNDEFINED &&
poseReference >= ANDROID_LENS_POSE_REFERENCE_PRIMARY_CAMERA);
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_INFO_DEVICE_STATE_ORIENTATIONS, &entry);
if (0 == retcode && entry.count > 0) {
ASSERT_TRUE((entry.count % 2) == 0);
uint64_t maxPublicState = ((uint64_t) provider::V2_5::DeviceState::FOLDED) << 1;
uint64_t vendorStateStart = 1UL << 31; // Reserved for vendor specific states
uint64_t stateMask = (1 << vendorStateStart) - 1;
stateMask &= ~((1 << maxPublicState) - 1);
for (int i = 0; i < entry.count; i += 2){
ASSERT_TRUE((entry.data.i64[i] & stateMask) == 0);
ASSERT_TRUE((entry.data.i64[i+1] % 90) == 0);
}
}
verifyExtendedSceneModeCharacteristics(metadata);
verifyZoomCharacteristics(metadata);
verifyStreamUseCaseCharacteristics(metadata);
}
void CameraHidlTest::verifyExtendedSceneModeCharacteristics(const camera_metadata_t* metadata) {
camera_metadata_ro_entry entry;
int retcode = 0;
retcode = find_camera_metadata_ro_entry(metadata, ANDROID_CONTROL_AVAILABLE_MODES, &entry);
if ((0 == retcode) && (entry.count > 0)) {
for (auto i = 0; i < entry.count; i++) {
ASSERT_TRUE(entry.data.u8[i] >= ANDROID_CONTROL_MODE_OFF &&
entry.data.u8[i] <= ANDROID_CONTROL_MODE_USE_EXTENDED_SCENE_MODE);
}
} else {
ADD_FAILURE() << "Get camera controlAvailableModes failed!";
}
// Check key availability in capabilities, request and result.
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, &entry);
bool hasExtendedSceneModeRequestKey = false;
if ((0 == retcode) && (entry.count > 0)) {
hasExtendedSceneModeRequestKey =
std::find(entry.data.i32, entry.data.i32 + entry.count,
ANDROID_CONTROL_EXTENDED_SCENE_MODE) != entry.data.i32 + entry.count;
} else {
ADD_FAILURE() << "Get camera availableRequestKeys failed!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, &entry);
bool hasExtendedSceneModeResultKey = false;
if ((0 == retcode) && (entry.count > 0)) {
hasExtendedSceneModeResultKey =
std::find(entry.data.i32, entry.data.i32 + entry.count,
ANDROID_CONTROL_EXTENDED_SCENE_MODE) != entry.data.i32 + entry.count;
} else {
ADD_FAILURE() << "Get camera availableResultKeys failed!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, &entry);
bool hasExtendedSceneModeMaxSizesKey = false;
bool hasExtendedSceneModeZoomRatioRangesKey = false;
if ((0 == retcode) && (entry.count > 0)) {
hasExtendedSceneModeMaxSizesKey =
std::find(entry.data.i32, entry.data.i32 + entry.count,
ANDROID_CONTROL_AVAILABLE_EXTENDED_SCENE_MODE_MAX_SIZES) !=
entry.data.i32 + entry.count;
hasExtendedSceneModeZoomRatioRangesKey =
std::find(entry.data.i32, entry.data.i32 + entry.count,
ANDROID_CONTROL_AVAILABLE_EXTENDED_SCENE_MODE_ZOOM_RATIO_RANGES) !=
entry.data.i32 + entry.count;
} else {
ADD_FAILURE() << "Get camera availableCharacteristicsKeys failed!";
}
camera_metadata_ro_entry maxSizesEntry;
retcode = find_camera_metadata_ro_entry(
metadata, ANDROID_CONTROL_AVAILABLE_EXTENDED_SCENE_MODE_MAX_SIZES, &maxSizesEntry);
bool hasExtendedSceneModeMaxSizes = (0 == retcode && maxSizesEntry.count > 0);
camera_metadata_ro_entry zoomRatioRangesEntry;
retcode = find_camera_metadata_ro_entry(
metadata, ANDROID_CONTROL_AVAILABLE_EXTENDED_SCENE_MODE_ZOOM_RATIO_RANGES,
&zoomRatioRangesEntry);
bool hasExtendedSceneModeZoomRatioRanges = (0 == retcode && zoomRatioRangesEntry.count > 0);
// Extended scene mode keys must all be available, or all be unavailable.
bool noExtendedSceneMode =
!hasExtendedSceneModeRequestKey && !hasExtendedSceneModeResultKey &&
!hasExtendedSceneModeMaxSizesKey && !hasExtendedSceneModeZoomRatioRangesKey &&
!hasExtendedSceneModeMaxSizes && !hasExtendedSceneModeZoomRatioRanges;
if (noExtendedSceneMode) {
return;
}
bool hasExtendedSceneMode = hasExtendedSceneModeRequestKey && hasExtendedSceneModeResultKey &&
hasExtendedSceneModeMaxSizesKey &&
hasExtendedSceneModeZoomRatioRangesKey &&
hasExtendedSceneModeMaxSizes && hasExtendedSceneModeZoomRatioRanges;
ASSERT_TRUE(hasExtendedSceneMode);
// Must have DISABLED, and must have one of BOKEH_STILL_CAPTURE, BOKEH_CONTINUOUS, or a VENDOR
// mode.
ASSERT_TRUE((maxSizesEntry.count == 6 && zoomRatioRangesEntry.count == 2) ||
(maxSizesEntry.count == 9 && zoomRatioRangesEntry.count == 4));
bool hasDisabledMode = false;
bool hasBokehStillCaptureMode = false;
bool hasBokehContinuousMode = false;
bool hasVendorMode = false;
std::vector<AvailableStream> outputStreams;
ASSERT_EQ(Status::OK, getAvailableOutputStreams(metadata, outputStreams));
for (int i = 0, j = 0; i < maxSizesEntry.count && j < zoomRatioRangesEntry.count; i += 3) {
int32_t mode = maxSizesEntry.data.i32[i];
int32_t maxWidth = maxSizesEntry.data.i32[i+1];
int32_t maxHeight = maxSizesEntry.data.i32[i+2];
switch (mode) {
case ANDROID_CONTROL_EXTENDED_SCENE_MODE_DISABLED:
hasDisabledMode = true;
ASSERT_TRUE(maxWidth == 0 && maxHeight == 0);
break;
case ANDROID_CONTROL_EXTENDED_SCENE_MODE_BOKEH_STILL_CAPTURE:
hasBokehStillCaptureMode = true;
j += 2;
break;
case ANDROID_CONTROL_EXTENDED_SCENE_MODE_BOKEH_CONTINUOUS:
hasBokehContinuousMode = true;
j += 2;
break;
default:
if (mode < ANDROID_CONTROL_EXTENDED_SCENE_MODE_VENDOR_START) {
ADD_FAILURE() << "Invalid extended scene mode advertised: " << mode;
} else {
hasVendorMode = true;
j += 2;
}
break;
}
if (mode != ANDROID_CONTROL_EXTENDED_SCENE_MODE_DISABLED) {
// Make sure size is supported.
bool sizeSupported = false;
for (const auto& stream : outputStreams) {
if ((stream.format == static_cast<int32_t>(PixelFormat::YCBCR_420_888) ||
stream.format == static_cast<int32_t>(PixelFormat::IMPLEMENTATION_DEFINED))
&& stream.width == maxWidth && stream.height == maxHeight) {
sizeSupported = true;
break;
}
}
ASSERT_TRUE(sizeSupported);
// Make sure zoom range is valid
float minZoomRatio = zoomRatioRangesEntry.data.f[0];
float maxZoomRatio = zoomRatioRangesEntry.data.f[1];
ASSERT_GT(minZoomRatio, 0.0f);
ASSERT_LE(minZoomRatio, maxZoomRatio);
}
}
ASSERT_TRUE(hasDisabledMode);
ASSERT_TRUE(hasBokehStillCaptureMode || hasBokehContinuousMode || hasVendorMode);
}
void CameraHidlTest::verifyZoomCharacteristics(const camera_metadata_t* metadata) {
camera_metadata_ro_entry entry;
int retcode = 0;
// Check key availability in capabilities, request and result.
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM, &entry);
float maxDigitalZoom = 1.0;
if ((0 == retcode) && (entry.count == 1)) {
maxDigitalZoom = entry.data.f[0];
} else {
ADD_FAILURE() << "Get camera scalerAvailableMaxDigitalZoom failed!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, &entry);
bool hasZoomRequestKey = false;
if ((0 == retcode) && (entry.count > 0)) {
hasZoomRequestKey = std::find(entry.data.i32, entry.data.i32+entry.count,
ANDROID_CONTROL_ZOOM_RATIO) != entry.data.i32+entry.count;
} else {
ADD_FAILURE() << "Get camera availableRequestKeys failed!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, &entry);
bool hasZoomResultKey = false;
if ((0 == retcode) && (entry.count > 0)) {
hasZoomResultKey = std::find(entry.data.i32, entry.data.i32+entry.count,
ANDROID_CONTROL_ZOOM_RATIO) != entry.data.i32+entry.count;
} else {
ADD_FAILURE() << "Get camera availableResultKeys failed!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, &entry);
bool hasZoomCharacteristicsKey = false;
if ((0 == retcode) && (entry.count > 0)) {
hasZoomCharacteristicsKey = std::find(entry.data.i32, entry.data.i32+entry.count,
ANDROID_CONTROL_ZOOM_RATIO_RANGE) != entry.data.i32+entry.count;
} else {
ADD_FAILURE() << "Get camera availableCharacteristicsKeys failed!";
}
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_CONTROL_ZOOM_RATIO_RANGE, &entry);
bool hasZoomRatioRange = (0 == retcode && entry.count == 2);
// Zoom keys must all be available, or all be unavailable.
bool noZoomRatio = !hasZoomRequestKey && !hasZoomResultKey && !hasZoomCharacteristicsKey &&
!hasZoomRatioRange;
if (noZoomRatio) {
return;
}
bool hasZoomRatio = hasZoomRequestKey && hasZoomResultKey && hasZoomCharacteristicsKey &&
hasZoomRatioRange;
ASSERT_TRUE(hasZoomRatio);
float minZoomRatio = entry.data.f[0];
float maxZoomRatio = entry.data.f[1];
constexpr float FLOATING_POINT_THRESHOLD = 0.00001f;
if (maxDigitalZoom > maxZoomRatio + FLOATING_POINT_THRESHOLD) {
ADD_FAILURE() << "Maximum digital zoom " << maxDigitalZoom
<< " is larger than maximum zoom ratio " << maxZoomRatio << " + threshold "
<< FLOATING_POINT_THRESHOLD << "!";
}
if (minZoomRatio > maxZoomRatio) {
ADD_FAILURE() << "Maximum zoom ratio is less than minimum zoom ratio!";
}
if (minZoomRatio > 1.0f) {
ADD_FAILURE() << "Minimum zoom ratio is more than 1.0!";
}
if (maxZoomRatio < 1.0f) {
ADD_FAILURE() << "Maximum zoom ratio is less than 1.0!";
}
// Make sure CROPPING_TYPE is CENTER_ONLY
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_SCALER_CROPPING_TYPE, &entry);
if ((0 == retcode) && (entry.count == 1)) {
int8_t croppingType = entry.data.u8[0];
ASSERT_EQ(croppingType, ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY);
} else {
ADD_FAILURE() << "Get camera scalerCroppingType failed!";
}
}
void CameraHidlTest::verifyStreamUseCaseCharacteristics(const camera_metadata_t* metadata) {
camera_metadata_ro_entry entry;
// Check capabilities
int retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
bool hasStreamUseCaseCap = false;
if ((0 == retcode) && (entry.count > 0)) {
if (std::find(entry.data.u8, entry.data.u8 + entry.count,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_STREAM_USE_CASE) !=
entry.data.u8 + entry.count) {
hasStreamUseCaseCap = true;
}
}
bool supportMandatoryUseCases = false;
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES, &entry);
if ((0 == retcode) && (entry.count > 0)) {
supportMandatoryUseCases = true;
for (size_t i = 0; i < kMandatoryUseCases.size(); i++) {
if (std::find(entry.data.i64, entry.data.i64 + entry.count, kMandatoryUseCases[i])
== entry.data.i64 + entry.count) {
supportMandatoryUseCases = false;
break;
}
}
bool supportDefaultUseCase = false;
for (size_t i = 0; i < entry.count; i++) {
if (entry.data.i64[i] == ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT) {
supportDefaultUseCase = true;
}
ASSERT_TRUE(entry.data.i64[i] <= ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_VIDEO_CALL ||
entry.data.i64[i] >= ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_VENDOR_START);
}
ASSERT_TRUE(supportDefaultUseCase);
}
ASSERT_EQ(hasStreamUseCaseCap, supportMandatoryUseCases);
}
void CameraHidlTest::verifyMonochromeCharacteristics(const CameraMetadata& chars,
int deviceVersion) {
const camera_metadata_t* metadata = (camera_metadata_t*)chars.data();
Status rc = isMonochromeCamera(metadata);
if (Status::METHOD_NOT_SUPPORTED == rc) {
return;
}
ASSERT_EQ(Status::OK, rc);
camera_metadata_ro_entry entry;
// Check capabilities
int retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
if ((0 == retcode) && (entry.count > 0)) {
ASSERT_EQ(std::find(entry.data.u8, entry.data.u8 + entry.count,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING),
entry.data.u8 + entry.count);
if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_5) {
ASSERT_EQ(std::find(entry.data.u8, entry.data.u8 + entry.count,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW),
entry.data.u8 + entry.count);
}
}
if (deviceVersion >= CAMERA_DEVICE_API_VERSION_3_5) {
// Check Cfa
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT, &entry);
if ((0 == retcode) && (entry.count == 1)) {
ASSERT_TRUE(entry.data.i32[0] == static_cast<int32_t>(
CameraMetadataEnumAndroidSensorInfoColorFilterArrangement::ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_MONO)
|| entry.data.i32[0] == static_cast<int32_t>(
CameraMetadataEnumAndroidSensorInfoColorFilterArrangement::ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_NIR));
}
// Check availableRequestKeys
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, &entry);
if ((0 == retcode) && (entry.count > 0)) {
for (size_t i = 0; i < entry.count; i++) {
ASSERT_NE(entry.data.i32[i], ANDROID_COLOR_CORRECTION_MODE);
ASSERT_NE(entry.data.i32[i], ANDROID_COLOR_CORRECTION_TRANSFORM);
ASSERT_NE(entry.data.i32[i], ANDROID_COLOR_CORRECTION_GAINS);
}
} else {
ADD_FAILURE() << "Get camera availableRequestKeys failed!";
}
// Check availableResultKeys
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, &entry);
if ((0 == retcode) && (entry.count > 0)) {
for (size_t i = 0; i < entry.count; i++) {
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_GREEN_SPLIT);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_NEUTRAL_COLOR_POINT);
ASSERT_NE(entry.data.i32[i], ANDROID_COLOR_CORRECTION_MODE);
ASSERT_NE(entry.data.i32[i], ANDROID_COLOR_CORRECTION_TRANSFORM);
ASSERT_NE(entry.data.i32[i], ANDROID_COLOR_CORRECTION_GAINS);
}
} else {
ADD_FAILURE() << "Get camera availableResultKeys failed!";
}
// Check availableCharacteristicKeys
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, &entry);
if ((0 == retcode) && (entry.count > 0)) {
for (size_t i = 0; i < entry.count; i++) {
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_REFERENCE_ILLUMINANT1);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_REFERENCE_ILLUMINANT2);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_CALIBRATION_TRANSFORM1);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_CALIBRATION_TRANSFORM2);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_COLOR_TRANSFORM1);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_COLOR_TRANSFORM2);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_FORWARD_MATRIX1);
ASSERT_NE(entry.data.i32[i], ANDROID_SENSOR_FORWARD_MATRIX2);
}
} else {
ADD_FAILURE() << "Get camera availableResultKeys failed!";
}
// Check blackLevelPattern
retcode = find_camera_metadata_ro_entry(metadata,
ANDROID_SENSOR_BLACK_LEVEL_PATTERN, &entry);
if ((0 == retcode) && (entry.count > 0)) {
ASSERT_EQ(entry.count, 4);
for (size_t i = 1; i < entry.count; i++) {
ASSERT_EQ(entry.data.i32[i], entry.data.i32[0]);
}
}
}
}
void CameraHidlTest::verifyMonochromeCameraResult(
const ::android::hardware::camera::common::V1_0::helper::CameraMetadata& metadata) {
camera_metadata_ro_entry entry;
// Check tags that are not applicable for monochrome camera
ASSERT_FALSE(metadata.exists(ANDROID_SENSOR_GREEN_SPLIT));
ASSERT_FALSE(metadata.exists(ANDROID_SENSOR_NEUTRAL_COLOR_POINT));
ASSERT_FALSE(metadata.exists(ANDROID_COLOR_CORRECTION_MODE));
ASSERT_FALSE(metadata.exists(ANDROID_COLOR_CORRECTION_TRANSFORM));
ASSERT_FALSE(metadata.exists(ANDROID_COLOR_CORRECTION_GAINS));
// Check dynamicBlackLevel
entry = metadata.find(ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL);
if (entry.count > 0) {
ASSERT_EQ(entry.count, 4);
for (size_t i = 1; i < entry.count; i++) {
ASSERT_FLOAT_EQ(entry.data.f[i], entry.data.f[0]);
}
}
// Check noiseProfile
entry = metadata.find(ANDROID_SENSOR_NOISE_PROFILE);
if (entry.count > 0) {
ASSERT_EQ(entry.count, 2);
}
// Check lensShadingMap
entry = metadata.find(ANDROID_STATISTICS_LENS_SHADING_MAP);
if (entry.count > 0) {
ASSERT_EQ(entry.count % 4, 0);
for (size_t i = 0; i < entry.count/4; i++) {
ASSERT_FLOAT_EQ(entry.data.f[i*4+1], entry.data.f[i*4]);
ASSERT_FLOAT_EQ(entry.data.f[i*4+2], entry.data.f[i*4]);
ASSERT_FLOAT_EQ(entry.data.f[i*4+3], entry.data.f[i*4]);
}
}
// Check tonemapCurve
camera_metadata_ro_entry curveRed = metadata.find(ANDROID_TONEMAP_CURVE_RED);
camera_metadata_ro_entry curveGreen = metadata.find(ANDROID_TONEMAP_CURVE_GREEN);
camera_metadata_ro_entry curveBlue = metadata.find(ANDROID_TONEMAP_CURVE_BLUE);
if (curveRed.count > 0 && curveGreen.count > 0 && curveBlue.count > 0) {
ASSERT_EQ(curveRed.count, curveGreen.count);
ASSERT_EQ(curveRed.count, curveBlue.count);
for (size_t i = 0; i < curveRed.count; i++) {
ASSERT_FLOAT_EQ(curveGreen.data.f[i], curveRed.data.f[i]);
ASSERT_FLOAT_EQ(curveBlue.data.f[i], curveRed.data.f[i]);
}
}
}
void CameraHidlTest::verifyBuffersReturned(
sp<device::V3_2::ICameraDeviceSession> session,
int deviceVersion, int32_t streamId,
sp<DeviceCb> cb, uint32_t streamConfigCounter) {
sp<device::V3_3::ICameraDeviceSession> session3_3;
sp<device::V3_4::ICameraDeviceSession> session3_4;
sp<device::V3_5::ICameraDeviceSession> session3_5;
sp<device::V3_6::ICameraDeviceSession> session3_6;
sp<device::V3_7::ICameraDeviceSession> session3_7;
castSession(session, deviceVersion, &session3_3, &session3_4, &session3_5, &session3_6,
&session3_7);
ASSERT_NE(nullptr, session3_5.get());
hidl_vec<int32_t> streamIds(1);
streamIds[0] = streamId;
session3_5->signalStreamFlush(streamIds, /*streamConfigCounter*/streamConfigCounter);
cb->waitForBuffersReturned();
}
void CameraHidlTest::verifyBuffersReturned(
sp<device::V3_4::ICameraDeviceSession> session3_4,
hidl_vec<int32_t> streamIds, sp<DeviceCb> cb, uint32_t streamConfigCounter) {
auto castResult = device::V3_5::ICameraDeviceSession::castFrom(session3_4);
ASSERT_TRUE(castResult.isOk());
sp<device::V3_5::ICameraDeviceSession> session3_5 = castResult;
ASSERT_NE(nullptr, session3_5.get());
session3_5->signalStreamFlush(streamIds, /*streamConfigCounter*/streamConfigCounter);
cb->waitForBuffersReturned();
}
void CameraHidlTest::verifyBuffersReturned(sp<device::V3_7::ICameraDeviceSession> session3_7,
hidl_vec<int32_t> streamIds, sp<DeviceCb> cb,
uint32_t streamConfigCounter) {
session3_7->signalStreamFlush(streamIds, /*streamConfigCounter*/ streamConfigCounter);
cb->waitForBuffersReturned();
}
void CameraHidlTest::verifyLogicalCameraResult(const camera_metadata_t* staticMetadata,
const ::android::hardware::camera::common::V1_0::helper::CameraMetadata& resultMetadata) {
std::unordered_set<std::string> physicalIds;
Status rc = getPhysicalCameraIds(staticMetadata, &physicalIds);
ASSERT_TRUE(Status::OK == rc);
ASSERT_TRUE(physicalIds.size() > 1);
camera_metadata_ro_entry entry;
// Check mainPhysicalId
entry = resultMetadata.find(ANDROID_LOGICAL_MULTI_CAMERA_ACTIVE_PHYSICAL_ID);
if (entry.count > 0) {
std::string mainPhysicalId(reinterpret_cast<const char *>(entry.data.u8));
ASSERT_NE(physicalIds.find(mainPhysicalId), physicalIds.end());
} else {
ADD_FAILURE() << "Get LOGICAL_MULTI_CAMERA_ACTIVE_PHYSICAL_ID failed!";
}
}
// Open a device session with empty callbacks and return static metadata.
void CameraHidlTest::openEmptyDeviceSession(const std::string &name, sp<ICameraProvider> provider,
sp<ICameraDeviceSession> *session /*out*/, camera_metadata_t **staticMeta /*out*/,
::android::sp<ICameraDevice> *cameraDevice /*out*/) {
ASSERT_NE(nullptr, session);
ASSERT_NE(nullptr, staticMeta);
::android::sp<ICameraDevice> device3_x;
ALOGI("configureStreams: Testing camera device %s", name.c_str());
Return<void> ret;
ret = provider->getCameraDeviceInterface_V3_x(
name,
[&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V3_x returns status:%d",
(int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
device3_x = device;
});
ASSERT_TRUE(ret.isOk());
if (cameraDevice != nullptr) {
*cameraDevice = device3_x;
}
sp<EmptyDeviceCb> cb = new EmptyDeviceCb();
ret = device3_x->open(cb, [&](auto status, const auto& newSession) {
ALOGI("device::open returns status:%d", (int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(newSession, nullptr);
*session = newSession;
});
ASSERT_TRUE(ret.isOk());
ret = device3_x->getCameraCharacteristics([&] (Status s,
CameraMetadata metadata) {
ASSERT_EQ(Status::OK, s);
*staticMeta = clone_camera_metadata(
reinterpret_cast<const camera_metadata_t*>(metadata.data()));
ASSERT_NE(nullptr, *staticMeta);
});
ASSERT_TRUE(ret.isOk());
}
void CameraHidlTest::notifyDeviceState(provider::V2_5::DeviceState newState) {
if (mProvider2_5.get() == nullptr) return;
mProvider2_5->notifyDeviceStateChange(
static_cast<hidl_bitfield<provider::V2_5::DeviceState>>(newState));
}
// Open a particular camera device.
void CameraHidlTest::openCameraDevice(const std::string &name,
sp<ICameraProvider> provider,
sp<::android::hardware::camera::device::V1_0::ICameraDevice> *device1 /*out*/) {
ASSERT_TRUE(nullptr != device1);
Return<void> ret;
ret = provider->getCameraDeviceInterface_V1_x(
name,
[&](auto status, const auto& device) {
ALOGI("getCameraDeviceInterface_V1_x returns status:%d",
(int)status);
ASSERT_EQ(Status::OK, status);
ASSERT_NE(device, nullptr);
*device1 = device;
});
ASSERT_TRUE(ret.isOk());
sp<Camera1DeviceCb> deviceCb = new Camera1DeviceCb(this);
Return<Status> returnStatus = (*device1)->open(deviceCb);
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
}
// Initialize and configure a preview window.
void CameraHidlTest::setupPreviewWindow(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device,
sp<BufferItemConsumer> *bufferItemConsumer /*out*/,
sp<BufferItemHander> *bufferHandler /*out*/) {
ASSERT_NE(nullptr, device.get());
ASSERT_NE(nullptr, bufferItemConsumer);
ASSERT_NE(nullptr, bufferHandler);
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
*bufferItemConsumer = new BufferItemConsumer(consumer,
GraphicBuffer::USAGE_HW_TEXTURE); //Use GLConsumer default usage flags
ASSERT_NE(nullptr, (*bufferItemConsumer).get());
*bufferHandler = new BufferItemHander(*bufferItemConsumer);
ASSERT_NE(nullptr, (*bufferHandler).get());
(*bufferItemConsumer)->setFrameAvailableListener(*bufferHandler);
sp<Surface> surface = new Surface(producer);
sp<PreviewWindowCb> previewCb = new PreviewWindowCb(surface);
auto rc = device->setPreviewWindow(previewCb);
ASSERT_TRUE(rc.isOk());
ASSERT_EQ(Status::OK, rc);
}
// Stop camera preview and close camera.
void CameraHidlTest::stopPreviewAndClose(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device) {
Return<void> ret = device->stopPreview();
ASSERT_TRUE(ret.isOk());
ret = device->close();
ASSERT_TRUE(ret.isOk());
}
// Enable a specific camera message type.
void CameraHidlTest::enableMsgType(unsigned int msgType,
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device) {
Return<void> ret = device->enableMsgType(msgType);
ASSERT_TRUE(ret.isOk());
Return<bool> returnBoolStatus = device->msgTypeEnabled(msgType);
ASSERT_TRUE(returnBoolStatus.isOk());
ASSERT_TRUE(returnBoolStatus);
}
// Disable a specific camera message type.
void CameraHidlTest::disableMsgType(unsigned int msgType,
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device) {
Return<void> ret = device->disableMsgType(msgType);
ASSERT_TRUE(ret.isOk());
Return<bool> returnBoolStatus = device->msgTypeEnabled(msgType);
ASSERT_TRUE(returnBoolStatus.isOk());
ASSERT_FALSE(returnBoolStatus);
}
// Wait until a specific frame notification arrives.
void CameraHidlTest::waitForFrameLocked(DataCallbackMsg msgFrame,
std::unique_lock<std::mutex> &l) {
while (msgFrame != mDataMessageTypeReceived) {
auto timeout = std::chrono::system_clock::now() +
std::chrono::seconds(kStreamBufferTimeoutSec);
ASSERT_NE(std::cv_status::timeout,
mResultCondition.wait_until(l, timeout));
}
}
// Start preview on a particular camera device
void CameraHidlTest::startPreview(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device) {
Return<Status> returnStatus = device->startPreview();
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
}
// Retrieve camera parameters.
void CameraHidlTest::getParameters(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device,
CameraParameters *cameraParams /*out*/) {
ASSERT_NE(nullptr, cameraParams);
Return<void> ret;
ret = device->getParameters([&] (const ::android::hardware::hidl_string& params) {
ASSERT_FALSE(params.empty());
::android::String8 paramString(params.c_str());
(*cameraParams).unflatten(paramString);
});
ASSERT_TRUE(ret.isOk());
}
// Set camera parameters.
void CameraHidlTest::setParameters(
const sp<::android::hardware::camera::device::V1_0::ICameraDevice> &device,
const CameraParameters &cameraParams) {
Return<Status> returnStatus = device->setParameters(cameraParams.flatten().c_str());
ASSERT_TRUE(returnStatus.isOk());
ASSERT_EQ(Status::OK, returnStatus);
}
void CameraHidlTest::allocateGraphicBuffer(uint32_t width, uint32_t height, uint64_t usage,
PixelFormat format, hidl_handle *buffer_handle /*out*/) {
ASSERT_NE(buffer_handle, nullptr);
buffer_handle_t buffer;
uint32_t stride;
android::status_t err = android::GraphicBufferAllocator::get().allocateRawHandle(
width, height, static_cast<int32_t>(format), 1u /*layerCount*/, usage, &buffer, &stride,
"VtsHalCameraProviderV2_4");
ASSERT_EQ(err, android::NO_ERROR);
buffer_handle->setTo(const_cast<native_handle_t*>(buffer), true /*shouldOwn*/);
}
void CameraHidlTest::verifyRecommendedConfigs(const CameraMetadata& chars) {
size_t CONFIG_ENTRY_SIZE = 5;
size_t CONFIG_ENTRY_TYPE_OFFSET = 3;
size_t CONFIG_ENTRY_BITFIELD_OFFSET = 4;
uint32_t maxPublicUsecase =
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS_PUBLIC_END;
uint32_t vendorUsecaseStart =
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS_VENDOR_START;
uint32_t usecaseMask = (1 << vendorUsecaseStart) - 1;
usecaseMask &= ~((1 << maxPublicUsecase) - 1);
const camera_metadata_t* metadata = reinterpret_cast<const camera_metadata_t*> (chars.data());
camera_metadata_ro_entry recommendedConfigsEntry, recommendedDepthConfigsEntry, ioMapEntry;
recommendedConfigsEntry.count = recommendedDepthConfigsEntry.count = ioMapEntry.count = 0;
int retCode = find_camera_metadata_ro_entry(metadata,
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS, &recommendedConfigsEntry);
int depthRetCode = find_camera_metadata_ro_entry(metadata,
ANDROID_DEPTH_AVAILABLE_RECOMMENDED_DEPTH_STREAM_CONFIGURATIONS,
&recommendedDepthConfigsEntry);
int ioRetCode = find_camera_metadata_ro_entry(metadata,
ANDROID_SCALER_AVAILABLE_RECOMMENDED_INPUT_OUTPUT_FORMATS_MAP, &ioMapEntry);
if ((0 != retCode) && (0 != depthRetCode)) {
//In case both regular and depth recommended configurations are absent,
//I/O should be absent as well.
ASSERT_NE(ioRetCode, 0);
return;
}
camera_metadata_ro_entry availableKeysEntry;
retCode = find_camera_metadata_ro_entry(metadata,
ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, &availableKeysEntry);
ASSERT_TRUE((0 == retCode) && (availableKeysEntry.count > 0));
std::vector<int32_t> availableKeys;
availableKeys.reserve(availableKeysEntry.count);
availableKeys.insert(availableKeys.end(), availableKeysEntry.data.i32,
availableKeysEntry.data.i32 + availableKeysEntry.count);
if (recommendedConfigsEntry.count > 0) {
ASSERT_NE(std::find(availableKeys.begin(), availableKeys.end(),
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS),
availableKeys.end());
ASSERT_EQ((recommendedConfigsEntry.count % CONFIG_ENTRY_SIZE), 0);
for (size_t i = 0; i < recommendedConfigsEntry.count; i += CONFIG_ENTRY_SIZE) {
int32_t entryType =
recommendedConfigsEntry.data.i32[i + CONFIG_ENTRY_TYPE_OFFSET];
uint32_t bitfield =
recommendedConfigsEntry.data.i32[i + CONFIG_ENTRY_BITFIELD_OFFSET];
ASSERT_TRUE((entryType ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT) ||
(entryType ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_INPUT));
ASSERT_TRUE((bitfield & usecaseMask) == 0);
}
}
if (recommendedDepthConfigsEntry.count > 0) {
ASSERT_NE(std::find(availableKeys.begin(), availableKeys.end(),
ANDROID_DEPTH_AVAILABLE_RECOMMENDED_DEPTH_STREAM_CONFIGURATIONS),
availableKeys.end());
ASSERT_EQ((recommendedDepthConfigsEntry.count % CONFIG_ENTRY_SIZE), 0);
for (size_t i = 0; i < recommendedDepthConfigsEntry.count; i += CONFIG_ENTRY_SIZE) {
int32_t entryType =
recommendedDepthConfigsEntry.data.i32[i + CONFIG_ENTRY_TYPE_OFFSET];
uint32_t bitfield =
recommendedDepthConfigsEntry.data.i32[i + CONFIG_ENTRY_BITFIELD_OFFSET];
ASSERT_TRUE((entryType ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT) ||
(entryType ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_INPUT));
ASSERT_TRUE((bitfield & usecaseMask) == 0);
}
if (recommendedConfigsEntry.count == 0) {
//In case regular recommended configurations are absent but suggested depth
//configurations are present, I/O should be absent.
ASSERT_NE(ioRetCode, 0);
}
}
if ((ioRetCode == 0) && (ioMapEntry.count > 0)) {
ASSERT_NE(std::find(availableKeys.begin(), availableKeys.end(),
ANDROID_SCALER_AVAILABLE_RECOMMENDED_INPUT_OUTPUT_FORMATS_MAP),
availableKeys.end());
ASSERT_EQ(isZSLModeAvailable(metadata), Status::OK);
}
}
void CameraHidlTest::verifySessionReconfigurationQuery(
sp<device::V3_5::ICameraDeviceSession> session3_5, camera_metadata* oldSessionParams,
camera_metadata* newSessionParams) {
ASSERT_NE(nullptr, session3_5.get());
ASSERT_NE(nullptr, oldSessionParams);
ASSERT_NE(nullptr, newSessionParams);
android::hardware::hidl_vec<uint8_t> oldParams, newParams;
oldParams.setToExternal(reinterpret_cast<uint8_t*>(oldSessionParams),
get_camera_metadata_size(oldSessionParams));
newParams.setToExternal(reinterpret_cast<uint8_t*>(newSessionParams),
get_camera_metadata_size(newSessionParams));
android::hardware::camera::common::V1_0::Status callStatus;
auto hidlCb = [&callStatus] (android::hardware::camera::common::V1_0::Status s,
bool /*requiredFlag*/) {
callStatus = s;
};
auto ret = session3_5->isReconfigurationRequired(oldParams, newParams, hidlCb);
ASSERT_TRUE(ret.isOk());
switch (callStatus) {
case android::hardware::camera::common::V1_0::Status::OK:
case android::hardware::camera::common::V1_0::Status::METHOD_NOT_SUPPORTED:
break;
case android::hardware::camera::common::V1_0::Status::INTERNAL_ERROR:
default:
ADD_FAILURE() << "Query calllback failed";
}
}
void CameraHidlTest::verifyRequestTemplate(const camera_metadata_t* metadata,
RequestTemplate requestTemplate) {
ASSERT_NE(nullptr, metadata);
size_t entryCount =
get_camera_metadata_entry_count(metadata);
ALOGI("template %u metadata entry count is %zu", (int32_t)requestTemplate, entryCount);
// TODO: we can do better than 0 here. Need to check how many required
// request keys we've defined for each template
ASSERT_GT(entryCount, 0u);
// Check zoomRatio
camera_metadata_ro_entry zoomRatioEntry;
int foundZoomRatio = find_camera_metadata_ro_entry(metadata,
ANDROID_CONTROL_ZOOM_RATIO, &zoomRatioEntry);
if (foundZoomRatio == 0) {
ASSERT_EQ(zoomRatioEntry.count, 1);
ASSERT_EQ(zoomRatioEntry.data.f[0], 1.0f);
}
}
void CameraHidlTest::overrideRotateAndCrop(
::android::hardware::hidl_vec<uint8_t> *settings /*in/out*/) {
if (settings == nullptr) {
return;
}
::android::hardware::camera::common::V1_0::helper::CameraMetadata requestMeta;
requestMeta.append(reinterpret_cast<camera_metadata_t *> (settings->data()));
auto entry = requestMeta.find(ANDROID_SCALER_ROTATE_AND_CROP);
if ((entry.count > 0) && (entry.data.u8[0] == ANDROID_SCALER_ROTATE_AND_CROP_AUTO)) {
uint8_t disableRotateAndCrop = ANDROID_SCALER_ROTATE_AND_CROP_NONE;
requestMeta.update(ANDROID_SCALER_ROTATE_AND_CROP, &disableRotateAndCrop, 1);
settings->releaseData();
camera_metadata_t *metaBuffer = requestMeta.release();
settings->setToExternal(reinterpret_cast<uint8_t *> (metaBuffer),
get_camera_metadata_size(metaBuffer), true);
}
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(CameraHidlTest);
INSTANTIATE_TEST_SUITE_P(
PerInstance, CameraHidlTest,
testing::ValuesIn(android::hardware::getAllHalInstanceNames(ICameraProvider::descriptor)),
android::hardware::PrintInstanceNameToString);