blob: 113d2da95591b5b049c34dc8a09f1bcb31d640f0 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <aidl/android/hardware/common/Ashmem.h>
#include <aidl/android/hardware/common/MappableFile.h>
#include <aidl/android/hardware/common/NativeHandle.h>
#include <aidl/android/hardware/graphics/common/HardwareBuffer.h>
#include <aidlcommonsupport/NativeHandle.h>
#include <android-base/logging.h>
#include <android-base/mapped_file.h>
#include <android-base/unique_fd.h>
#include <android/binder_auto_utils.h>
#include <cutils/native_handle.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>
#include "Utils.h"
#ifdef __ANDROID__
#include <android/hardware_buffer.h>
#include <vndk/hardware_buffer.h>
#endif // __ANDROID__
#define VERIFY_NON_NEGATIVE(value) \
while (UNLIKELY(value < 0)) return NN_ERROR()
#define VERIFY_LE_INT32_MAX(value) \
while (UNLIKELY(value > std::numeric_limits<int32_t>::max())) return NN_ERROR()
namespace {
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
constexpr int64_t kNoTiming = -1;
} // namespace
namespace android::nn {
namespace {
using ::aidl::android::hardware::common::NativeHandle;
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvertVec(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument)));
}
return canonical;
}
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const std::vector<Type>& arguments) {
return unvalidatedConvertVec(arguments);
}
template <typename Type>
GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) {
auto canonical = NN_TRY(nn::unvalidatedConvert(halObject));
NN_TRY(aidl_hal::utils::compliantVersion(canonical));
return canonical;
}
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(validatedConvert(argument)));
}
return canonical;
}
struct NativeHandleDeleter {
void operator()(native_handle_t* handle) const {
if (handle) {
native_handle_close(handle);
native_handle_delete(handle);
}
}
};
using UniqueNativeHandle = std::unique_ptr<native_handle_t, NativeHandleDeleter>;
#ifdef __ANDROID__
GeneralResult<UniqueNativeHandle> nativeHandleFromAidlHandle(const NativeHandle& handle) {
auto nativeHandle = UniqueNativeHandle(dupFromAidl(handle));
if (nativeHandle.get() == nullptr) {
return NN_ERROR() << "android::dupFromAidl failed to convert the common::NativeHandle to a "
"native_handle_t";
}
if (!std::all_of(nativeHandle->data + 0, nativeHandle->data + nativeHandle->numFds,
[](int fd) { return fd >= 0; })) {
return NN_ERROR() << "android::dupFromAidl returned an invalid native_handle_t";
}
return nativeHandle;
}
#endif // __ANDROID__
} // anonymous namespace
GeneralResult<OperandType> unvalidatedConvert(const aidl_hal::OperandType& operandType) {
VERIFY_NON_NEGATIVE(underlyingType(operandType)) << "Negative operand types are not allowed.";
const auto canonical = static_cast<OperandType>(operandType);
if (canonical == OperandType::OEM || canonical == OperandType::TENSOR_OEM_BYTE) {
return NN_ERROR() << "Unable to convert invalid OperandType " << canonical;
}
return canonical;
}
GeneralResult<OperationType> unvalidatedConvert(const aidl_hal::OperationType& operationType) {
VERIFY_NON_NEGATIVE(underlyingType(operationType))
<< "Negative operation types are not allowed.";
const auto canonical = static_cast<OperationType>(operationType);
if (canonical == OperationType::OEM_OPERATION) {
return NN_ERROR() << "Unable to convert invalid OperationType OEM_OPERATION";
}
return canonical;
}
GeneralResult<DeviceType> unvalidatedConvert(const aidl_hal::DeviceType& deviceType) {
return static_cast<DeviceType>(deviceType);
}
GeneralResult<Priority> unvalidatedConvert(const aidl_hal::Priority& priority) {
return static_cast<Priority>(priority);
}
GeneralResult<Capabilities> unvalidatedConvert(const aidl_hal::Capabilities& capabilities) {
const bool validOperandTypes = std::all_of(
capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
[](const aidl_hal::OperandPerformance& operandPerformance) {
return validatedConvert(operandPerformance.type).has_value();
});
if (!validOperandTypes) {
return NN_ERROR() << "Invalid OperandType when unvalidatedConverting OperandPerformance in "
"Capabilities";
}
auto operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance));
auto table =
NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = std::move(table),
.ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
};
}
GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
const aidl_hal::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
.info = NN_TRY(unvalidatedConvert(operandPerformance.info)),
};
}
GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert(
const aidl_hal::PerformanceInfo& performanceInfo) {
return Capabilities::PerformanceInfo{
.execTime = performanceInfo.execTime,
.powerUsage = performanceInfo.powerUsage,
};
}
GeneralResult<DataLocation> unvalidatedConvert(const aidl_hal::DataLocation& location) {
VERIFY_NON_NEGATIVE(location.poolIndex) << "DataLocation: pool index must not be negative";
VERIFY_NON_NEGATIVE(location.offset) << "DataLocation: offset must not be negative";
VERIFY_NON_NEGATIVE(location.length) << "DataLocation: length must not be negative";
VERIFY_NON_NEGATIVE(location.padding) << "DataLocation: padding must not be negative";
if (location.offset > std::numeric_limits<uint32_t>::max()) {
return NN_ERROR() << "DataLocation: offset must be <= std::numeric_limits<uint32_t>::max()";
}
if (location.length > std::numeric_limits<uint32_t>::max()) {
return NN_ERROR() << "DataLocation: length must be <= std::numeric_limits<uint32_t>::max()";
}
if (location.padding > std::numeric_limits<uint32_t>::max()) {
return NN_ERROR()
<< "DataLocation: padding must be <= std::numeric_limits<uint32_t>::max()";
}
return DataLocation{
.poolIndex = static_cast<uint32_t>(location.poolIndex),
.offset = static_cast<uint32_t>(location.offset),
.length = static_cast<uint32_t>(location.length),
.padding = static_cast<uint32_t>(location.padding),
};
}
GeneralResult<Operation> unvalidatedConvert(const aidl_hal::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = NN_TRY(toUnsigned(operation.inputs)),
.outputs = NN_TRY(toUnsigned(operation.outputs)),
};
}
GeneralResult<Operand::LifeTime> unvalidatedConvert(
const aidl_hal::OperandLifeTime& operandLifeTime) {
return static_cast<Operand::LifeTime>(operandLifeTime);
}
GeneralResult<Operand> unvalidatedConvert(const aidl_hal::Operand& operand) {
return Operand{
.type = NN_TRY(unvalidatedConvert(operand.type)),
.dimensions = NN_TRY(toUnsigned(operand.dimensions)),
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
.location = NN_TRY(unvalidatedConvert(operand.location)),
.extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
};
}
GeneralResult<Operand::ExtraParams> unvalidatedConvert(
const std::optional<aidl_hal::OperandExtraParams>& optionalExtraParams) {
if (!optionalExtraParams.has_value()) {
return Operand::NoParams{};
}
const auto& extraParams = optionalExtraParams.value();
using Tag = aidl_hal::OperandExtraParams::Tag;
switch (extraParams.getTag()) {
case Tag::channelQuant:
return unvalidatedConvert(extraParams.get<Tag::channelQuant>());
case Tag::extension:
return extraParams.get<Tag::extension>();
}
return NN_ERROR() << "Unrecognized Operand::ExtraParams tag: "
<< underlyingType(extraParams.getTag());
}
GeneralResult<Operand::SymmPerChannelQuantParams> unvalidatedConvert(
const aidl_hal::SymmPerChannelQuantParams& symmPerChannelQuantParams) {
VERIFY_NON_NEGATIVE(symmPerChannelQuantParams.channelDim)
<< "Per-channel quantization channel dimension must not be negative.";
return Operand::SymmPerChannelQuantParams{
.scales = symmPerChannelQuantParams.scales,
.channelDim = static_cast<uint32_t>(symmPerChannelQuantParams.channelDim),
};
}
GeneralResult<Model> unvalidatedConvert(const aidl_hal::Model& model) {
return Model{
.main = NN_TRY(unvalidatedConvert(model.main)),
.referenced = NN_TRY(unvalidatedConvert(model.referenced)),
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
};
}
GeneralResult<Model::Subgraph> unvalidatedConvert(const aidl_hal::Subgraph& subgraph) {
return Model::Subgraph{
.operands = NN_TRY(unvalidatedConvert(subgraph.operands)),
.operations = NN_TRY(unvalidatedConvert(subgraph.operations)),
.inputIndexes = NN_TRY(toUnsigned(subgraph.inputIndexes)),
.outputIndexes = NN_TRY(toUnsigned(subgraph.outputIndexes)),
};
}
GeneralResult<Model::ExtensionNameAndPrefix> unvalidatedConvert(
const aidl_hal::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return Model::ExtensionNameAndPrefix{
.name = extensionNameAndPrefix.name,
.prefix = extensionNameAndPrefix.prefix,
};
}
GeneralResult<Extension> unvalidatedConvert(const aidl_hal::Extension& extension) {
return Extension{
.name = extension.name,
.operandTypes = NN_TRY(unvalidatedConvert(extension.operandTypes)),
};
}
GeneralResult<Extension::OperandTypeInformation> unvalidatedConvert(
const aidl_hal::ExtensionOperandTypeInformation& operandTypeInformation) {
VERIFY_NON_NEGATIVE(operandTypeInformation.byteSize)
<< "Extension operand type byte size must not be negative";
return Extension::OperandTypeInformation{
.type = operandTypeInformation.type,
.isTensor = operandTypeInformation.isTensor,
.byteSize = static_cast<uint32_t>(operandTypeInformation.byteSize),
};
}
GeneralResult<OutputShape> unvalidatedConvert(const aidl_hal::OutputShape& outputShape) {
return OutputShape{
.dimensions = NN_TRY(toUnsigned(outputShape.dimensions)),
.isSufficient = outputShape.isSufficient,
};
}
GeneralResult<MeasureTiming> unvalidatedConvert(bool measureTiming) {
return measureTiming ? MeasureTiming::YES : MeasureTiming::NO;
}
GeneralResult<SharedMemory> unvalidatedConvert(const aidl_hal::Memory& memory) {
using Tag = aidl_hal::Memory::Tag;
switch (memory.getTag()) {
case Tag::ashmem: {
const auto& ashmem = memory.get<Tag::ashmem>();
VERIFY_NON_NEGATIVE(ashmem.size) << "Memory size must not be negative";
if (ashmem.size > std::numeric_limits<size_t>::max()) {
return NN_ERROR() << "Memory: size must be <= std::numeric_limits<size_t>::max()";
}
auto handle = Memory::Ashmem{
.fd = NN_TRY(dupFd(ashmem.fd.get())),
.size = static_cast<size_t>(ashmem.size),
};
return std::make_shared<const Memory>(Memory{.handle = std::move(handle)});
}
case Tag::mappableFile: {
const auto& mappableFile = memory.get<Tag::mappableFile>();
VERIFY_NON_NEGATIVE(mappableFile.length) << "Memory size must not be negative";
VERIFY_NON_NEGATIVE(mappableFile.offset) << "Memory offset must not be negative";
if (mappableFile.length > std::numeric_limits<size_t>::max()) {
return NN_ERROR() << "Memory: size must be <= std::numeric_limits<size_t>::max()";
}
if (mappableFile.offset > std::numeric_limits<size_t>::max()) {
return NN_ERROR() << "Memory: offset must be <= std::numeric_limits<size_t>::max()";
}
const size_t size = static_cast<size_t>(mappableFile.length);
const int prot = mappableFile.prot;
const int fd = mappableFile.fd.get();
const size_t offset = static_cast<size_t>(mappableFile.offset);
return createSharedMemoryFromFd(size, prot, fd, offset);
}
case Tag::hardwareBuffer: {
#ifdef __ANDROID__
const auto& hardwareBuffer = memory.get<Tag::hardwareBuffer>();
const UniqueNativeHandle handle =
NN_TRY(nativeHandleFromAidlHandle(hardwareBuffer.handle));
const native_handle_t* nativeHandle = handle.get();
const AHardwareBuffer_Desc desc{
.width = static_cast<uint32_t>(hardwareBuffer.description.width),
.height = static_cast<uint32_t>(hardwareBuffer.description.height),
.layers = static_cast<uint32_t>(hardwareBuffer.description.layers),
.format = static_cast<uint32_t>(hardwareBuffer.description.format),
.usage = static_cast<uint64_t>(hardwareBuffer.description.usage),
.stride = static_cast<uint32_t>(hardwareBuffer.description.stride),
};
AHardwareBuffer* ahwb = nullptr;
const status_t status = AHardwareBuffer_createFromHandle(
&desc, nativeHandle, AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE, &ahwb);
if (status != NO_ERROR) {
return NN_ERROR() << "createFromHandle failed";
}
return createSharedMemoryFromAHWB(ahwb, /*takeOwnership=*/true);
#else // __ANDROID__
LOG(FATAL) << "GeneralResult<SharedMemory> unvalidatedConvert(const aidl_hal::Memory& "
"memory): Not Available on Host Build";
return NN_ERROR() << "createFromHandle failed";
#endif // __ANDROID__
}
}
return NN_ERROR() << "Unrecognized Memory::Tag: " << memory.getTag();
}
GeneralResult<Timing> unvalidatedConvert(const aidl_hal::Timing& timing) {
if (timing.timeInDriverNs < -1) {
return NN_ERROR() << "Timing: timeInDriverNs must not be less than -1";
}
if (timing.timeOnDeviceNs < -1) {
return NN_ERROR() << "Timing: timeOnDeviceNs must not be less than -1";
}
constexpr auto convertTiming = [](int64_t halTiming) -> OptionalDuration {
if (halTiming == kNoTiming) {
return {};
}
return nn::Duration(static_cast<uint64_t>(halTiming));
};
return Timing{.timeOnDevice = convertTiming(timing.timeOnDeviceNs),
.timeInDriver = convertTiming(timing.timeInDriverNs)};
}
GeneralResult<Model::OperandValues> unvalidatedConvert(const std::vector<uint8_t>& operandValues) {
return Model::OperandValues(operandValues.data(), operandValues.size());
}
GeneralResult<BufferDesc> unvalidatedConvert(const aidl_hal::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = NN_TRY(toUnsigned(bufferDesc.dimensions))};
}
GeneralResult<BufferRole> unvalidatedConvert(const aidl_hal::BufferRole& bufferRole) {
VERIFY_NON_NEGATIVE(bufferRole.modelIndex) << "BufferRole: modelIndex must not be negative";
VERIFY_NON_NEGATIVE(bufferRole.ioIndex) << "BufferRole: ioIndex must not be negative";
return BufferRole{
.modelIndex = static_cast<uint32_t>(bufferRole.modelIndex),
.ioIndex = static_cast<uint32_t>(bufferRole.ioIndex),
.probability = bufferRole.probability,
};
}
GeneralResult<Request> unvalidatedConvert(const aidl_hal::Request& request) {
return Request{
.inputs = NN_TRY(unvalidatedConvert(request.inputs)),
.outputs = NN_TRY(unvalidatedConvert(request.outputs)),
.pools = NN_TRY(unvalidatedConvert(request.pools)),
};
}
GeneralResult<Request::Argument> unvalidatedConvert(const aidl_hal::RequestArgument& argument) {
const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE
: Request::Argument::LifeTime::POOL;
return Request::Argument{
.lifetime = lifetime,
.location = NN_TRY(unvalidatedConvert(argument.location)),
.dimensions = NN_TRY(toUnsigned(argument.dimensions)),
};
}
GeneralResult<Request::MemoryPool> unvalidatedConvert(
const aidl_hal::RequestMemoryPool& memoryPool) {
using Tag = aidl_hal::RequestMemoryPool::Tag;
switch (memoryPool.getTag()) {
case Tag::pool:
return unvalidatedConvert(memoryPool.get<Tag::pool>());
case Tag::token: {
const auto token = memoryPool.get<Tag::token>();
VERIFY_NON_NEGATIVE(token) << "Memory pool token must not be negative";
return static_cast<Request::MemoryDomainToken>(token);
}
}
return NN_ERROR() << "Invalid Request::MemoryPool tag " << underlyingType(memoryPool.getTag());
}
GeneralResult<ErrorStatus> unvalidatedConvert(const aidl_hal::ErrorStatus& status) {
switch (status) {
case aidl_hal::ErrorStatus::NONE:
case aidl_hal::ErrorStatus::DEVICE_UNAVAILABLE:
case aidl_hal::ErrorStatus::GENERAL_FAILURE:
case aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case aidl_hal::ErrorStatus::INVALID_ARGUMENT:
case aidl_hal::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case aidl_hal::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(status);
}
return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
}
GeneralResult<ExecutionPreference> unvalidatedConvert(
const aidl_hal::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
GeneralResult<std::vector<Operation>> unvalidatedConvert(
const std::vector<aidl_hal::Operation>& operations) {
return unvalidatedConvertVec(operations);
}
GeneralResult<SharedHandle> unvalidatedConvert(const ndk::ScopedFileDescriptor& handle) {
auto duplicatedFd = NN_TRY(dupFd(handle.get()));
return std::make_shared<const Handle>(std::move(duplicatedFd));
}
GeneralResult<Capabilities> convert(const aidl_hal::Capabilities& capabilities) {
return validatedConvert(capabilities);
}
GeneralResult<DeviceType> convert(const aidl_hal::DeviceType& deviceType) {
return validatedConvert(deviceType);
}
GeneralResult<ErrorStatus> convert(const aidl_hal::ErrorStatus& errorStatus) {
return validatedConvert(errorStatus);
}
GeneralResult<ExecutionPreference> convert(
const aidl_hal::ExecutionPreference& executionPreference) {
return validatedConvert(executionPreference);
}
GeneralResult<SharedMemory> convert(const aidl_hal::Memory& operand) {
return validatedConvert(operand);
}
GeneralResult<Model> convert(const aidl_hal::Model& model) {
return validatedConvert(model);
}
GeneralResult<OperandType> convert(const aidl_hal::OperandType& operandType) {
return validatedConvert(operandType);
}
GeneralResult<Priority> convert(const aidl_hal::Priority& priority) {
return validatedConvert(priority);
}
GeneralResult<Request> convert(const aidl_hal::Request& request) {
return validatedConvert(request);
}
GeneralResult<Timing> convert(const aidl_hal::Timing& timing) {
return validatedConvert(timing);
}
GeneralResult<SharedHandle> convert(const ndk::ScopedFileDescriptor& handle) {
return validatedConvert(handle);
}
GeneralResult<BufferDesc> convert(const aidl_hal::BufferDesc& bufferDesc) {
return validatedConvert(bufferDesc);
}
GeneralResult<std::vector<Extension>> convert(const std::vector<aidl_hal::Extension>& extension) {
return validatedConvert(extension);
}
GeneralResult<std::vector<SharedMemory>> convert(const std::vector<aidl_hal::Memory>& memories) {
return validatedConvert(memories);
}
GeneralResult<std::vector<OutputShape>> convert(
const std::vector<aidl_hal::OutputShape>& outputShapes) {
return validatedConvert(outputShapes);
}
GeneralResult<std::vector<SharedHandle>> convert(
const std::vector<ndk::ScopedFileDescriptor>& handles) {
return validatedConvert(handles);
}
GeneralResult<std::vector<BufferRole>> convert(const std::vector<aidl_hal::BufferRole>& roles) {
return validatedConvert(roles);
}
GeneralResult<std::vector<uint32_t>> toUnsigned(const std::vector<int32_t>& vec) {
if (!std::all_of(vec.begin(), vec.end(), [](int32_t v) { return v >= 0; })) {
return NN_ERROR() << "Negative value passed to conversion from signed to unsigned";
}
return std::vector<uint32_t>(vec.begin(), vec.end());
}
} // namespace android::nn
namespace aidl::android::hardware::neuralnetworks::utils {
namespace {
using utils::unvalidatedConvert;
// Helper template for std::visit
template <class... Ts>
struct overloaded : Ts... {
using Ts::operator()...;
};
template <class... Ts>
overloaded(Ts...)->overloaded<Ts...>;
#ifdef __ANDROID__
nn::GeneralResult<common::NativeHandle> aidlHandleFromNativeHandle(
const native_handle_t& nativeHandle) {
auto handle = ::android::dupToAidl(&nativeHandle);
if (!std::all_of(handle.fds.begin(), handle.fds.end(),
[](const ndk::ScopedFileDescriptor& fd) { return fd.get() >= 0; })) {
return NN_ERROR() << "android::dupToAidl returned an invalid common::NativeHandle";
}
return handle;
}
#endif // __ANDROID__
nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory::Ashmem& memory) {
if constexpr (std::numeric_limits<size_t>::max() > std::numeric_limits<int64_t>::max()) {
if (memory.size > std::numeric_limits<int64_t>::max()) {
return (
NN_ERROR()
<< "Memory::Ashmem: size must be <= std::numeric_limits<int64_t>::max()")
.
operator nn::GeneralResult<Memory>();
}
}
auto fd = NN_TRY(nn::dupFd(memory.fd));
auto handle = common::Ashmem{
.fd = ndk::ScopedFileDescriptor(fd.release()),
.size = static_cast<int64_t>(memory.size),
};
return Memory::make<Memory::Tag::ashmem>(std::move(handle));
}
nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory::Fd& memory) {
if constexpr (std::numeric_limits<size_t>::max() > std::numeric_limits<int64_t>::max()) {
if (memory.size > std::numeric_limits<int64_t>::max()) {
return (NN_ERROR() << "Memory::Fd: size must be <= std::numeric_limits<int64_t>::max()")
.
operator nn::GeneralResult<Memory>();
}
if (memory.offset > std::numeric_limits<int64_t>::max()) {
return (
NN_ERROR()
<< "Memory::Fd: offset must be <= std::numeric_limits<int64_t>::max()")
.
operator nn::GeneralResult<Memory>();
}
}
auto fd = NN_TRY(nn::dupFd(memory.fd));
auto handle = common::MappableFile{
.length = static_cast<int64_t>(memory.size),
.prot = memory.prot,
.fd = ndk::ScopedFileDescriptor(fd.release()),
.offset = static_cast<int64_t>(memory.offset),
};
return Memory::make<Memory::Tag::mappableFile>(std::move(handle));
}
nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory::HardwareBuffer& memory) {
#ifdef __ANDROID__
const native_handle_t* nativeHandle = AHardwareBuffer_getNativeHandle(memory.handle.get());
if (nativeHandle == nullptr) {
return (NN_ERROR() << "unvalidatedConvert failed because AHardwareBuffer_getNativeHandle "
"returned nullptr")
.
operator nn::GeneralResult<Memory>();
}
auto handle = NN_TRY(aidlHandleFromNativeHandle(*nativeHandle));
AHardwareBuffer_Desc desc;
AHardwareBuffer_describe(memory.handle.get(), &desc);
const auto description = graphics::common::HardwareBufferDescription{
.width = static_cast<int32_t>(desc.width),
.height = static_cast<int32_t>(desc.height),
.layers = static_cast<int32_t>(desc.layers),
.format = static_cast<graphics::common::PixelFormat>(desc.format),
.usage = static_cast<graphics::common::BufferUsage>(desc.usage),
.stride = static_cast<int32_t>(desc.stride),
};
auto hardwareBuffer = graphics::common::HardwareBuffer{
.description = std::move(description),
.handle = std::move(handle),
};
return Memory::make<Memory::Tag::hardwareBuffer>(std::move(hardwareBuffer));
#else // __ANDROID__
LOG(FATAL) << "nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory::HardwareBuffer& "
"memory): Not Available on Host Build";
(void)memory;
return (NN_ERROR() << "unvalidatedConvert failed").operator nn::GeneralResult<Memory>();
#endif // __ANDROID__
}
nn::GeneralResult<Memory> unvalidatedConvert(const nn::Memory::Unknown& /*memory*/) {
return (NN_ERROR() << "Unable to convert Unknown memory type")
.
operator nn::GeneralResult<Memory>();
}
nn::GeneralResult<PerformanceInfo> unvalidatedConvert(
const nn::Capabilities::PerformanceInfo& info) {
return PerformanceInfo{.execTime = info.execTime, .powerUsage = info.powerUsage};
}
nn::GeneralResult<OperandPerformance> unvalidatedConvert(
const nn::Capabilities::OperandPerformance& operandPerformance) {
return OperandPerformance{.type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
.info = NN_TRY(unvalidatedConvert(operandPerformance.info))};
}
nn::GeneralResult<std::vector<OperandPerformance>> unvalidatedConvert(
const nn::Capabilities::OperandPerformanceTable& table) {
std::vector<OperandPerformance> operandPerformances;
operandPerformances.reserve(table.asVector().size());
for (const auto& operandPerformance : table.asVector()) {
operandPerformances.push_back(NN_TRY(unvalidatedConvert(operandPerformance)));
}
return operandPerformances;
}
nn::GeneralResult<ExtensionOperandTypeInformation> unvalidatedConvert(
const nn::Extension::OperandTypeInformation& info) {
return ExtensionOperandTypeInformation{.type = info.type,
.isTensor = info.isTensor,
.byteSize = static_cast<int32_t>(info.byteSize)};
}
nn::GeneralResult<int64_t> unvalidatedConvert(const nn::Duration& duration) {
if (duration < nn::Duration::zero()) {
return NN_ERROR() << "Unable to convert invalid (negative) duration";
}
constexpr std::chrono::nanoseconds::rep kIntMax = std::numeric_limits<int64_t>::max();
const auto count = duration.count();
return static_cast<int64_t>(std::min(count, kIntMax));
}
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> halObject;
halObject.reserve(arguments.size());
for (const auto& argument : arguments) {
halObject.push_back(NN_TRY(unvalidatedConvert(argument)));
}
return halObject;
}
template <typename Type>
nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) {
NN_TRY(compliantVersion(canonical));
return utils::unvalidatedConvert(canonical);
}
template <typename Type>
nn::GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
const std::vector<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(validatedConvert(arguments[i]));
}
return halObject;
}
} // namespace
nn::GeneralResult<std::vector<uint8_t>> unvalidatedConvert(const nn::CacheToken& cacheToken) {
return std::vector<uint8_t>(cacheToken.begin(), cacheToken.end());
}
nn::GeneralResult<BufferDesc> unvalidatedConvert(const nn::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = NN_TRY(toSigned(bufferDesc.dimensions))};
}
nn::GeneralResult<BufferRole> unvalidatedConvert(const nn::BufferRole& bufferRole) {
VERIFY_LE_INT32_MAX(bufferRole.modelIndex)
<< "BufferRole: modelIndex must be <= std::numeric_limits<int32_t>::max()";
VERIFY_LE_INT32_MAX(bufferRole.ioIndex)
<< "BufferRole: ioIndex must be <= std::numeric_limits<int32_t>::max()";
return BufferRole{
.modelIndex = static_cast<int32_t>(bufferRole.modelIndex),
.ioIndex = static_cast<int32_t>(bufferRole.ioIndex),
.probability = bufferRole.probability,
};
}
nn::GeneralResult<DeviceType> unvalidatedConvert(const nn::DeviceType& deviceType) {
switch (deviceType) {
case nn::DeviceType::UNKNOWN:
break;
case nn::DeviceType::OTHER:
case nn::DeviceType::CPU:
case nn::DeviceType::GPU:
case nn::DeviceType::ACCELERATOR:
return static_cast<DeviceType>(deviceType);
}
return NN_ERROR() << "Invalid DeviceType " << deviceType;
}
nn::GeneralResult<bool> unvalidatedConvert(const nn::MeasureTiming& measureTiming) {
return measureTiming == nn::MeasureTiming::YES;
}
nn::GeneralResult<Memory> unvalidatedConvert(const nn::SharedMemory& memory) {
if (memory == nullptr) {
return (NN_ERROR() << "Unable to convert nullptr memory")
.
operator nn::GeneralResult<Memory>();
}
return std::visit([](const auto& x) { return unvalidatedConvert(x); }, memory->handle);
}
nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus) {
switch (errorStatus) {
case nn::ErrorStatus::NONE:
case nn::ErrorStatus::DEVICE_UNAVAILABLE:
case nn::ErrorStatus::GENERAL_FAILURE:
case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case nn::ErrorStatus::INVALID_ARGUMENT:
case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(errorStatus);
default:
return ErrorStatus::GENERAL_FAILURE;
}
}
nn::GeneralResult<OutputShape> unvalidatedConvert(const nn::OutputShape& outputShape) {
return OutputShape{.dimensions = NN_TRY(toSigned(outputShape.dimensions)),
.isSufficient = outputShape.isSufficient};
}
nn::GeneralResult<ExecutionPreference> unvalidatedConvert(
const nn::ExecutionPreference& executionPreference) {
return static_cast<ExecutionPreference>(executionPreference);
}
nn::GeneralResult<OperandType> unvalidatedConvert(const nn::OperandType& operandType) {
if (operandType == nn::OperandType::OEM || operandType == nn::OperandType::TENSOR_OEM_BYTE) {
return NN_ERROR() << "Unable to convert invalid OperandType " << operandType;
}
return static_cast<OperandType>(operandType);
}
nn::GeneralResult<OperandLifeTime> unvalidatedConvert(
const nn::Operand::LifeTime& operandLifeTime) {
return static_cast<OperandLifeTime>(operandLifeTime);
}
nn::GeneralResult<DataLocation> unvalidatedConvert(const nn::DataLocation& location) {
VERIFY_LE_INT32_MAX(location.poolIndex)
<< "DataLocation: pool index must be <= std::numeric_limits<int32_t>::max()";
return DataLocation{
.poolIndex = static_cast<int32_t>(location.poolIndex),
.offset = static_cast<int64_t>(location.offset),
.length = static_cast<int64_t>(location.length),
};
}
nn::GeneralResult<std::optional<OperandExtraParams>> unvalidatedConvert(
const nn::Operand::ExtraParams& extraParams) {
return std::visit(
overloaded{
[](const nn::Operand::NoParams&)
-> nn::GeneralResult<std::optional<OperandExtraParams>> {
return std::nullopt;
},
[](const nn::Operand::SymmPerChannelQuantParams& symmPerChannelQuantParams)
-> nn::GeneralResult<std::optional<OperandExtraParams>> {
if (symmPerChannelQuantParams.channelDim >
std::numeric_limits<int32_t>::max()) {
// Using explicit type conversion because std::optional in successful
// result confuses the compiler.
return (NN_ERROR() << "symmPerChannelQuantParams.channelDim must be <= "
"std::numeric_limits<int32_t>::max(), received: "
<< symmPerChannelQuantParams.channelDim)
.
operator nn::GeneralResult<std::optional<OperandExtraParams>>();
}
return OperandExtraParams::make<OperandExtraParams::Tag::channelQuant>(
SymmPerChannelQuantParams{
.scales = symmPerChannelQuantParams.scales,
.channelDim = static_cast<int32_t>(
symmPerChannelQuantParams.channelDim),
});
},
[](const nn::Operand::ExtensionParams& extensionParams)
-> nn::GeneralResult<std::optional<OperandExtraParams>> {
return OperandExtraParams::make<OperandExtraParams::Tag::extension>(
extensionParams);
},
},
extraParams);
}
nn::GeneralResult<Operand> unvalidatedConvert(const nn::Operand& operand) {
return Operand{
.type = NN_TRY(unvalidatedConvert(operand.type)),
.dimensions = NN_TRY(toSigned(operand.dimensions)),
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
.location = NN_TRY(unvalidatedConvert(operand.location)),
.extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
};
}
nn::GeneralResult<OperationType> unvalidatedConvert(const nn::OperationType& operationType) {
if (operationType == nn::OperationType::OEM_OPERATION) {
return NN_ERROR() << "Unable to convert invalid OperationType OEM_OPERATION";
}
return static_cast<OperationType>(operationType);
}
nn::GeneralResult<Operation> unvalidatedConvert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = NN_TRY(toSigned(operation.inputs)),
.outputs = NN_TRY(toSigned(operation.outputs)),
};
}
nn::GeneralResult<Subgraph> unvalidatedConvert(const nn::Model::Subgraph& subgraph) {
return Subgraph{
.operands = NN_TRY(unvalidatedConvert(subgraph.operands)),
.operations = NN_TRY(unvalidatedConvert(subgraph.operations)),
.inputIndexes = NN_TRY(toSigned(subgraph.inputIndexes)),
.outputIndexes = NN_TRY(toSigned(subgraph.outputIndexes)),
};
}
nn::GeneralResult<std::vector<uint8_t>> unvalidatedConvert(
const nn::Model::OperandValues& operandValues) {
return std::vector<uint8_t>(operandValues.data(), operandValues.data() + operandValues.size());
}
nn::GeneralResult<ExtensionNameAndPrefix> unvalidatedConvert(
const nn::Model::ExtensionNameAndPrefix& extensionNameToPrefix) {
return ExtensionNameAndPrefix{
.name = extensionNameToPrefix.name,
.prefix = extensionNameToPrefix.prefix,
};
}
nn::GeneralResult<Model> unvalidatedConvert(const nn::Model& model) {
return Model{
.main = NN_TRY(unvalidatedConvert(model.main)),
.referenced = NN_TRY(unvalidatedConvert(model.referenced)),
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
};
}
nn::GeneralResult<Priority> unvalidatedConvert(const nn::Priority& priority) {
return static_cast<Priority>(priority);
}
nn::GeneralResult<Request> unvalidatedConvert(const nn::Request& request) {
return Request{
.inputs = NN_TRY(unvalidatedConvert(request.inputs)),
.outputs = NN_TRY(unvalidatedConvert(request.outputs)),
.pools = NN_TRY(unvalidatedConvert(request.pools)),
};
}
nn::GeneralResult<RequestArgument> unvalidatedConvert(
const nn::Request::Argument& requestArgument) {
if (requestArgument.lifetime == nn::Request::Argument::LifeTime::POINTER) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "Request cannot be unvalidatedConverted because it contains pointer-based memory";
}
const bool hasNoValue = requestArgument.lifetime == nn::Request::Argument::LifeTime::NO_VALUE;
return RequestArgument{
.hasNoValue = hasNoValue,
.location = NN_TRY(unvalidatedConvert(requestArgument.location)),
.dimensions = NN_TRY(toSigned(requestArgument.dimensions)),
};
}
nn::GeneralResult<RequestMemoryPool> unvalidatedConvert(const nn::Request::MemoryPool& memoryPool) {
return std::visit(
overloaded{
[](const nn::SharedMemory& memory) -> nn::GeneralResult<RequestMemoryPool> {
return RequestMemoryPool::make<RequestMemoryPool::Tag::pool>(
NN_TRY(unvalidatedConvert(memory)));
},
[](const nn::Request::MemoryDomainToken& token)
-> nn::GeneralResult<RequestMemoryPool> {
return RequestMemoryPool::make<RequestMemoryPool::Tag::token>(
underlyingType(token));
},
[](const nn::SharedBuffer& /*buffer*/) {
return (NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Unable to make memory pool from IBuffer")
.
operator nn::GeneralResult<RequestMemoryPool>();
},
},
memoryPool);
}
nn::GeneralResult<Timing> unvalidatedConvert(const nn::Timing& timing) {
return Timing{
.timeOnDeviceNs = NN_TRY(unvalidatedConvert(timing.timeOnDevice)),
.timeInDriverNs = NN_TRY(unvalidatedConvert(timing.timeInDriver)),
};
}
nn::GeneralResult<int64_t> unvalidatedConvert(const nn::OptionalDuration& optionalDuration) {
if (!optionalDuration.has_value()) {
return kNoTiming;
}
return unvalidatedConvert(optionalDuration.value());
}
nn::GeneralResult<int64_t> unvalidatedConvert(const nn::OptionalTimePoint& optionalTimePoint) {
if (!optionalTimePoint.has_value()) {
return kNoTiming;
}
return unvalidatedConvert(optionalTimePoint->time_since_epoch());
}
nn::GeneralResult<ndk::ScopedFileDescriptor> unvalidatedConvert(const nn::SyncFence& syncFence) {
auto duplicatedFd = NN_TRY(nn::dupFd(syncFence.getFd()));
return ndk::ScopedFileDescriptor(duplicatedFd.release());
}
nn::GeneralResult<ndk::ScopedFileDescriptor> unvalidatedConvert(const nn::SharedHandle& handle) {
auto duplicatedFd = NN_TRY(nn::dupFd(handle->get()));
return ndk::ScopedFileDescriptor(duplicatedFd.release());
}
nn::GeneralResult<Capabilities> unvalidatedConvert(const nn::Capabilities& capabilities) {
return Capabilities{
.relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance)),
.ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
};
}
nn::GeneralResult<Extension> unvalidatedConvert(const nn::Extension& extension) {
return Extension{.name = extension.name,
.operandTypes = NN_TRY(unvalidatedConvert(extension.operandTypes))};
}
nn::GeneralResult<std::vector<uint8_t>> convert(const nn::CacheToken& cacheToken) {
return validatedConvert(cacheToken);
}
nn::GeneralResult<BufferDesc> convert(const nn::BufferDesc& bufferDesc) {
return validatedConvert(bufferDesc);
}
nn::GeneralResult<DeviceType> convert(const nn::DeviceType& deviceType) {
return validatedConvert(deviceType);
}
nn::GeneralResult<bool> convert(const nn::MeasureTiming& measureTiming) {
return validatedConvert(measureTiming);
}
nn::GeneralResult<Memory> convert(const nn::SharedMemory& memory) {
return validatedConvert(memory);
}
nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
return validatedConvert(errorStatus);
}
nn::GeneralResult<ExecutionPreference> convert(const nn::ExecutionPreference& executionPreference) {
return validatedConvert(executionPreference);
}
nn::GeneralResult<Model> convert(const nn::Model& model) {
return validatedConvert(model);
}
nn::GeneralResult<Priority> convert(const nn::Priority& priority) {
return validatedConvert(priority);
}
nn::GeneralResult<Request> convert(const nn::Request& request) {
return validatedConvert(request);
}
nn::GeneralResult<Timing> convert(const nn::Timing& timing) {
return validatedConvert(timing);
}
nn::GeneralResult<int64_t> convert(const nn::OptionalDuration& optionalDuration) {
return validatedConvert(optionalDuration);
}
nn::GeneralResult<int64_t> convert(const nn::OptionalTimePoint& outputShapes) {
return validatedConvert(outputShapes);
}
nn::GeneralResult<Capabilities> convert(const nn::Capabilities& capabilities) {
return validatedConvert(capabilities);
}
nn::GeneralResult<Extension> convert(const nn::Extension& extension) {
return validatedConvert(extension);
}
nn::GeneralResult<std::vector<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles) {
return validatedConvert(bufferRoles);
}
nn::GeneralResult<std::vector<OutputShape>> convert(
const std::vector<nn::OutputShape>& outputShapes) {
return validatedConvert(outputShapes);
}
nn::GeneralResult<std::vector<ndk::ScopedFileDescriptor>> convert(
const std::vector<nn::SharedHandle>& cacheHandles) {
return validatedConvert(cacheHandles);
}
nn::GeneralResult<std::vector<ndk::ScopedFileDescriptor>> convert(
const std::vector<nn::SyncFence>& syncFences) {
return validatedConvert(syncFences);
}
nn::GeneralResult<std::vector<Extension>> convert(const std::vector<nn::Extension>& extensions) {
return validatedConvert(extensions);
}
nn::GeneralResult<std::vector<int32_t>> toSigned(const std::vector<uint32_t>& vec) {
if (!std::all_of(vec.begin(), vec.end(),
[](uint32_t v) { return v <= std::numeric_limits<int32_t>::max(); })) {
return NN_ERROR() << "Vector contains a value that doesn't fit into int32_t.";
}
return std::vector<int32_t>(vec.begin(), vec.end());
}
} // namespace aidl::android::hardware::neuralnetworks::utils