blob: d6f74fc4856f836db733609b0c569f06233d00ee [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "bt_h4_unittest"
#include "h4_protocol.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <log/log.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstdint>
#include <cstring>
#include <future>
#include <vector>
#include "async_fd_watcher.h"
#include "log/log.h"
using android::hardware::bluetooth::async::AsyncFdWatcher;
using namespace android::hardware::bluetooth::hci;
using ::testing::Eq;
static char sample_data1[100] = "A point is that which has no part.";
static char sample_data2[100] = "A line is breadthless length.";
static char sample_data3[100] = "The ends of a line are points.";
static char sample_data4[100] =
"A plane surface is a surface which lies evenly with the straight ...";
static char acl_data[100] =
"A straight line is a line which lies evenly with the points on itself.";
static char sco_data[100] =
"A surface is that which has length and breadth only.";
static char event_data[100] = "The edges of a surface are lines.";
static char iso_data[100] =
"A plane angle is the inclination to one another of two lines in a ...";
MATCHER_P3(PacketMatches, header_, header_length, payload,
"Match header_length bytes of header and then the payload") {
size_t payload_length = strlen(payload);
if (header_length + payload_length != arg.size()) {
return false;
}
if (memcmp(header_, arg.data(), header_length) != 0) {
return false;
}
return memcmp(payload, arg.data() + header_length, payload_length) == 0;
};
ACTION_P(Notify, barrier) {
ALOGD("%s", __func__);
barrier->set_value();
}
class H4ProtocolTest : public ::testing::Test {
protected:
void SetUp() override {
ALOGD("%s", __func__);
int sockfd[2];
socketpair(AF_LOCAL, SOCK_STREAM, 0, sockfd);
chip_uart_fd_ = sockfd[1];
stack_uart_fd_ = sockfd[0];
h4_hci_ = std::make_shared<H4Protocol>(
stack_uart_fd_, cmd_cb_.AsStdFunction(), acl_cb_.AsStdFunction(),
sco_cb_.AsStdFunction(), event_cb_.AsStdFunction(),
iso_cb_.AsStdFunction(), disconnect_cb_.AsStdFunction());
}
void TearDown() override {
close(stack_uart_fd_);
close(chip_uart_fd_);
}
virtual void CallDataReady() { h4_hci_->OnDataReady(); }
void SendAndReadUartOutbound(PacketType type, char* data) {
ALOGD("%s sending", __func__);
int data_length = strlen(data);
h4_hci_->Send(type, (uint8_t*)data, data_length);
int uart_length = data_length + 1; // + 1 for data type code
int i;
ALOGD("%s reading", __func__);
for (i = 0; i < uart_length; i++) {
fd_set read_fds;
FD_ZERO(&read_fds);
FD_SET(chip_uart_fd_, &read_fds);
TEMP_FAILURE_RETRY(
select(chip_uart_fd_ + 1, &read_fds, nullptr, nullptr, nullptr));
char byte;
TEMP_FAILURE_RETRY(read(chip_uart_fd_, &byte, 1));
EXPECT_EQ(i == 0 ? static_cast<uint8_t>(type) : data[i - 1], byte);
}
EXPECT_EQ(i, uart_length);
}
void ExpectInboundAclData(char* payload, std::promise<void>* promise) {
// h4 type[1] + handle[2] + size[2]
header_[0] = static_cast<uint8_t>(PacketType::ACL_DATA);
header_[1] = 19;
header_[2] = 92;
int length = strlen(payload);
header_[3] = length & 0xFF;
header_[4] = (length >> 8) & 0xFF;
ALOGD("(%d bytes) %s", length, payload);
EXPECT_CALL(acl_cb_,
Call(PacketMatches(header_ + 1, kAclHeaderSize, payload)))
.WillOnce(Notify(promise));
}
void WaitForTimeout(size_t timeout_ms, std::promise<void>* promise) {
auto future = promise->get_future();
auto status = future.wait_for(std::chrono::milliseconds(timeout_ms));
EXPECT_EQ(status, std::future_status::ready);
}
void WriteInboundAclData(char* payload) {
// Use the header_ computed in ExpectInboundAclData
TEMP_FAILURE_RETRY(write(chip_uart_fd_, header_, kAclHeaderSize + 1));
TEMP_FAILURE_RETRY(write(chip_uart_fd_, payload, strlen(payload)));
}
void ExpectInboundScoData(char* payload, std::promise<void>* promise) {
// h4 type[1] + handle[2] + size[1]
header_[0] = static_cast<uint8_t>(PacketType::SCO_DATA);
header_[1] = 20;
header_[2] = 17;
header_[3] = strlen(payload) & 0xFF;
EXPECT_CALL(sco_cb_,
Call(PacketMatches(header_ + 1, kScoHeaderSize, payload)))
.WillOnce(Notify(promise));
}
void WriteInboundScoData(char* payload) {
// Use the header_ computed in ExpectInboundScoData
ALOGD("%s writing", __func__);
TEMP_FAILURE_RETRY(write(chip_uart_fd_, header_, kScoHeaderSize + 1));
TEMP_FAILURE_RETRY(write(chip_uart_fd_, payload, strlen(payload)));
}
void ExpectInboundEvent(char* payload, std::promise<void>* promise) {
// h4 type[1] + event_code[1] + size[1]
header_[0] = static_cast<uint8_t>(PacketType::EVENT);
header_[1] = 9;
header_[2] = strlen(payload) & 0xFF;
EXPECT_CALL(event_cb_,
Call(PacketMatches(header_ + 1, kEventHeaderSize, payload)))
.WillOnce(Notify(promise));
}
void WriteInboundEvent(char* payload) {
// Use the header_ computed in ExpectInboundEvent
char preamble[3] = {static_cast<uint8_t>(PacketType::EVENT), 9, 0};
preamble[2] = strlen(payload) & 0xFF;
ALOGD("%s writing", __func__);
TEMP_FAILURE_RETRY(write(chip_uart_fd_, header_, kEventHeaderSize + 1));
TEMP_FAILURE_RETRY(write(chip_uart_fd_, payload, strlen(payload)));
}
void ExpectInboundIsoData(char* payload, std::promise<void>* promise) {
// h4 type[1] + handle[2] + size[1]
header_[0] = static_cast<uint8_t>(PacketType::ISO_DATA);
header_[1] = 19;
header_[2] = 92;
int length = strlen(payload);
header_[3] = length & 0xFF;
header_[4] = (length >> 8) & 0x3F;
EXPECT_CALL(iso_cb_,
Call(PacketMatches(header_ + 1, kIsoHeaderSize, payload)))
.WillOnce(Notify(promise));
}
void WriteInboundIsoData(char* payload) {
// Use the header_ computed in ExpectInboundIsoData
ALOGD("%s writing", __func__);
TEMP_FAILURE_RETRY(write(chip_uart_fd_, header_, kIsoHeaderSize + 1));
TEMP_FAILURE_RETRY(write(chip_uart_fd_, payload, strlen(payload)));
}
void WriteAndExpectManyInboundAclDataPackets(char* payload) {
size_t kNumPackets = 20;
// h4 type[1] + handle[2] + size[2]
char preamble[5] = {static_cast<uint8_t>(PacketType::ACL_DATA), 19, 92, 0,
0};
int length = strlen(payload);
preamble[3] = length & 0xFF;
preamble[4] = (length >> 8) & 0xFF;
EXPECT_CALL(acl_cb_, Call(PacketMatches(preamble + 1, sizeof(preamble) - 1,
payload)))
.Times(kNumPackets);
for (size_t i = 0; i < kNumPackets; i++) {
TEMP_FAILURE_RETRY(write(chip_uart_fd_, preamble, sizeof(preamble)));
TEMP_FAILURE_RETRY(write(chip_uart_fd_, payload, strlen(payload)));
}
CallDataReady();
}
testing::MockFunction<void(const std::vector<uint8_t>&)> cmd_cb_;
testing::MockFunction<void(const std::vector<uint8_t>&)> event_cb_;
testing::MockFunction<void(const std::vector<uint8_t>&)> acl_cb_;
testing::MockFunction<void(const std::vector<uint8_t>&)> sco_cb_;
testing::MockFunction<void(const std::vector<uint8_t>&)> iso_cb_;
testing::MockFunction<void(void)> disconnect_cb_;
std::shared_ptr<H4Protocol> h4_hci_;
int chip_uart_fd_;
int stack_uart_fd_;
char header_[5];
};
// Test sending data sends correct data onto the UART
TEST_F(H4ProtocolTest, TestSends) {
SendAndReadUartOutbound(PacketType::COMMAND, sample_data1);
SendAndReadUartOutbound(PacketType::ACL_DATA, sample_data2);
SendAndReadUartOutbound(PacketType::SCO_DATA, sample_data3);
SendAndReadUartOutbound(PacketType::ISO_DATA, sample_data4);
}
// Ensure we properly parse data coming from the UART
TEST_F(H4ProtocolTest, TestReads) {
std::promise<void> acl_promise;
std::promise<void> sco_promise;
std::promise<void> event_promise;
std::promise<void> iso_promise;
ExpectInboundAclData(acl_data, &acl_promise);
WriteInboundAclData(acl_data);
CallDataReady();
ExpectInboundScoData(sco_data, &sco_promise);
WriteInboundScoData(sco_data);
CallDataReady();
ExpectInboundEvent(event_data, &event_promise);
WriteInboundEvent(event_data);
CallDataReady();
ExpectInboundIsoData(iso_data, &iso_promise);
WriteInboundIsoData(iso_data);
CallDataReady();
WaitForTimeout(100, &acl_promise);
WaitForTimeout(100, &sco_promise);
WaitForTimeout(100, &event_promise);
WaitForTimeout(100, &iso_promise);
}
TEST_F(H4ProtocolTest, TestMultiplePackets) {
WriteAndExpectManyInboundAclDataPackets(sco_data);
}
TEST_F(H4ProtocolTest, TestDisconnect) {
EXPECT_CALL(disconnect_cb_, Call());
close(chip_uart_fd_);
CallDataReady();
}
TEST_F(H4ProtocolTest, TestPartialWrites) {
size_t payload_len = strlen(acl_data);
const size_t kNumIntervals = payload_len + 1;
// h4 type[1] + handle[2] + size[2]
header_[0] = static_cast<uint8_t>(PacketType::ACL_DATA);
header_[1] = 19;
header_[2] = 92;
header_[3] = payload_len & 0xFF;
header_[4] = (payload_len >> 8) & 0xFF;
EXPECT_CALL(acl_cb_,
Call(PacketMatches(header_ + 1, sizeof(header_) - 1, acl_data)))
.Times(kNumIntervals);
for (size_t interval = 1; interval < kNumIntervals + 1; interval++) {
// Use the header_ data that expect already set up.
if (interval < kAclHeaderSize) {
TEMP_FAILURE_RETRY(write(chip_uart_fd_, header_, interval));
CallDataReady();
TEMP_FAILURE_RETRY(write(chip_uart_fd_, header_ + interval,
kAclHeaderSize + 1 - interval));
CallDataReady();
} else {
TEMP_FAILURE_RETRY(write(chip_uart_fd_, header_, kAclHeaderSize + 1));
CallDataReady();
}
for (size_t bytes = 0; bytes + interval <= payload_len; bytes += interval) {
TEMP_FAILURE_RETRY(write(chip_uart_fd_, acl_data + bytes, interval));
CallDataReady();
}
size_t extra_bytes = payload_len % interval;
if (extra_bytes) {
TEMP_FAILURE_RETRY(write(
chip_uart_fd_, acl_data + payload_len - extra_bytes, extra_bytes));
CallDataReady();
}
}
}
class H4ProtocolAsyncTest : public H4ProtocolTest {
protected:
void SetUp() override {
H4ProtocolTest::SetUp();
fd_watcher_.WatchFdForNonBlockingReads(
stack_uart_fd_, [this](int) { h4_hci_->OnDataReady(); });
}
void TearDown() override { fd_watcher_.StopWatchingFileDescriptors(); }
void CallDataReady() override {
// The Async test can't call data ready.
FAIL();
}
void SendAndReadUartOutbound(PacketType type, char* data) {
ALOGD("%s sending", __func__);
int data_length = strlen(data);
h4_hci_->Send(type, (uint8_t*)data, data_length);
int uart_length = data_length + 1; // + 1 for data type code
int i;
ALOGD("%s reading", __func__);
for (i = 0; i < uart_length; i++) {
fd_set read_fds;
FD_ZERO(&read_fds);
FD_SET(chip_uart_fd_, &read_fds);
TEMP_FAILURE_RETRY(
select(chip_uart_fd_ + 1, &read_fds, nullptr, nullptr, nullptr));
char byte;
TEMP_FAILURE_RETRY(read(chip_uart_fd_, &byte, 1));
EXPECT_EQ(i == 0 ? static_cast<uint8_t>(type) : data[i - 1], byte);
}
EXPECT_EQ(i, uart_length);
}
void WriteAndExpectInboundAclData(char* payload) {
std::promise<void> promise;
ExpectInboundAclData(payload, &promise);
WriteInboundAclData(payload);
WaitForTimeout(100, &promise);
}
void WriteAndExpectInboundScoData(char* payload) {
std::promise<void> promise;
ExpectInboundScoData(payload, &promise);
WriteInboundScoData(payload);
WaitForTimeout(100, &promise);
}
void WriteAndExpectInboundEvent(char* payload) {
std::promise<void> promise;
ExpectInboundEvent(payload, &promise);
WriteInboundEvent(payload);
WaitForTimeout(100, &promise);
}
void WriteAndExpectInboundIsoData(char* payload) {
std::promise<void> promise;
ExpectInboundIsoData(payload, &promise);
WriteInboundIsoData(payload);
WaitForTimeout(100, &promise);
}
void WriteAndExpectManyInboundAclDataPackets(char* payload) {
const size_t kNumPackets = 20;
// h4 type[1] + handle[2] + size[2]
char preamble[5] = {static_cast<uint8_t>(PacketType::ACL_DATA), 19, 92, 0,
0};
int length = strlen(payload);
preamble[3] = length & 0xFF;
preamble[4] = (length >> 8) & 0xFF;
EXPECT_CALL(acl_cb_, Call(PacketMatches(preamble + 1, sizeof(preamble) - 1,
payload)))
.Times(kNumPackets);
for (size_t i = 0; i < kNumPackets; i++) {
TEMP_FAILURE_RETRY(write(chip_uart_fd_, preamble, sizeof(preamble)));
TEMP_FAILURE_RETRY(write(chip_uart_fd_, payload, strlen(payload)));
}
WriteAndExpectInboundEvent(event_data);
}
AsyncFdWatcher fd_watcher_;
};
// Test sending data sends correct data onto the UART
TEST_F(H4ProtocolAsyncTest, TestSends) {
SendAndReadUartOutbound(PacketType::COMMAND, sample_data1);
SendAndReadUartOutbound(PacketType::ACL_DATA, sample_data2);
SendAndReadUartOutbound(PacketType::SCO_DATA, sample_data3);
SendAndReadUartOutbound(PacketType::ISO_DATA, sample_data4);
}
// Ensure we properly parse data coming from the UART
TEST_F(H4ProtocolAsyncTest, TestReads) {
WriteAndExpectInboundAclData(acl_data);
WriteAndExpectInboundScoData(sco_data);
WriteAndExpectInboundEvent(event_data);
WriteAndExpectInboundIsoData(iso_data);
}
TEST_F(H4ProtocolAsyncTest, TestMultiplePackets) {
WriteAndExpectManyInboundAclDataPackets(sco_data);
}
TEST_F(H4ProtocolAsyncTest, TestDisconnect) {
std::promise<void> promise;
EXPECT_CALL(disconnect_cb_, Call()).WillOnce(Notify(&promise));
close(chip_uart_fd_);
// Fail if it takes longer than 100 ms.
WaitForTimeout(100, &promise);
}