blob: b071f71e8527f1c6b93e0a87152b17195245b9f5 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "graphics_composer_hidl_hal_test@2.4"
#include <algorithm>
#include <regex>
#include <thread>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android/hardware/graphics/mapper/2.0/IMapper.h>
#include <composer-command-buffer/2.4/ComposerCommandBuffer.h>
#include <composer-vts/2.4/ComposerVts.h>
#include <composer-vts/2.4/GraphicsComposerCallback.h>
#include <composer-vts/2.4/TestCommandReader.h>
#include <gtest/gtest.h>
#include <hidl/GtestPrinter.h>
#include <hidl/ServiceManagement.h>
#include <mapper-vts/2.0/MapperVts.h>
#include <mapper-vts/3.0/MapperVts.h>
#include <mapper-vts/4.0/MapperVts.h>
#include <utils/Timers.h>
namespace android {
namespace hardware {
namespace graphics {
namespace composer {
namespace V2_4 {
namespace vts {
namespace {
using namespace std::chrono_literals;
using common::V1_0::BufferUsage;
using common::V1_1::RenderIntent;
using common::V1_2::ColorMode;
using common::V1_2::Dataspace;
using common::V1_2::PixelFormat;
using V2_1::Layer;
using V2_1::vts::NativeHandleWrapper;
using V2_2::Transform;
using V2_2::vts::Gralloc;
using ContentType = IComposerClient::ContentType;
using DisplayCapability = IComposerClient::DisplayCapability;
class VtsDisplay {
public:
VtsDisplay(Display display, int32_t displayWidth, int32_t displayHeight)
: mDisplay(display), mDisplayWidth(displayWidth), mDisplayHeight(displayHeight) {}
Display get() const { return mDisplay; }
IComposerClient::FRect getCrop() const {
return {0, 0, static_cast<float>(mDisplayWidth), static_cast<float>(mDisplayHeight)};
}
IComposerClient::Rect getFrameRect() const { return {0, 0, mDisplayWidth, mDisplayHeight}; }
void setDimensions(int32_t displayWidth, int32_t displayHeight) {
mDisplayWidth = displayWidth;
mDisplayHeight = displayHeight;
}
private:
const Display mDisplay;
int32_t mDisplayWidth;
int32_t mDisplayHeight;
};
class GraphicsComposerHidlTest : public ::testing::TestWithParam<std::string> {
protected:
void SetUp() override {
ASSERT_NO_FATAL_FAILURE(
mComposer = std::make_unique<Composer>(IComposer::getService(GetParam())));
ASSERT_NO_FATAL_FAILURE(mComposerClient = mComposer->createClient());
mComposerCallback = new GraphicsComposerCallback;
mComposerClient->registerCallback_2_4(mComposerCallback);
// assume the first displays are built-in and are never removed
mDisplays = waitForDisplays();
mInvalidDisplayId = GetInvalidDisplayId();
// explicitly disable vsync
for (const auto& display : mDisplays) {
mComposerClient->setVsyncEnabled(display.get(), false);
}
mComposerCallback->setVsyncAllowed(false);
ASSERT_NO_FATAL_FAILURE(mGralloc = std::make_unique<Gralloc>());
mWriter = std::make_unique<CommandWriterBase>(1024);
mReader = std::make_unique<TestCommandReader>();
}
void TearDown() override {
ASSERT_EQ(0, mReader->mErrors.size());
ASSERT_EQ(0, mReader->mCompositionChanges.size());
if (mComposerCallback != nullptr) {
EXPECT_EQ(0, mComposerCallback->getInvalidHotplugCount());
EXPECT_EQ(0, mComposerCallback->getInvalidRefreshCount());
EXPECT_EQ(0, mComposerCallback->getInvalidVsyncCount());
EXPECT_EQ(0, mComposerCallback->getInvalidVsync_2_4Count());
EXPECT_EQ(0, mComposerCallback->getInvalidVsyncPeriodChangeCount());
EXPECT_EQ(0, mComposerCallback->getInvalidSeamlessPossibleCount());
}
}
// returns an invalid display id (one that has not been registered to a
// display. Currently assuming that a device will never have close to
// std::numeric_limit<uint64_t>::max() displays registered while running tests
Display GetInvalidDisplayId() {
uint64_t id = std::numeric_limits<uint64_t>::max();
while (id > 0) {
if (std::none_of(mDisplays.begin(), mDisplays.end(),
[&](const VtsDisplay& display) { return id == display.get(); })) {
return id;
}
id--;
}
return 0;
}
// returns an invalid config id (one that has not been registered to a
// display). Currently assuming that a device will never have close to
// std::numeric_limit<uint64_t>::max() configs registered while running tests
Display GetInvalidConfigId(Display display) {
std::vector<Config> validConfigs = mComposerClient->getDisplayConfigs(display);
uint64_t id = std::numeric_limits<uint64_t>::max();
while (id > 0) {
if (std::find(validConfigs.begin(), validConfigs.end(), id) == validConfigs.end()) {
return id;
}
id--;
}
return 0;
}
void execute() { mComposerClient->execute(mReader.get(), mWriter.get()); }
NativeHandleWrapper allocate(int32_t width, int32_t height) {
return mGralloc->allocate(
width, height, /*layerCount*/ 1,
static_cast<common::V1_1::PixelFormat>(PixelFormat::RGBA_8888),
static_cast<uint64_t>(BufferUsage::CPU_WRITE_OFTEN | BufferUsage::CPU_READ_OFTEN));
}
struct TestParameters {
nsecs_t delayForChange;
bool refreshMiss;
};
void Test_setActiveConfigWithConstraints(const TestParameters& params);
void sendRefreshFrame(const VtsDisplay& display, const VsyncPeriodChangeTimeline*);
void waitForVsyncPeriodChange(Display display, const VsyncPeriodChangeTimeline& timeline,
int64_t desiredTimeNanos, int64_t oldPeriodNanos,
int64_t newPeriodNanos);
std::unique_ptr<ComposerClient> mComposerClient;
std::vector<VtsDisplay> mDisplays;
Display mInvalidDisplayId;
void forEachTwoConfigs(Display display, std::function<void(Config, Config)> func) {
const auto displayConfigs = mComposerClient->getDisplayConfigs(display);
for (const Config config1 : displayConfigs) {
for (const Config config2 : displayConfigs) {
if (config1 != config2) {
func(config1, config2);
}
}
}
}
void Test_setContentType(const ContentType& contentType, const char* contentTypeStr);
void Test_setContentTypeForDisplay(const Display& display,
const std::vector<ContentType>& capabilities,
const ContentType& contentType, const char* contentTypeStr);
Error setActiveConfigWithConstraints(
VtsDisplay& display, Config config,
const IComposerClient::VsyncPeriodChangeConstraints& constraints,
VsyncPeriodChangeTimeline* timeline) {
const auto error = mComposerClient->setActiveConfigWithConstraints(display.get(), config,
constraints, timeline);
if (error == Error::NONE) {
const int32_t displayWidth = mComposerClient->getDisplayAttribute_2_4(
display.get(), config, IComposerClient::Attribute::WIDTH);
const int32_t displayHeight = mComposerClient->getDisplayAttribute_2_4(
display.get(), config, IComposerClient::Attribute::HEIGHT);
display.setDimensions(displayWidth, displayHeight);
}
return error;
}
void setActiveConfig(VtsDisplay& display, Config config) {
mComposerClient->setActiveConfig(display.get(), config);
const int32_t displayWidth = mComposerClient->getDisplayAttribute_2_4(
display.get(), config, IComposerClient::Attribute::WIDTH);
const int32_t displayHeight = mComposerClient->getDisplayAttribute_2_4(
display.get(), config, IComposerClient::Attribute::HEIGHT);
display.setDimensions(displayWidth, displayHeight);
}
private:
// use the slot count usually set by SF
static constexpr uint32_t kBufferSlotCount = 64;
std::vector<VtsDisplay> waitForDisplays() {
while (true) {
// Sleep for a small period of time to allow all built-in displays
// to post hotplug events
std::this_thread::sleep_for(5ms);
std::vector<Display> displays = mComposerCallback->getDisplays();
if (displays.empty()) {
continue;
}
std::vector<VtsDisplay> vtsDisplays;
vtsDisplays.reserve(displays.size());
for (Display display : displays) {
const Config activeConfig = mComposerClient->getActiveConfig(display);
const int32_t displayWidth = mComposerClient->getDisplayAttribute_2_4(
display, activeConfig, IComposerClient::Attribute::WIDTH);
const int32_t displayHeight = mComposerClient->getDisplayAttribute_2_4(
display, activeConfig, IComposerClient::Attribute::HEIGHT);
vtsDisplays.emplace_back(VtsDisplay{display, displayWidth, displayHeight});
}
return vtsDisplays;
}
}
std::unique_ptr<Composer> mComposer;
std::unique_ptr<CommandWriterBase> mWriter;
std::unique_ptr<TestCommandReader> mReader;
sp<GraphicsComposerCallback> mComposerCallback;
std::unique_ptr<Gralloc> mGralloc;
};
TEST_P(GraphicsComposerHidlTest, getDisplayCapabilitiesBadDisplay) {
std::vector<IComposerClient::DisplayCapability> capabilities;
const auto error = mComposerClient->getDisplayCapabilities(mInvalidDisplayId, &capabilities);
EXPECT_EQ(Error::BAD_DISPLAY, error);
}
TEST_P(GraphicsComposerHidlTest, getDisplayCapabilities) {
for (const auto& display : mDisplays) {
std::vector<IComposerClient::DisplayCapability> capabilities;
EXPECT_EQ(Error::NONE,
mComposerClient->getDisplayCapabilities(display.get(), &capabilities));
}
}
TEST_P(GraphicsComposerHidlTest, getDisplayConnectionType) {
IComposerClient::DisplayConnectionType type;
EXPECT_EQ(Error::BAD_DISPLAY,
mComposerClient->getDisplayConnectionType(mInvalidDisplayId, &type));
for (const auto& display : mDisplays) {
EXPECT_EQ(Error::NONE, mComposerClient->getDisplayConnectionType(display.get(), &type));
}
}
TEST_P(GraphicsComposerHidlTest, GetDisplayAttribute_2_4) {
for (const auto& display : mDisplays) {
std::vector<Config> configs = mComposerClient->getDisplayConfigs(display.get());
for (auto config : configs) {
const std::array<IComposerClient::Attribute, 4> requiredAttributes = {{
IComposerClient::Attribute::WIDTH,
IComposerClient::Attribute::HEIGHT,
IComposerClient::Attribute::VSYNC_PERIOD,
IComposerClient::Attribute::CONFIG_GROUP,
}};
for (auto attribute : requiredAttributes) {
mComposerClient->getRaw()->getDisplayAttribute_2_4(
display.get(), config, attribute,
[&](const auto& tmpError, const auto& value) {
EXPECT_EQ(Error::NONE, tmpError);
EXPECT_NE(-1, value);
});
}
const std::array<IComposerClient::Attribute, 2> optionalAttributes = {{
IComposerClient::Attribute::DPI_X,
IComposerClient::Attribute::DPI_Y,
}};
for (auto attribute : optionalAttributes) {
mComposerClient->getRaw()->getDisplayAttribute_2_4(
display.get(), config, attribute, [&](const auto& tmpError, const auto&) {
EXPECT_TRUE(tmpError == Error::NONE || tmpError == Error::UNSUPPORTED);
});
}
}
}
}
TEST_P(GraphicsComposerHidlTest, getDisplayVsyncPeriod_BadDisplay) {
VsyncPeriodNanos vsyncPeriodNanos;
EXPECT_EQ(Error::BAD_DISPLAY,
mComposerClient->getDisplayVsyncPeriod(mInvalidDisplayId, &vsyncPeriodNanos));
}
TEST_P(GraphicsComposerHidlTest, getDisplayVsyncPeriod) {
for (VtsDisplay& display : mDisplays) {
for (Config config : mComposerClient->getDisplayConfigs(display.get())) {
VsyncPeriodNanos expectedVsyncPeriodNanos = mComposerClient->getDisplayAttribute_2_4(
display.get(), config,
IComposerClient::IComposerClient::Attribute::VSYNC_PERIOD);
VsyncPeriodChangeTimeline timeline;
IComposerClient::VsyncPeriodChangeConstraints constraints;
constraints.desiredTimeNanos = systemTime();
constraints.seamlessRequired = false;
EXPECT_EQ(Error::NONE,
setActiveConfigWithConstraints(display, config, constraints, &timeline));
if (timeline.refreshRequired) {
sendRefreshFrame(display, &timeline);
}
waitForVsyncPeriodChange(display.get(), timeline, constraints.desiredTimeNanos, 0,
expectedVsyncPeriodNanos);
VsyncPeriodNanos vsyncPeriodNanos;
int retryCount = 100;
do {
std::this_thread::sleep_for(10ms);
vsyncPeriodNanos = 0;
EXPECT_EQ(Error::NONE,
mComposerClient->getDisplayVsyncPeriod(display.get(), &vsyncPeriodNanos));
--retryCount;
} while (vsyncPeriodNanos != expectedVsyncPeriodNanos && retryCount > 0);
EXPECT_EQ(vsyncPeriodNanos, expectedVsyncPeriodNanos);
// Make sure that the vsync period stays the same if the active config is not changed.
auto timeout = 1ms;
for (int i = 0; i < 10; i++) {
std::this_thread::sleep_for(timeout);
timeout *= 2;
vsyncPeriodNanos = 0;
EXPECT_EQ(Error::NONE,
mComposerClient->getDisplayVsyncPeriod(display.get(), &vsyncPeriodNanos));
EXPECT_EQ(vsyncPeriodNanos, expectedVsyncPeriodNanos);
}
}
}
}
TEST_P(GraphicsComposerHidlTest, setActiveConfigWithConstraints_BadDisplay) {
VsyncPeriodChangeTimeline timeline;
IComposerClient::VsyncPeriodChangeConstraints constraints;
constraints.seamlessRequired = false;
constraints.desiredTimeNanos = systemTime();
EXPECT_EQ(Error::BAD_DISPLAY, mComposerClient->setActiveConfigWithConstraints(
mInvalidDisplayId, Config(0), constraints, &timeline));
}
TEST_P(GraphicsComposerHidlTest, setActiveConfigWithConstraints_BadConfig) {
VsyncPeriodChangeTimeline timeline;
IComposerClient::VsyncPeriodChangeConstraints constraints;
constraints.seamlessRequired = false;
constraints.desiredTimeNanos = systemTime();
for (VtsDisplay& display : mDisplays) {
Config invalidConfigId = GetInvalidConfigId(display.get());
EXPECT_EQ(Error::BAD_CONFIG,
setActiveConfigWithConstraints(display, invalidConfigId, constraints, &timeline));
}
}
TEST_P(GraphicsComposerHidlTest, setActiveConfigWithConstraints_SeamlessNotAllowed) {
VsyncPeriodChangeTimeline timeline;
IComposerClient::VsyncPeriodChangeConstraints constraints;
constraints.seamlessRequired = true;
constraints.desiredTimeNanos = systemTime();
for (VtsDisplay& display : mDisplays) {
forEachTwoConfigs(display.get(), [&](Config config1, Config config2) {
const auto configGroup1 = mComposerClient->getDisplayAttribute_2_4(
display.get(), config1,
IComposerClient::IComposerClient::Attribute::CONFIG_GROUP);
const auto configGroup2 = mComposerClient->getDisplayAttribute_2_4(
display.get(), config2,
IComposerClient::IComposerClient::Attribute::CONFIG_GROUP);
if (configGroup1 != configGroup2) {
setActiveConfig(display, config1);
sendRefreshFrame(display, nullptr);
EXPECT_EQ(Error::SEAMLESS_NOT_ALLOWED,
setActiveConfigWithConstraints(display, config2, constraints, &timeline));
}
});
}
}
static inline auto toTimePoint(nsecs_t time) {
return std::chrono::time_point<std::chrono::steady_clock>(std::chrono::nanoseconds(time));
}
void GraphicsComposerHidlTest::sendRefreshFrame(const VtsDisplay& display,
const VsyncPeriodChangeTimeline* timeline) {
if (timeline != nullptr) {
// Refresh time should be before newVsyncAppliedTimeNanos
EXPECT_LT(timeline->refreshTimeNanos, timeline->newVsyncAppliedTimeNanos);
std::this_thread::sleep_until(toTimePoint(timeline->refreshTimeNanos));
}
mWriter->selectDisplay(display.get());
mComposerClient->setPowerMode(display.get(), V2_1::IComposerClient::PowerMode::ON);
mComposerClient->setColorMode_2_3(display.get(), ColorMode::NATIVE, RenderIntent::COLORIMETRIC);
IComposerClient::FRect displayCrop = display.getCrop();
int32_t displayWidth = static_cast<int32_t>(std::ceilf(displayCrop.right - displayCrop.left));
int32_t displayHeight = static_cast<int32_t>(std::ceilf(displayCrop.bottom - displayCrop.top));
Layer layer;
ASSERT_NO_FATAL_FAILURE(layer = mComposerClient->createLayer(display.get(), kBufferSlotCount));
{
auto handle = allocate(displayWidth, displayHeight);
ASSERT_NE(nullptr, handle.get());
mWriter->selectLayer(layer);
mWriter->setLayerCompositionType(IComposerClient::Composition::DEVICE);
mWriter->setLayerDisplayFrame(display.getFrameRect());
mWriter->setLayerPlaneAlpha(1);
mWriter->setLayerSourceCrop(display.getCrop());
mWriter->setLayerTransform(static_cast<Transform>(0));
mWriter->setLayerVisibleRegion(
std::vector<IComposerClient::Rect>(1, display.getFrameRect()));
mWriter->setLayerZOrder(10);
mWriter->setLayerBlendMode(IComposerClient::BlendMode::NONE);
mWriter->setLayerSurfaceDamage(
std::vector<IComposerClient::Rect>(1, display.getFrameRect()));
mWriter->setLayerBuffer(0, handle.get(), -1);
mWriter->setLayerDataspace(Dataspace::UNKNOWN);
mWriter->validateDisplay();
execute();
ASSERT_EQ(0, mReader->mErrors.size());
mReader->mCompositionChanges.clear();
mWriter->presentDisplay();
execute();
ASSERT_EQ(0, mReader->mErrors.size());
}
{
auto handle = allocate(displayWidth, displayHeight);
ASSERT_NE(nullptr, handle.get());
mWriter->selectLayer(layer);
mWriter->setLayerBuffer(0, handle.get(), -1);
mWriter->setLayerSurfaceDamage(std::vector<IComposerClient::Rect>(1, {0, 0, 10, 10}));
mWriter->validateDisplay();
execute();
ASSERT_EQ(0, mReader->mErrors.size());
mReader->mCompositionChanges.clear();
mWriter->presentDisplay();
execute();
}
ASSERT_NO_FATAL_FAILURE(mComposerClient->destroyLayer(display.get(), layer));
}
void GraphicsComposerHidlTest::waitForVsyncPeriodChange(Display display,
const VsyncPeriodChangeTimeline& timeline,
int64_t desiredTimeNanos,
int64_t oldPeriodNanos,
int64_t newPeriodNanos) {
const auto CHANGE_DEADLINE = toTimePoint(timeline.newVsyncAppliedTimeNanos) + 100ms;
while (std::chrono::steady_clock::now() <= CHANGE_DEADLINE) {
VsyncPeriodNanos vsyncPeriodNanos;
EXPECT_EQ(Error::NONE, mComposerClient->getDisplayVsyncPeriod(display, &vsyncPeriodNanos));
if (systemTime() <= desiredTimeNanos) {
EXPECT_EQ(vsyncPeriodNanos, oldPeriodNanos);
} else if (vsyncPeriodNanos == newPeriodNanos) {
break;
}
std::this_thread::sleep_for(std::chrono::nanoseconds(oldPeriodNanos));
}
}
void GraphicsComposerHidlTest::Test_setActiveConfigWithConstraints(const TestParameters& params) {
for (VtsDisplay& display : mDisplays) {
forEachTwoConfigs(display.get(), [&](Config config1, Config config2) {
setActiveConfig(display, config1);
sendRefreshFrame(display, nullptr);
const auto vsyncPeriod1 = mComposerClient->getDisplayAttribute_2_4(
display.get(), config1,
IComposerClient::IComposerClient::Attribute::VSYNC_PERIOD);
const auto configGroup1 = mComposerClient->getDisplayAttribute_2_4(
display.get(), config1,
IComposerClient::IComposerClient::Attribute::CONFIG_GROUP);
const auto vsyncPeriod2 = mComposerClient->getDisplayAttribute_2_4(
display.get(), config2,
IComposerClient::IComposerClient::Attribute::VSYNC_PERIOD);
const auto configGroup2 = mComposerClient->getDisplayAttribute_2_4(
display.get(), config2,
IComposerClient::IComposerClient::Attribute::CONFIG_GROUP);
if (vsyncPeriod1 == vsyncPeriod2) {
return; // continue
}
// We don't allow delayed change when changing config groups
if (params.delayForChange > 0 && configGroup1 != configGroup2) {
return; // continue
}
VsyncPeriodChangeTimeline timeline;
IComposerClient::VsyncPeriodChangeConstraints constraints = {
.desiredTimeNanos = systemTime() + params.delayForChange,
.seamlessRequired = false};
EXPECT_EQ(Error::NONE,
setActiveConfigWithConstraints(display, config2, constraints, &timeline));
EXPECT_TRUE(timeline.newVsyncAppliedTimeNanos >= constraints.desiredTimeNanos);
// Refresh rate should change within a reasonable time
constexpr std::chrono::nanoseconds kReasonableTimeForChange = 1s; // 1 second
EXPECT_TRUE(timeline.newVsyncAppliedTimeNanos - constraints.desiredTimeNanos <=
kReasonableTimeForChange.count());
if (timeline.refreshRequired) {
if (params.refreshMiss) {
// Miss the refresh frame on purpose to make sure the implementation sends a
// callback
std::this_thread::sleep_until(toTimePoint(timeline.refreshTimeNanos) + 100ms);
}
sendRefreshFrame(display, &timeline);
}
waitForVsyncPeriodChange(display.get(), timeline, constraints.desiredTimeNanos,
vsyncPeriod1, vsyncPeriod2);
// At this point the refresh rate should have changed already, however in rare
// cases the implementation might have missed the deadline. In this case a new
// timeline should have been provided.
auto newTimeline = mComposerCallback->takeLastVsyncPeriodChangeTimeline();
if (timeline.refreshRequired && params.refreshMiss) {
EXPECT_TRUE(newTimeline.has_value());
}
if (newTimeline.has_value()) {
if (newTimeline->refreshRequired) {
sendRefreshFrame(display, &newTimeline.value());
}
waitForVsyncPeriodChange(display.get(), newTimeline.value(),
constraints.desiredTimeNanos, vsyncPeriod1, vsyncPeriod2);
}
VsyncPeriodNanos vsyncPeriodNanos;
EXPECT_EQ(Error::NONE,
mComposerClient->getDisplayVsyncPeriod(display.get(), &vsyncPeriodNanos));
EXPECT_EQ(vsyncPeriodNanos, vsyncPeriod2);
});
}
}
TEST_P(GraphicsComposerHidlTest, setActiveConfigWithConstraints) {
Test_setActiveConfigWithConstraints({.delayForChange = 0, .refreshMiss = false});
}
TEST_P(GraphicsComposerHidlTest, setActiveConfigWithConstraints_Delayed) {
Test_setActiveConfigWithConstraints({.delayForChange = 300'000'000, // 300ms
.refreshMiss = false});
}
TEST_P(GraphicsComposerHidlTest, setActiveConfigWithConstraints_MissRefresh) {
Test_setActiveConfigWithConstraints({.delayForChange = 0, .refreshMiss = true});
}
TEST_P(GraphicsComposerHidlTest, setAutoLowLatencyModeBadDisplay) {
EXPECT_EQ(Error::BAD_DISPLAY, mComposerClient->setAutoLowLatencyMode(mInvalidDisplayId, true));
EXPECT_EQ(Error::BAD_DISPLAY, mComposerClient->setAutoLowLatencyMode(mInvalidDisplayId, false));
}
TEST_P(GraphicsComposerHidlTest, setAutoLowLatencyMode) {
for (const auto& display : mDisplays) {
std::vector<DisplayCapability> capabilities;
const auto error = mComposerClient->getDisplayCapabilities(display.get(), &capabilities);
EXPECT_EQ(Error::NONE, error);
const bool allmSupport =
std::find(capabilities.begin(), capabilities.end(),
DisplayCapability::AUTO_LOW_LATENCY_MODE) != capabilities.end();
if (!allmSupport) {
EXPECT_EQ(Error::UNSUPPORTED,
mComposerClient->setAutoLowLatencyMode(display.get(), true));
EXPECT_EQ(Error::UNSUPPORTED,
mComposerClient->setAutoLowLatencyMode(display.get(), false));
GTEST_SUCCEED() << "Auto Low Latency Mode is not supported on display "
<< std::to_string(display.get()) << ", skipping test";
return;
}
EXPECT_EQ(Error::NONE, mComposerClient->setAutoLowLatencyMode(display.get(), true));
EXPECT_EQ(Error::NONE, mComposerClient->setAutoLowLatencyMode(display.get(), false));
}
}
TEST_P(GraphicsComposerHidlTest, getSupportedContentTypesBadDisplay) {
std::vector<ContentType> supportedContentTypes;
const auto error =
mComposerClient->getSupportedContentTypes(mInvalidDisplayId, &supportedContentTypes);
EXPECT_EQ(Error::BAD_DISPLAY, error);
}
TEST_P(GraphicsComposerHidlTest, getSupportedContentTypes) {
std::vector<ContentType> supportedContentTypes;
for (const auto& display : mDisplays) {
supportedContentTypes.clear();
const auto error =
mComposerClient->getSupportedContentTypes(display.get(), &supportedContentTypes);
const bool noneSupported =
std::find(supportedContentTypes.begin(), supportedContentTypes.end(),
ContentType::NONE) != supportedContentTypes.end();
EXPECT_EQ(Error::NONE, error);
EXPECT_FALSE(noneSupported);
}
}
TEST_P(GraphicsComposerHidlTest, setContentTypeNoneAlwaysAccepted) {
for (const auto& display : mDisplays) {
const auto error = mComposerClient->setContentType(display.get(), ContentType::NONE);
EXPECT_NE(Error::UNSUPPORTED, error);
}
}
TEST_P(GraphicsComposerHidlTest, setContentTypeBadDisplay) {
const auto types = {ContentType::NONE, ContentType::GRAPHICS, ContentType::PHOTO,
ContentType::CINEMA, ContentType::GAME};
for (auto type : types) {
EXPECT_EQ(Error::BAD_DISPLAY, mComposerClient->setContentType(mInvalidDisplayId, type));
}
}
void GraphicsComposerHidlTest::Test_setContentTypeForDisplay(
const Display& display, const std::vector<ContentType>& capabilities,
const ContentType& contentType, const char* contentTypeStr) {
const bool contentTypeSupport =
std::find(capabilities.begin(), capabilities.end(), contentType) != capabilities.end();
if (!contentTypeSupport) {
EXPECT_EQ(Error::UNSUPPORTED, mComposerClient->setContentType(display, contentType));
GTEST_SUCCEED() << contentTypeStr << " content type is not supported on display "
<< std::to_string(display) << ", skipping test";
return;
}
EXPECT_EQ(Error::NONE, mComposerClient->setContentType(display, contentType));
EXPECT_EQ(Error::NONE, mComposerClient->setContentType(display, ContentType::NONE));
}
void GraphicsComposerHidlTest::Test_setContentType(const ContentType& contentType,
const char* contentTypeStr) {
for (const auto& display : mDisplays) {
std::vector<ContentType> supportedContentTypes;
const auto error =
mComposerClient->getSupportedContentTypes(display.get(), &supportedContentTypes);
EXPECT_EQ(Error::NONE, error);
Test_setContentTypeForDisplay(display.get(), supportedContentTypes, contentType,
contentTypeStr);
}
}
TEST_P(GraphicsComposerHidlTest, setGraphicsContentType) {
Test_setContentType(ContentType::GRAPHICS, "GRAPHICS");
}
TEST_P(GraphicsComposerHidlTest, setPhotoContentType) {
Test_setContentType(ContentType::PHOTO, "PHOTO");
}
TEST_P(GraphicsComposerHidlTest, setCinemaContentType) {
Test_setContentType(ContentType::CINEMA, "CINEMA");
}
TEST_P(GraphicsComposerHidlTest, setGameContentType) {
Test_setContentType(ContentType::GAME, "GAME");
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(GraphicsComposerHidlTest);
INSTANTIATE_TEST_SUITE_P(
PerInstance, GraphicsComposerHidlTest,
testing::ValuesIn(android::hardware::getAllHalInstanceNames(IComposer::descriptor)),
android::hardware::PrintInstanceNameToString);
TEST_P(GraphicsComposerHidlTest, getLayerGenericMetadataKeys) {
std::vector<IComposerClient::LayerGenericMetadataKey> keys;
mComposerClient->getLayerGenericMetadataKeys(&keys);
std::regex reverseDomainName("^[a-zA-Z-]{2,}(\\.[a-zA-Z0-9-]+)+$");
std::unordered_set<std::string> uniqueNames;
for (const auto& key : keys) {
std::string name(key.name.c_str());
// Keys must not start with 'android' or 'com.android'
ASSERT_FALSE(name.find("android") == 0);
ASSERT_FALSE(name.find("com.android") == 0);
// Keys must be in reverse domain name format
ASSERT_TRUE(std::regex_match(name, reverseDomainName));
// Keys must be unique within this list
const auto& [iter, inserted] = uniqueNames.insert(name);
ASSERT_TRUE(inserted);
}
}
} // namespace
} // namespace vts
} // namespace V2_4
} // namespace composer
} // namespace graphics
} // namespace hardware
} // namespace android
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
using namespace std::chrono_literals;
if (!android::base::WaitForProperty("init.svc.surfaceflinger", "stopped", 10s)) {
ALOGE("Failed to stop init.svc.surfaceflinger");
return -1;
}
return RUN_ALL_TESTS();
}