Add VTS tests for Sensors HAL 2.1

Bug: 144139857
Test: atest VtsHalSensorsV2_0TargetTest VtsHalSensorsV2_1TargetTest
Change-Id: If2b751929b8d89c9d381032f5e8424a24719b6bd
diff --git a/compatibility_matrices/compatibility_matrix.current.xml b/compatibility_matrices/compatibility_matrix.current.xml
index f8cec64..c5466c9 100644
--- a/compatibility_matrices/compatibility_matrix.current.xml
+++ b/compatibility_matrices/compatibility_matrix.current.xml
@@ -416,7 +416,7 @@
     <hal format="hidl" optional="true">
         <name>android.hardware.sensors</name>
         <version>1.0</version>
-        <version>2.0</version>
+        <version>2.0-1</version>
         <interface>
             <name>ISensors</name>
             <instance>default</instance>
diff --git a/sensors/1.0/vts/functional/Android.bp b/sensors/1.0/vts/functional/Android.bp
index 1167fd4..aaefccb 100644
--- a/sensors/1.0/vts/functional/Android.bp
+++ b/sensors/1.0/vts/functional/Android.bp
@@ -20,7 +20,7 @@
     defaults: ["VtsHalTargetTestDefaults"],
     srcs: [
         "SensorsHidlEnvironmentV1_0.cpp",
-        "VtsHalSensorsV1_0TargetTest.cpp"
+        "VtsHalSensorsV1_0TargetTest.cpp",
     ],
     static_libs: [
         "android.hardware.graphics.allocator@2.0",
@@ -31,6 +31,8 @@
         "android.hardware.sensors@1.0",
         "VtsHalSensorsTargetTestUtils",
     ],
-    test_suites: ["general-tests", "vts-core"],
+    test_suites: [
+        "general-tests",
+        "vts-core",
+    ],
 }
-
diff --git a/sensors/1.0/vts/functional/SensorsHidlEnvironmentV1_0.h b/sensors/1.0/vts/functional/SensorsHidlEnvironmentV1_0.h
index 29bfa50..485ed1e 100644
--- a/sensors/1.0/vts/functional/SensorsHidlEnvironmentV1_0.h
+++ b/sensors/1.0/vts/functional/SensorsHidlEnvironmentV1_0.h
@@ -29,8 +29,9 @@
 using ::android::sp;
 
 class SensorsHidlTest;
-class SensorsHidlEnvironmentV1_0 : public SensorsHidlEnvironmentBase {
-   public:
+class SensorsHidlEnvironmentV1_0
+    : public SensorsHidlEnvironmentBase<::android::hardware::sensors::V1_0::Event> {
+  public:
     using Event = ::android::hardware::sensors::V1_0::Event;
     SensorsHidlEnvironmentV1_0(const std::string& service_name)
         : SensorsHidlEnvironmentBase(service_name) {}
diff --git a/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp b/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp
index 2cad54d..e298651 100644
--- a/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp
+++ b/sensors/1.0/vts/functional/VtsHalSensorsV1_0TargetTest.cpp
@@ -33,8 +33,7 @@
 using namespace ::android::hardware::sensors::V1_0;
 
 // The main test class for SENSORS HIDL HAL.
-
-class SensorsHidlTest : public SensorsHidlTestBase {
+class SensorsHidlTest : public SensorsHidlTestBase<SensorType, Event, SensorInfo> {
   public:
     virtual void SetUp() override {
         mEnvironment = new SensorsHidlEnvironmentV1_0(GetParam());
@@ -80,7 +79,7 @@
 
     inline sp<ISensors>& S() { return mEnvironment->sensors; }
 
-    SensorsHidlEnvironmentBase* getEnvironment() override { return mEnvironment; }
+    SensorsHidlEnvironmentBase<Event>* getEnvironment() override { return mEnvironment; }
 
   private:
     // Test environment for sensors HAL.
@@ -257,55 +256,55 @@
 // Test if sensor hal can do UI speed accelerometer streaming properly
 TEST_P(SensorsHidlTest, AccelerometerStreamingOperationSlow) {
     testStreamingOperation(SensorType::ACCELEROMETER, std::chrono::milliseconds(200),
-                           std::chrono::seconds(5), sAccelNormChecker);
+                           std::chrono::seconds(5), mAccelNormChecker);
 }
 
 // Test if sensor hal can do normal speed accelerometer streaming properly
 TEST_P(SensorsHidlTest, AccelerometerStreamingOperationNormal) {
     testStreamingOperation(SensorType::ACCELEROMETER, std::chrono::milliseconds(20),
-                           std::chrono::seconds(5), sAccelNormChecker);
+                           std::chrono::seconds(5), mAccelNormChecker);
 }
 
 // Test if sensor hal can do game speed accelerometer streaming properly
 TEST_P(SensorsHidlTest, AccelerometerStreamingOperationFast) {
     testStreamingOperation(SensorType::ACCELEROMETER, std::chrono::milliseconds(5),
-                           std::chrono::seconds(5), sAccelNormChecker);
+                           std::chrono::seconds(5), mAccelNormChecker);
 }
 
 // Test if sensor hal can do UI speed gyroscope streaming properly
 TEST_P(SensorsHidlTest, GyroscopeStreamingOperationSlow) {
     testStreamingOperation(SensorType::GYROSCOPE, std::chrono::milliseconds(200),
-                           std::chrono::seconds(5), sGyroNormChecker);
+                           std::chrono::seconds(5), mGyroNormChecker);
 }
 
 // Test if sensor hal can do normal speed gyroscope streaming properly
 TEST_P(SensorsHidlTest, GyroscopeStreamingOperationNormal) {
     testStreamingOperation(SensorType::GYROSCOPE, std::chrono::milliseconds(20),
-                           std::chrono::seconds(5), sGyroNormChecker);
+                           std::chrono::seconds(5), mGyroNormChecker);
 }
 
 // Test if sensor hal can do game speed gyroscope streaming properly
 TEST_P(SensorsHidlTest, GyroscopeStreamingOperationFast) {
     testStreamingOperation(SensorType::GYROSCOPE, std::chrono::milliseconds(5),
-                           std::chrono::seconds(5), sGyroNormChecker);
+                           std::chrono::seconds(5), mGyroNormChecker);
 }
 
 // Test if sensor hal can do UI speed magnetometer streaming properly
 TEST_P(SensorsHidlTest, MagnetometerStreamingOperationSlow) {
     testStreamingOperation(SensorType::MAGNETIC_FIELD, std::chrono::milliseconds(200),
-                           std::chrono::seconds(5), NullChecker());
+                           std::chrono::seconds(5), NullChecker<Event>());
 }
 
 // Test if sensor hal can do normal speed magnetometer streaming properly
 TEST_P(SensorsHidlTest, MagnetometerStreamingOperationNormal) {
     testStreamingOperation(SensorType::MAGNETIC_FIELD, std::chrono::milliseconds(20),
-                           std::chrono::seconds(5), NullChecker());
+                           std::chrono::seconds(5), NullChecker<Event>());
 }
 
 // Test if sensor hal can do game speed magnetometer streaming properly
 TEST_P(SensorsHidlTest, MagnetometerStreamingOperationFast) {
     testStreamingOperation(SensorType::MAGNETIC_FIELD, std::chrono::milliseconds(5),
-                           std::chrono::seconds(5), NullChecker());
+                           std::chrono::seconds(5), NullChecker<Event>());
 }
 
 // Test if sensor hal can do accelerometer sampling rate switch properly when sensor is active
@@ -344,109 +343,109 @@
 // Test sensor event direct report with ashmem for accel sensor at normal rate
 TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationNormal) {
     testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::ASHMEM, RateLevel::NORMAL,
-                              sAccelNormChecker);
+                              mAccelNormChecker);
 }
 
 // Test sensor event direct report with ashmem for accel sensor at fast rate
 TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationFast) {
     testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::ASHMEM, RateLevel::FAST,
-                              sAccelNormChecker);
+                              mAccelNormChecker);
 }
 
 // Test sensor event direct report with ashmem for accel sensor at very fast rate
 TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationVeryFast) {
     testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::ASHMEM,
-                              RateLevel::VERY_FAST, sAccelNormChecker);
+                              RateLevel::VERY_FAST, mAccelNormChecker);
 }
 
 // Test sensor event direct report with ashmem for gyro sensor at normal rate
 TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationNormal) {
     testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::ASHMEM, RateLevel::NORMAL,
-                              sGyroNormChecker);
+                              mGyroNormChecker);
 }
 
 // Test sensor event direct report with ashmem for gyro sensor at fast rate
 TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationFast) {
     testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::ASHMEM, RateLevel::FAST,
-                              sGyroNormChecker);
+                              mGyroNormChecker);
 }
 
 // Test sensor event direct report with ashmem for gyro sensor at very fast rate
 TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationVeryFast) {
     testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::ASHMEM, RateLevel::VERY_FAST,
-                              sGyroNormChecker);
+                              mGyroNormChecker);
 }
 
 // Test sensor event direct report with ashmem for mag sensor at normal rate
 TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationNormal) {
     testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::ASHMEM, RateLevel::NORMAL,
-                              NullChecker());
+                              NullChecker<Event>());
 }
 
 // Test sensor event direct report with ashmem for mag sensor at fast rate
 TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationFast) {
     testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::ASHMEM, RateLevel::FAST,
-                              NullChecker());
+                              NullChecker<Event>());
 }
 
 // Test sensor event direct report with ashmem for mag sensor at very fast rate
 TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationVeryFast) {
     testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::ASHMEM,
-                              RateLevel::VERY_FAST, NullChecker());
+                              RateLevel::VERY_FAST, NullChecker<Event>());
 }
 
 // Test sensor event direct report with gralloc for accel sensor at normal rate
 TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationNormal) {
     testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::GRALLOC, RateLevel::NORMAL,
-                              sAccelNormChecker);
+                              mAccelNormChecker);
 }
 
 // Test sensor event direct report with gralloc for accel sensor at fast rate
 TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationFast) {
     testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::GRALLOC, RateLevel::FAST,
-                              sAccelNormChecker);
+                              mAccelNormChecker);
 }
 
 // Test sensor event direct report with gralloc for accel sensor at very fast rate
 TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationVeryFast) {
     testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::GRALLOC,
-                              RateLevel::VERY_FAST, sAccelNormChecker);
+                              RateLevel::VERY_FAST, mAccelNormChecker);
 }
 
 // Test sensor event direct report with gralloc for gyro sensor at normal rate
 TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationNormal) {
     testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::GRALLOC, RateLevel::NORMAL,
-                              sGyroNormChecker);
+                              mGyroNormChecker);
 }
 
 // Test sensor event direct report with gralloc for gyro sensor at fast rate
 TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationFast) {
     testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::GRALLOC, RateLevel::FAST,
-                              sGyroNormChecker);
+                              mGyroNormChecker);
 }
 
 // Test sensor event direct report with gralloc for gyro sensor at very fast rate
 TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationVeryFast) {
     testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::GRALLOC, RateLevel::VERY_FAST,
-                              sGyroNormChecker);
+                              mGyroNormChecker);
 }
 
 // Test sensor event direct report with gralloc for mag sensor at normal rate
 TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationNormal) {
     testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::GRALLOC, RateLevel::NORMAL,
-                              NullChecker());
+                              NullChecker<Event>());
 }
 
 // Test sensor event direct report with gralloc for mag sensor at fast rate
 TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationFast) {
     testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::GRALLOC, RateLevel::FAST,
-                              NullChecker());
+                              NullChecker<Event>());
 }
 
 // Test sensor event direct report with gralloc for mag sensor at very fast rate
 TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationVeryFast) {
     testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::GRALLOC,
-                              RateLevel::VERY_FAST, NullChecker());
+                              RateLevel::VERY_FAST, NullChecker<Event>());
 }
 
 INSTANTIATE_TEST_SUITE_P(
diff --git a/sensors/2.0/vts/functional/Android.bp b/sensors/2.0/vts/functional/Android.bp
index 4765fa2..22a5091 100644
--- a/sensors/2.0/vts/functional/Android.bp
+++ b/sensors/2.0/vts/functional/Android.bp
@@ -19,8 +19,10 @@
     cflags: ["-DLOG_TAG=\"sensors_hidl_hal_test\""],
     defaults: ["VtsHalTargetTestDefaults"],
     srcs: [
-        "SensorsHidlEnvironmentV2_0.cpp",
-        "VtsHalSensorsV2_0TargetTest.cpp"
+        "VtsHalSensorsV2_0TargetTest.cpp",
+    ],
+    header_libs: [
+        "android.hardware.sensors@2.X-shared-utils",
     ],
     static_libs: [
         "android.hardware.graphics.allocator@2.0",
@@ -29,9 +31,15 @@
         "android.hardware.graphics.mapper@2.1",
         "android.hardware.graphics.mapper@3.0",
         "android.hardware.sensors@1.0",
+        "android.hardware.sensors@1.0-convert",
         "android.hardware.sensors@2.0",
+        "android.hardware.sensors@2.1",
         "libfmq",
         "VtsHalSensorsTargetTestUtils",
+        "VtsHalSensorsV2_XTargetTest",
+    ],
+    test_suites: [
+        "general-tests",
+        "vts-core",
     ],
 }
-
diff --git a/sensors/2.0/vts/functional/VtsHalSensorsV2_0TargetTest.cpp b/sensors/2.0/vts/functional/VtsHalSensorsV2_0TargetTest.cpp
index 540529d..8895350 100644
--- a/sensors/2.0/vts/functional/VtsHalSensorsV2_0TargetTest.cpp
+++ b/sensors/2.0/vts/functional/VtsHalSensorsV2_0TargetTest.cpp
@@ -14,1130 +14,19 @@
  * limitations under the License.
  */
 
-#include "SensorsHidlEnvironmentV2_0.h"
-#include "sensors-vts-utils/SensorsHidlTestBase.h"
-#include "sensors-vts-utils/SensorsTestSharedMemory.h"
+#include "VtsHalSensorsV2_XTargetTest.h"
 
-#include <android/hardware/sensors/2.0/ISensors.h>
-#include <android/hardware/sensors/2.0/types.h>
-#include <hidl/GtestPrinter.h>
-#include <hidl/ServiceManagement.h>
-#include <log/log.h>
-#include <utils/SystemClock.h>
-
-#include <cinttypes>
-#include <condition_variable>
-#include <cstring>
-#include <map>
-#include <vector>
-
-using ::android::sp;
-using ::android::hardware::Return;
-using ::android::hardware::Void;
-using ::android::hardware::sensors::V1_0::MetaDataEventType;
-using ::android::hardware::sensors::V1_0::OperationMode;
-using ::android::hardware::sensors::V1_0::SensorsEventFormatOffset;
-using ::android::hardware::sensors::V1_0::SensorStatus;
-using ::android::hardware::sensors::V1_0::SharedMemType;
-using ::android::hardware::sensors::V1_0::Vec3;
-using std::chrono::duration_cast;
-using std::chrono::microseconds;
-using std::chrono::milliseconds;
-using std::chrono::nanoseconds;
-
-constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);
-
-class EventCallback : public IEventCallback {
-   public:
-    void reset() {
-        mFlushMap.clear();
-        mEventMap.clear();
-    }
-
-    void onEvent(const ::android::hardware::sensors::V1_0::Event& event) override {
-        if (event.sensorType == SensorType::META_DATA &&
-            event.u.meta.what == MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
-            std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
-            mFlushMap[event.sensorHandle]++;
-            mFlushCV.notify_all();
-        } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
-            std::unique_lock<std::recursive_mutex> lock(mEventMutex);
-            mEventMap[event.sensorHandle].push_back(event);
-            mEventCV.notify_all();
-        }
-    }
-
-    int32_t getFlushCount(int32_t sensorHandle) {
-        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
-        return mFlushMap[sensorHandle];
-    }
-
-    void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
-                            int32_t numCallsToFlush, milliseconds timeout) {
-        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
-        mFlushCV.wait_for(lock, timeout,
-                          [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
-    }
-
-    const std::vector<Event> getEvents(int32_t sensorHandle) {
-        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
-        return mEventMap[sensorHandle];
-    }
-
-    void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor, milliseconds timeout) {
-        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
-        mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
-    }
-
-   protected:
-    bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
-        for (const SensorInfo& sensor : sensorsToWaitFor) {
-            if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
-                return false;
-            }
-        }
-        return true;
-    }
-
-    bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
-        for (const SensorInfo& sensor : sensorsToWaitFor) {
-            if (getEvents(sensor.sensorHandle).size() == 0) {
-                return false;
-            }
-        }
-        return true;
-    }
-
-    std::map<int32_t, int32_t> mFlushMap;
-    std::recursive_mutex mFlushMutex;
-    std::condition_variable_any mFlushCV;
-
-    std::map<int32_t, std::vector<Event>> mEventMap;
-    std::recursive_mutex mEventMutex;
-    std::condition_variable_any mEventCV;
-};
-
-// The main test class for SENSORS HIDL HAL.
-
-class SensorsHidlTest : public SensorsHidlTestBase {
-  public:
-    virtual void SetUp() override {
-        mEnvironment = new SensorsHidlEnvironmentV2_0(GetParam());
-        mEnvironment->HidlSetUp();
-        // Ensure that we have a valid environment before performing tests
-        ASSERT_NE(getSensors(), nullptr);
-    }
-
-    virtual void TearDown() override { mEnvironment->HidlTearDown(); }
-
-  protected:
-    SensorInfo defaultSensorByType(SensorType type) override;
-    std::vector<SensorInfo> getSensorsList();
-    // implementation wrapper
-    Return<void> getSensorsList(ISensors::getSensorsList_cb _hidl_cb) override {
-        return getSensors()->getSensorsList(_hidl_cb);
-    }
-
-    Return<Result> activate(int32_t sensorHandle, bool enabled) override;
-
-    Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
-                         int64_t maxReportLatencyNs) override {
-        return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
-    }
-
-    Return<Result> flush(int32_t sensorHandle) override {
-        return getSensors()->flush(sensorHandle);
-    }
-
-    Return<Result> injectSensorData(const Event& event) override {
-        return getSensors()->injectSensorData(event);
-    }
-
-    Return<void> registerDirectChannel(const SharedMemInfo& mem,
-                                       ISensors::registerDirectChannel_cb _hidl_cb) override;
-
-    Return<Result> unregisterDirectChannel(int32_t channelHandle) override {
-        return getSensors()->unregisterDirectChannel(channelHandle);
-    }
-
-    Return<void> configDirectReport(int32_t sensorHandle, int32_t channelHandle, RateLevel rate,
-                                    ISensors::configDirectReport_cb _hidl_cb) override {
-        return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
-    }
-
-    inline sp<::android::hardware::sensors::V2_0::ISensors>& getSensors() {
-        return mEnvironment->mSensors;
-    }
-
-    SensorsHidlEnvironmentBase* getEnvironment() override { return mEnvironment; }
-
-    // Test helpers
-    void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
-                            int32_t expectedFlushCount, Result expectedResponse);
-    void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
-                      int32_t flushCalls, int32_t expectedFlushCount, Result expectedResponse);
-
-    // Helper functions
-    void activateAllSensors(bool enable);
-    std::vector<SensorInfo> getNonOneShotSensors();
-    std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
-    std::vector<SensorInfo> getOneShotSensors();
-    std::vector<SensorInfo> getInjectEventSensors();
-    int32_t getInvalidSensorHandle();
-    bool getDirectChannelSensor(SensorInfo* sensor, SharedMemType* memType, RateLevel* rate);
-    void verifyDirectChannel(SharedMemType memType);
-    void verifyRegisterDirectChannel(std::shared_ptr<SensorsTestSharedMemory> mem,
-                                     int32_t* directChannelHandle, bool supportsSharedMemType,
-                                     bool supportsAnyDirectChannel);
-    void verifyConfigure(const SensorInfo& sensor, SharedMemType memType,
-                         int32_t directChannelHandle, bool directChannelSupported);
-    void verifyUnregisterDirectChannel(int32_t directChannelHandle, bool directChannelSupported);
-    void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle, RateLevel rateLevel);
-    void queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType,
-                                   bool* supportsAnyDirectChannel);
-
-  private:
-    // Test environment for sensors HAL.
-    SensorsHidlEnvironmentV2_0* mEnvironment;
-};
-
-Return<Result> SensorsHidlTest::activate(int32_t sensorHandle, bool enabled) {
-    // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
-    // The handle is not removed when it is deactivating on purpose so that it is not necessary to
-    // check the return value of deactivation. Deactivating a sensor more than once does not have
-    // negative effect.
-    if (enabled) {
-        mSensorHandles.insert(sensorHandle);
-    }
-    return getSensors()->activate(sensorHandle, enabled);
-}
-
-Return<void> SensorsHidlTest::registerDirectChannel(const SharedMemInfo& mem,
-                                                    ISensors::registerDirectChannel_cb cb) {
-    // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
-    // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
-    // Unregistering a channel more than once should not have negative effect.
-    getSensors()->registerDirectChannel(mem, [&](auto result, auto channelHandle) {
-        if (result == Result::OK) {
-            mDirectChannelHandles.insert(channelHandle);
-        }
-        cb(result, channelHandle);
-    });
-    return Void();
-}
-
-SensorInfo SensorsHidlTest::defaultSensorByType(SensorType type) {
-    SensorInfo ret;
-
-    ret.type = (SensorType)-1;
-    getSensors()->getSensorsList([&](const auto& list) {
-        const size_t count = list.size();
-        for (size_t i = 0; i < count; ++i) {
-            if (list[i].type == type) {
-                ret = list[i];
-                return;
-            }
-        }
-    });
-
-    return ret;
-}
-
-std::vector<SensorInfo> SensorsHidlTest::getSensorsList() {
-    std::vector<SensorInfo> ret;
-
-    getSensors()->getSensorsList([&](const auto& list) {
-        const size_t count = list.size();
-        ret.reserve(list.size());
-        for (size_t i = 0; i < count; ++i) {
-            ret.push_back(list[i]);
-        }
-    });
-
-    return ret;
-}
-
-std::vector<SensorInfo> SensorsHidlTest::getNonOneShotSensors() {
-    std::vector<SensorInfo> sensors;
-    for (const SensorInfo& info : getSensorsList()) {
-        if (extractReportMode(info.flags) != SensorFlagBits::ONE_SHOT_MODE) {
-            sensors.push_back(info);
-        }
-    }
-    return sensors;
-}
-
-std::vector<SensorInfo> SensorsHidlTest::getNonOneShotAndNonSpecialSensors() {
-    std::vector<SensorInfo> sensors;
-    for (const SensorInfo& info : getSensorsList()) {
-        SensorFlagBits reportMode = extractReportMode(info.flags);
-        if (reportMode != SensorFlagBits::ONE_SHOT_MODE &&
-            reportMode != SensorFlagBits::SPECIAL_REPORTING_MODE) {
-            sensors.push_back(info);
-        }
-    }
-    return sensors;
-}
-
-std::vector<SensorInfo> SensorsHidlTest::getOneShotSensors() {
-    std::vector<SensorInfo> sensors;
-    for (const SensorInfo& info : getSensorsList()) {
-        if (extractReportMode(info.flags) == SensorFlagBits::ONE_SHOT_MODE) {
-            sensors.push_back(info);
-        }
-    }
-    return sensors;
-}
-
-std::vector<SensorInfo> SensorsHidlTest::getInjectEventSensors() {
-    std::vector<SensorInfo> sensors;
-    for (const SensorInfo& info : getSensorsList()) {
-        if (info.flags & static_cast<uint32_t>(SensorFlagBits::DATA_INJECTION)) {
-            sensors.push_back(info);
-        }
-    }
-    return sensors;
-}
-
-int32_t SensorsHidlTest::getInvalidSensorHandle() {
-    // Find a sensor handle that does not exist in the sensor list
-    int32_t maxHandle = 0;
-    for (const SensorInfo& sensor : getSensorsList()) {
-        maxHandle = std::max(maxHandle, sensor.sensorHandle);
-    }
-    return maxHandle + 1;
-}
-
-// Test if sensor list returned is valid
-TEST_P(SensorsHidlTest, SensorListValid) {
+TEST_P(SensorsHidlTest, SensorListDoesntContainInvalidType) {
     getSensors()->getSensorsList([&](const auto& list) {
         const size_t count = list.size();
         for (size_t i = 0; i < count; ++i) {
             const auto& s = list[i];
-            SCOPED_TRACE(::testing::Message()
-                         << i << "/" << count << ": "
-                         << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
-                         << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
-                         << " name=" << s.name);
-
-            // Test non-empty type string
-            EXPECT_FALSE(s.typeAsString.empty());
-
-            // Test defined type matches defined string type
-            EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(s.type, s.typeAsString));
-
-            // Test if all sensor has name and vendor
-            EXPECT_FALSE(s.name.empty());
-            EXPECT_FALSE(s.vendor.empty());
-
-            // Test power > 0, maxRange > 0
-            EXPECT_LE(0, s.power);
-            EXPECT_LT(0, s.maxRange);
-
-            // Info type, should have no sensor
-            EXPECT_FALSE(s.type == SensorType::ADDITIONAL_INFO || s.type == SensorType::META_DATA);
-
-            // Test fifoMax >= fifoReserved
-            EXPECT_GE(s.fifoMaxEventCount, s.fifoReservedEventCount)
-                << "max=" << s.fifoMaxEventCount << " reserved=" << s.fifoReservedEventCount;
-
-            // Test Reporting mode valid
-            EXPECT_NO_FATAL_FAILURE(assertTypeMatchReportMode(s.type, extractReportMode(s.flags)));
-
-            // Test min max are in the right order
-            EXPECT_LE(s.minDelay, s.maxDelay);
-            // Test min/max delay matches reporting mode
-            EXPECT_NO_FATAL_FAILURE(
-                assertDelayMatchReportMode(s.minDelay, s.maxDelay, extractReportMode(s.flags)));
+            EXPECT_FALSE(s.type == ::android::hardware::sensors::V2_1::SensorType::HINGE_ANGLE);
         }
     });
 }
 
-// Test that SetOperationMode returns the expected value
-TEST_P(SensorsHidlTest, SetOperationMode) {
-    std::vector<SensorInfo> sensors = getInjectEventSensors();
-    if (getInjectEventSensors().size() > 0) {
-        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
-        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
-        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
-    } else {
-        ASSERT_EQ(Result::BAD_VALUE, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
-    }
-}
-
-// Test that an injected event is written back to the Event FMQ
-TEST_P(SensorsHidlTest, InjectSensorEventData) {
-    std::vector<SensorInfo> sensors = getInjectEventSensors();
-    if (sensors.size() == 0) {
-        return;
-    }
-
-    ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
-
-    EventCallback callback;
-    getEnvironment()->registerCallback(&callback);
-
-    // AdditionalInfo event should not be sent to Event FMQ
-    Event additionalInfoEvent;
-    additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
-    additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
-
-    Event injectedEvent;
-    injectedEvent.timestamp = android::elapsedRealtimeNano();
-    Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
-    injectedEvent.u.vec3 = data;
-
-    for (const auto& s : sensors) {
-        additionalInfoEvent.sensorHandle = s.sensorHandle;
-        EXPECT_EQ(Result::OK, getSensors()->injectSensorData(additionalInfoEvent));
-
-        injectedEvent.sensorType = s.type;
-        injectedEvent.sensorHandle = s.sensorHandle;
-        EXPECT_EQ(Result::OK, getSensors()->injectSensorData(injectedEvent));
-    }
-
-    // Wait for events to be written back to the Event FMQ
-    callback.waitForEvents(sensors, milliseconds(1000) /* timeout */);
-
-    for (const auto& s : sensors) {
-        auto events = callback.getEvents(s.sensorHandle);
-        auto lastEvent = events.back();
-
-        // Verify that only a single event has been received
-        ASSERT_EQ(events.size(), 1);
-
-        // Verify that the event received matches the event injected and is not the additional
-        // info event
-        ASSERT_EQ(lastEvent.sensorType, s.type);
-        ASSERT_EQ(lastEvent.sensorType, s.type);
-        ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
-        ASSERT_EQ(lastEvent.u.vec3.x, injectedEvent.u.vec3.x);
-        ASSERT_EQ(lastEvent.u.vec3.y, injectedEvent.u.vec3.y);
-        ASSERT_EQ(lastEvent.u.vec3.z, injectedEvent.u.vec3.z);
-        ASSERT_EQ(lastEvent.u.vec3.status, injectedEvent.u.vec3.status);
-    }
-
-    getEnvironment()->unregisterCallback();
-    ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
-}
-
-// Test if sensor hal can do UI speed accelerometer streaming properly
-TEST_P(SensorsHidlTest, AccelerometerStreamingOperationSlow) {
-    testStreamingOperation(SensorType::ACCELEROMETER, std::chrono::milliseconds(200),
-                           std::chrono::seconds(5), sAccelNormChecker);
-}
-
-// Test if sensor hal can do normal speed accelerometer streaming properly
-TEST_P(SensorsHidlTest, AccelerometerStreamingOperationNormal) {
-    testStreamingOperation(SensorType::ACCELEROMETER, std::chrono::milliseconds(20),
-                           std::chrono::seconds(5), sAccelNormChecker);
-}
-
-// Test if sensor hal can do game speed accelerometer streaming properly
-TEST_P(SensorsHidlTest, AccelerometerStreamingOperationFast) {
-    testStreamingOperation(SensorType::ACCELEROMETER, std::chrono::milliseconds(5),
-                           std::chrono::seconds(5), sAccelNormChecker);
-}
-
-// Test if sensor hal can do UI speed gyroscope streaming properly
-TEST_P(SensorsHidlTest, GyroscopeStreamingOperationSlow) {
-    testStreamingOperation(SensorType::GYROSCOPE, std::chrono::milliseconds(200),
-                           std::chrono::seconds(5), sGyroNormChecker);
-}
-
-// Test if sensor hal can do normal speed gyroscope streaming properly
-TEST_P(SensorsHidlTest, GyroscopeStreamingOperationNormal) {
-    testStreamingOperation(SensorType::GYROSCOPE, std::chrono::milliseconds(20),
-                           std::chrono::seconds(5), sGyroNormChecker);
-}
-
-// Test if sensor hal can do game speed gyroscope streaming properly
-TEST_P(SensorsHidlTest, GyroscopeStreamingOperationFast) {
-    testStreamingOperation(SensorType::GYROSCOPE, std::chrono::milliseconds(5),
-                           std::chrono::seconds(5), sGyroNormChecker);
-}
-
-// Test if sensor hal can do UI speed magnetometer streaming properly
-TEST_P(SensorsHidlTest, MagnetometerStreamingOperationSlow) {
-    testStreamingOperation(SensorType::MAGNETIC_FIELD, std::chrono::milliseconds(200),
-                           std::chrono::seconds(5), NullChecker());
-}
-
-// Test if sensor hal can do normal speed magnetometer streaming properly
-TEST_P(SensorsHidlTest, MagnetometerStreamingOperationNormal) {
-    testStreamingOperation(SensorType::MAGNETIC_FIELD, std::chrono::milliseconds(20),
-                           std::chrono::seconds(5), NullChecker());
-}
-
-// Test if sensor hal can do game speed magnetometer streaming properly
-TEST_P(SensorsHidlTest, MagnetometerStreamingOperationFast) {
-    testStreamingOperation(SensorType::MAGNETIC_FIELD, std::chrono::milliseconds(5),
-                           std::chrono::seconds(5), NullChecker());
-}
-
-// Test if sensor hal can do accelerometer sampling rate switch properly when sensor is active
-TEST_P(SensorsHidlTest, AccelerometerSamplingPeriodHotSwitchOperation) {
-    testSamplingRateHotSwitchOperation(SensorType::ACCELEROMETER);
-    testSamplingRateHotSwitchOperation(SensorType::ACCELEROMETER, false /*fastToSlow*/);
-}
-
-// Test if sensor hal can do gyroscope sampling rate switch properly when sensor is active
-TEST_P(SensorsHidlTest, GyroscopeSamplingPeriodHotSwitchOperation) {
-    testSamplingRateHotSwitchOperation(SensorType::GYROSCOPE);
-    testSamplingRateHotSwitchOperation(SensorType::GYROSCOPE, false /*fastToSlow*/);
-}
-
-// Test if sensor hal can do magnetometer sampling rate switch properly when sensor is active
-TEST_P(SensorsHidlTest, MagnetometerSamplingPeriodHotSwitchOperation) {
-    testSamplingRateHotSwitchOperation(SensorType::MAGNETIC_FIELD);
-    testSamplingRateHotSwitchOperation(SensorType::MAGNETIC_FIELD, false /*fastToSlow*/);
-}
-
-// Test if sensor hal can do accelerometer batching properly
-TEST_P(SensorsHidlTest, AccelerometerBatchingOperation) {
-    testBatchingOperation(SensorType::ACCELEROMETER);
-}
-
-// Test if sensor hal can do gyroscope batching properly
-TEST_P(SensorsHidlTest, GyroscopeBatchingOperation) {
-    testBatchingOperation(SensorType::GYROSCOPE);
-}
-
-// Test if sensor hal can do magnetometer batching properly
-TEST_P(SensorsHidlTest, MagnetometerBatchingOperation) {
-    testBatchingOperation(SensorType::MAGNETIC_FIELD);
-}
-
-// Test sensor event direct report with ashmem for accel sensor at normal rate
-TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationNormal) {
-    testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::ASHMEM, RateLevel::NORMAL,
-                              sAccelNormChecker);
-}
-
-// Test sensor event direct report with ashmem for accel sensor at fast rate
-TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationFast) {
-    testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::ASHMEM, RateLevel::FAST,
-                              sAccelNormChecker);
-}
-
-// Test sensor event direct report with ashmem for accel sensor at very fast rate
-TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationVeryFast) {
-    testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::ASHMEM,
-                              RateLevel::VERY_FAST, sAccelNormChecker);
-}
-
-// Test sensor event direct report with ashmem for gyro sensor at normal rate
-TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationNormal) {
-    testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::ASHMEM, RateLevel::NORMAL,
-                              sGyroNormChecker);
-}
-
-// Test sensor event direct report with ashmem for gyro sensor at fast rate
-TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationFast) {
-    testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::ASHMEM, RateLevel::FAST,
-                              sGyroNormChecker);
-}
-
-// Test sensor event direct report with ashmem for gyro sensor at very fast rate
-TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationVeryFast) {
-    testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::ASHMEM, RateLevel::VERY_FAST,
-                              sGyroNormChecker);
-}
-
-// Test sensor event direct report with ashmem for mag sensor at normal rate
-TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationNormal) {
-    testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::ASHMEM, RateLevel::NORMAL,
-                              NullChecker());
-}
-
-// Test sensor event direct report with ashmem for mag sensor at fast rate
-TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationFast) {
-    testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::ASHMEM, RateLevel::FAST,
-                              NullChecker());
-}
-
-// Test sensor event direct report with ashmem for mag sensor at very fast rate
-TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationVeryFast) {
-    testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::ASHMEM,
-                              RateLevel::VERY_FAST, NullChecker());
-}
-
-// Test sensor event direct report with gralloc for accel sensor at normal rate
-TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationNormal) {
-    testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::GRALLOC, RateLevel::NORMAL,
-                              sAccelNormChecker);
-}
-
-// Test sensor event direct report with gralloc for accel sensor at fast rate
-TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationFast) {
-    testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::GRALLOC, RateLevel::FAST,
-                              sAccelNormChecker);
-}
-
-// Test sensor event direct report with gralloc for accel sensor at very fast rate
-TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationVeryFast) {
-    testDirectReportOperation(SensorType::ACCELEROMETER, SharedMemType::GRALLOC,
-                              RateLevel::VERY_FAST, sAccelNormChecker);
-}
-
-// Test sensor event direct report with gralloc for gyro sensor at normal rate
-TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationNormal) {
-    testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::GRALLOC, RateLevel::NORMAL,
-                              sGyroNormChecker);
-}
-
-// Test sensor event direct report with gralloc for gyro sensor at fast rate
-TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationFast) {
-    testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::GRALLOC, RateLevel::FAST,
-                              sGyroNormChecker);
-}
-
-// Test sensor event direct report with gralloc for gyro sensor at very fast rate
-TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationVeryFast) {
-    testDirectReportOperation(SensorType::GYROSCOPE, SharedMemType::GRALLOC, RateLevel::VERY_FAST,
-                              sGyroNormChecker);
-}
-
-// Test sensor event direct report with gralloc for mag sensor at normal rate
-TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationNormal) {
-    testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::GRALLOC, RateLevel::NORMAL,
-                              NullChecker());
-}
-
-// Test sensor event direct report with gralloc for mag sensor at fast rate
-TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationFast) {
-    testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::GRALLOC, RateLevel::FAST,
-                              NullChecker());
-}
-
-// Test sensor event direct report with gralloc for mag sensor at very fast rate
-TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationVeryFast) {
-    testDirectReportOperation(SensorType::MAGNETIC_FIELD, SharedMemType::GRALLOC,
-                              RateLevel::VERY_FAST, NullChecker());
-}
-
-void SensorsHidlTest::activateAllSensors(bool enable) {
-    for (const SensorInfo& sensorInfo : getSensorsList()) {
-        if (isValidType(sensorInfo.type)) {
-            batch(sensorInfo.sensorHandle, sensorInfo.minDelay, 0 /* maxReportLatencyNs */);
-            activate(sensorInfo.sensorHandle, enable);
-        }
-    }
-}
-
-// Test that if initialize is called twice, then the HAL writes events to the FMQs from the second
-// call to the function.
-TEST_P(SensorsHidlTest, CallInitializeTwice) {
-    // Create a helper class so that a second environment is able to be instantiated
-    class SensorsHidlEnvironmentTest : public SensorsHidlEnvironmentV2_0 {
-      public:
-        SensorsHidlEnvironmentTest(const std::string& service_name)
-            : SensorsHidlEnvironmentV2_0(service_name) {}
-    };
-
-    if (getSensorsList().size() == 0) {
-        // No sensors
-        return;
-    }
-
-    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
-    constexpr int32_t kNumEvents = 1;
-
-    // Create a new environment that calls initialize()
-    std::unique_ptr<SensorsHidlEnvironmentTest> newEnv =
-            std::make_unique<SensorsHidlEnvironmentTest>(GetParam());
-    newEnv->HidlSetUp();
-    if (HasFatalFailure()) {
-        return;  // Exit early if setting up the new environment failed
-    }
-
-    activateAllSensors(true);
-    // Verify that the old environment does not receive any events
-    ASSERT_EQ(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), 0);
-    // Verify that the new event queue receives sensor events
-    ASSERT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents, newEnv.get()).size(), kNumEvents);
-    activateAllSensors(false);
-
-    // Cleanup the test environment
-    newEnv->HidlTearDown();
-
-    // Restore the test environment for future tests
-    getEnvironment()->HidlTearDown();
-    getEnvironment()->HidlSetUp();
-    if (HasFatalFailure()) {
-        return;  // Exit early if resetting the environment failed
-    }
-
-    // Ensure that the original environment is receiving events
-    activateAllSensors(true);
-    ASSERT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
-    activateAllSensors(false);
-}
-
-TEST_P(SensorsHidlTest, CleanupConnectionsOnInitialize) {
-    activateAllSensors(true);
-
-    // Verify that events are received
-    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
-    constexpr int32_t kNumEvents = 1;
-    ASSERT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), kNumEvents);
-
-    // Clear the active sensor handles so they are not disabled during TearDown
-    auto handles = mSensorHandles;
-    mSensorHandles.clear();
-    getEnvironment()->HidlTearDown();
-    getEnvironment()->HidlSetUp();
-    if (HasFatalFailure()) {
-        return;  // Exit early if resetting the environment failed
-    }
-
-    // Verify no events are received until sensors are re-activated
-    ASSERT_EQ(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), 0);
-    activateAllSensors(true);
-    ASSERT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), kNumEvents);
-
-    // Disable sensors
-    activateAllSensors(false);
-
-    // Restore active sensors prior to clearing the environment
-    mSensorHandles = handles;
-}
-
-void SensorsHidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
-                                         bool activateSensor, int32_t expectedFlushCount,
-                                         Result expectedResponse) {
-    runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResponse);
-}
-
-void SensorsHidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
-                                   int32_t flushCalls, int32_t expectedFlushCount,
-                                   Result expectedResponse) {
-    EventCallback callback;
-    getEnvironment()->registerCallback(&callback);
-
-    for (const SensorInfo& sensor : sensors) {
-        // Configure and activate the sensor
-        batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */);
-        activate(sensor.sensorHandle, activateSensor);
-
-        // Flush the sensor
-        for (int32_t i = 0; i < flushCalls; i++) {
-            Result flushResult = flush(sensor.sensorHandle);
-            ASSERT_EQ(flushResult, expectedResponse);
-        }
-    }
-
-    // Wait up to one second for the flush events
-    callback.waitForFlushEvents(sensors, flushCalls, milliseconds(1000) /* timeout */);
-
-    // Deactivate all sensors after waiting for flush events so pending flush events are not
-    // abandoned by the HAL.
-    for (const SensorInfo& sensor : sensors) {
-        activate(sensor.sensorHandle, false);
-    }
-    getEnvironment()->unregisterCallback();
-
-    // Check that the correct number of flushes are present for each sensor
-    for (const SensorInfo& sensor : sensors) {
-        ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
-    }
-}
-
-TEST_P(SensorsHidlTest, FlushSensor) {
-    // Find a sensor that is not a one-shot sensor
-    std::vector<SensorInfo> sensors = getNonOneShotSensors();
-    if (sensors.size() == 0) {
-        return;
-    }
-
-    constexpr int32_t kFlushes = 5;
-    runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */, Result::OK);
-    runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, Result::OK);
-}
-
-TEST_P(SensorsHidlTest, FlushOneShotSensor) {
-    // Find a sensor that is a one-shot sensor
-    std::vector<SensorInfo> sensors = getOneShotSensors();
-    if (sensors.size() == 0) {
-        return;
-    }
-
-    runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
-                       Result::BAD_VALUE);
-}
-
-TEST_P(SensorsHidlTest, FlushInactiveSensor) {
-    // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
-    std::vector<SensorInfo> sensors = getNonOneShotSensors();
-    if (sensors.size() == 0) {
-        sensors = getOneShotSensors();
-        if (sensors.size() == 0) {
-            return;
-        }
-    }
-
-    runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
-                       Result::BAD_VALUE);
-}
-
-TEST_P(SensorsHidlTest, FlushNonexistentSensor) {
-    SensorInfo sensor;
-    std::vector<SensorInfo> sensors = getNonOneShotSensors();
-    if (sensors.size() == 0) {
-        sensors = getOneShotSensors();
-        if (sensors.size() == 0) {
-            return;
-        }
-    }
-    sensor = sensors.front();
-    sensor.sensorHandle = getInvalidSensorHandle();
-    runSingleFlushTest(std::vector<SensorInfo>{sensor}, false /* activateSensor */,
-                       0 /* expectedFlushCount */, Result::BAD_VALUE);
-}
-
-TEST_P(SensorsHidlTest, Batch) {
-    if (getSensorsList().size() == 0) {
-        return;
-    }
-
-    activateAllSensors(false /* enable */);
-    for (const SensorInfo& sensor : getSensorsList()) {
-        // Call batch on inactive sensor
-        // One shot sensors have minDelay set to -1 which is an invalid
-        // parameter. Use 0 instead to avoid errors.
-        int64_t samplingPeriodNs = extractReportMode(sensor.flags) == SensorFlagBits::ONE_SHOT_MODE
-                                           ? 0
-                                           : sensor.minDelay;
-        ASSERT_EQ(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */),
-                  Result::OK);
-
-        // Activate the sensor
-        activate(sensor.sensorHandle, true /* enabled */);
-
-        // Call batch on an active sensor
-        ASSERT_EQ(batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */),
-                  Result::OK);
-    }
-    activateAllSensors(false /* enable */);
-
-    // Call batch on an invalid sensor
-    SensorInfo sensor = getSensorsList().front();
-    sensor.sensorHandle = getInvalidSensorHandle();
-    ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */),
-              Result::BAD_VALUE);
-}
-
-TEST_P(SensorsHidlTest, Activate) {
-    if (getSensorsList().size() == 0) {
-        return;
-    }
-
-    // Verify that sensor events are generated when activate is called
-    for (const SensorInfo& sensor : getSensorsList()) {
-        batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */);
-        ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK);
-
-        // Call activate on a sensor that is already activated
-        ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK);
-
-        // Deactivate the sensor
-        ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK);
-
-        // Call deactivate on a sensor that is already deactivated
-        ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK);
-    }
-
-    // Attempt to activate an invalid sensor
-    int32_t invalidHandle = getInvalidSensorHandle();
-    ASSERT_EQ(activate(invalidHandle, true), Result::BAD_VALUE);
-    ASSERT_EQ(activate(invalidHandle, false), Result::BAD_VALUE);
-}
-
-TEST_P(SensorsHidlTest, NoStaleEvents) {
-    constexpr milliseconds kFiveHundredMs(500);
-    constexpr milliseconds kOneSecond(1000);
-
-    // Register the callback to receive sensor events
-    EventCallback callback;
-    getEnvironment()->registerCallback(&callback);
-
-    // This test is not valid for one-shot or special-report-mode sensors
-    const std::vector<SensorInfo> sensors = getNonOneShotAndNonSpecialSensors();
-    milliseconds maxMinDelay(0);
-    for (const SensorInfo& sensor : sensors) {
-        milliseconds minDelay = duration_cast<milliseconds>(microseconds(sensor.minDelay));
-        maxMinDelay = milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
-    }
-
-    // Activate the sensors so that they start generating events
-    activateAllSensors(true);
-
-    // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
-    // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
-    // of time to guarantee that a sample has arrived.
-    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
-    activateAllSensors(false);
-
-    // Save the last received event for each sensor
-    std::map<int32_t, int64_t> lastEventTimestampMap;
-    for (const SensorInfo& sensor : sensors) {
-        // Some on-change sensors may not report an event without stimulus
-        if (extractReportMode(sensor.flags) != SensorFlagBits::ON_CHANGE_MODE) {
-            ASSERT_GE(callback.getEvents(sensor.sensorHandle).size(), 1);
-        }
-        if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
-            lastEventTimestampMap[sensor.sensorHandle] =
-                    callback.getEvents(sensor.sensorHandle).back().timestamp;
-        }
-    }
-
-    // Allow some time to pass, reset the callback, then reactivate the sensors
-    usleep(duration_cast<microseconds>(kOneSecond + (5 * maxMinDelay)).count());
-    callback.reset();
-    activateAllSensors(true);
-    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
-    activateAllSensors(false);
-
-    for (const SensorInfo& sensor : sensors) {
-        // Skip sensors that did not previously report an event
-        if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
-            continue;
-        }
-        // Skip on-change sensors that do not consistently report an initial event
-        if (callback.getEvents(sensor.sensorHandle).size() < 1) {
-            continue;
-        }
-        // Ensure that the first event received is not stale by ensuring that its timestamp is
-        // sufficiently different from the previous event
-        const Event newEvent = callback.getEvents(sensor.sensorHandle).front();
-        milliseconds delta = duration_cast<milliseconds>(
-                nanoseconds(newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
-        milliseconds sensorMinDelay = duration_cast<milliseconds>(microseconds(sensor.minDelay));
-        ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
-    }
-}
-
-void SensorsHidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
-                                     RateLevel rateLevel) {
-    configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel,
-                       [&](Result result, int32_t reportToken) {
-                           if (isDirectReportRateSupported(sensor, rateLevel)) {
-                               ASSERT_EQ(result, Result::OK);
-                               if (rateLevel != RateLevel::STOP) {
-                                   ASSERT_GT(reportToken, 0);
-                               }
-                           } else {
-                               ASSERT_EQ(result, Result::BAD_VALUE);
-                           }
-                       });
-}
-
-void SensorsHidlTest::queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType,
-                                                bool* supportsAnyDirectChannel) {
-    *supportsSharedMemType = false;
-    *supportsAnyDirectChannel = false;
-    for (const SensorInfo& curSensor : getSensorsList()) {
-        if (isDirectChannelTypeSupported(curSensor, memType)) {
-            *supportsSharedMemType = true;
-        }
-        if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM) ||
-            isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) {
-            *supportsAnyDirectChannel = true;
-        }
-
-        if (*supportsSharedMemType && *supportsAnyDirectChannel) {
-            break;
-        }
-    }
-}
-
-void SensorsHidlTest::verifyRegisterDirectChannel(std::shared_ptr<SensorsTestSharedMemory> mem,
-                                                  int32_t* directChannelHandle,
-                                                  bool supportsSharedMemType,
-                                                  bool supportsAnyDirectChannel) {
-    char* buffer = mem->getBuffer();
-    memset(buffer, 0xff, mem->getSize());
-
-    registerDirectChannel(mem->getSharedMemInfo(), [&](Result result, int32_t channelHandle) {
-        if (supportsSharedMemType) {
-            ASSERT_EQ(result, Result::OK);
-            ASSERT_GT(channelHandle, 0);
-
-            // Verify that the memory has been zeroed
-            for (size_t i = 0; i < mem->getSize(); i++) {
-                ASSERT_EQ(buffer[i], 0x00);
-            }
-        } else {
-            Result expectedResult =
-                    supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION;
-            ASSERT_EQ(result, expectedResult);
-            ASSERT_EQ(channelHandle, -1);
-        }
-        *directChannelHandle = channelHandle;
-    });
-}
-
-void SensorsHidlTest::verifyConfigure(const SensorInfo& sensor, SharedMemType memType,
-                                      int32_t directChannelHandle, bool supportsAnyDirectChannel) {
-    if (isDirectChannelTypeSupported(sensor, memType)) {
-        // Verify that each rate level is properly supported
-        checkRateLevel(sensor, directChannelHandle, RateLevel::NORMAL);
-        checkRateLevel(sensor, directChannelHandle, RateLevel::FAST);
-        checkRateLevel(sensor, directChannelHandle, RateLevel::VERY_FAST);
-        checkRateLevel(sensor, directChannelHandle, RateLevel::STOP);
-
-        // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
-        configDirectReport(
-            -1 /* sensorHandle */, directChannelHandle, RateLevel::NORMAL,
-            [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::BAD_VALUE); });
-        configDirectReport(
-            -1 /* sensorHandle */, directChannelHandle, RateLevel::STOP,
-            [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::OK); });
-    } else {
-        // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
-        // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
-        // channel is not supported at all
-        Result expectedResult =
-                supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION;
-        configDirectReport(sensor.sensorHandle, directChannelHandle, RateLevel::NORMAL,
-                           [expectedResult](Result result, int32_t /* reportToken */) {
-                               ASSERT_EQ(result, expectedResult);
-                           });
-    }
-}
-
-void SensorsHidlTest::verifyUnregisterDirectChannel(int32_t directChannelHandle,
-                                                    bool supportsAnyDirectChannel) {
-    Result expectedResult = supportsAnyDirectChannel ? Result::OK : Result::INVALID_OPERATION;
-    ASSERT_EQ(unregisterDirectChannel(directChannelHandle), expectedResult);
-}
-
-void SensorsHidlTest::verifyDirectChannel(SharedMemType memType) {
-    constexpr size_t kNumEvents = 1;
-    constexpr size_t kMemSize = kNumEvents * kEventSize;
-
-    std::shared_ptr<SensorsTestSharedMemory> mem(
-        SensorsTestSharedMemory::create(memType, kMemSize));
-    ASSERT_NE(mem, nullptr);
-
-    bool supportsSharedMemType;
-    bool supportsAnyDirectChannel;
-    queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
-
-    for (const SensorInfo& sensor : getSensorsList()) {
-        int32_t directChannelHandle = 0;
-        verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
-                                    supportsAnyDirectChannel);
-        verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
-        verifyUnregisterDirectChannel(directChannelHandle, supportsAnyDirectChannel);
-    }
-}
-
-TEST_P(SensorsHidlTest, DirectChannelAshmem) {
-    verifyDirectChannel(SharedMemType::ASHMEM);
-}
-
-TEST_P(SensorsHidlTest, DirectChannelGralloc) {
-    verifyDirectChannel(SharedMemType::GRALLOC);
-}
-
-bool SensorsHidlTest::getDirectChannelSensor(SensorInfo* sensor, SharedMemType* memType,
-                                             RateLevel* rate) {
-    bool found = false;
-    for (const SensorInfo& curSensor : getSensorsList()) {
-        if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM)) {
-            *memType = SharedMemType::ASHMEM;
-            *sensor = curSensor;
-            found = true;
-            break;
-        } else if (isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) {
-            *memType = SharedMemType::GRALLOC;
-            *sensor = curSensor;
-            found = true;
-            break;
-        }
-    }
-
-    if (found) {
-        // Find a supported rate level
-        constexpr int kNumRateLevels = 3;
-        RateLevel rates[kNumRateLevels] = {RateLevel::NORMAL, RateLevel::FAST,
-                                           RateLevel::VERY_FAST};
-        *rate = RateLevel::STOP;
-        for (int i = 0; i < kNumRateLevels; i++) {
-            if (isDirectReportRateSupported(*sensor, rates[i])) {
-                *rate = rates[i];
-            }
-        }
-
-        // At least one rate level must be supported
-        EXPECT_NE(*rate, RateLevel::STOP);
-    }
-    return found;
-}
-
-TEST_P(SensorsHidlTest, ConfigureDirectChannelWithInvalidHandle) {
-    SensorInfo sensor;
-    SharedMemType memType;
-    RateLevel rate;
-    if (!getDirectChannelSensor(&sensor, &memType, &rate)) {
-        return;
-    }
-
-    // Verify that an invalid channel handle produces a BAD_VALUE result
-    configDirectReport(sensor.sensorHandle, -1, rate, [](Result result, int32_t /* reportToken */) {
-        ASSERT_EQ(result, Result::BAD_VALUE);
-    });
-}
-
-TEST_P(SensorsHidlTest, CleanupDirectConnectionOnInitialize) {
-    constexpr size_t kNumEvents = 1;
-    constexpr size_t kMemSize = kNumEvents * kEventSize;
-
-    SensorInfo sensor;
-    SharedMemType memType;
-    RateLevel rate;
-
-    if (!getDirectChannelSensor(&sensor, &memType, &rate)) {
-        return;
-    }
-
-    std::shared_ptr<SensorsTestSharedMemory> mem(
-        SensorsTestSharedMemory::create(memType, kMemSize));
-    ASSERT_NE(mem, nullptr);
-
-    int32_t directChannelHandle = 0;
-    registerDirectChannel(mem->getSharedMemInfo(), [&](Result result, int32_t channelHandle) {
-        ASSERT_EQ(result, Result::OK);
-        directChannelHandle = channelHandle;
-    });
-
-    // Configure the channel and expect success
-    configDirectReport(
-        sensor.sensorHandle, directChannelHandle, rate,
-        [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::OK); });
-
-    // Call initialize() via the environment setup to cause the HAL to re-initialize
-    // Clear the active direct connections so they are not stopped during TearDown
-    auto handles = mDirectChannelHandles;
-    mDirectChannelHandles.clear();
-    getEnvironment()->HidlTearDown();
-    getEnvironment()->HidlSetUp();
-    if (HasFatalFailure()) {
-        return;  // Exit early if resetting the environment failed
-    }
-
-    // Attempt to configure the direct channel and expect it to fail
-    configDirectReport(
-        sensor.sensorHandle, directChannelHandle, rate,
-        [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::BAD_VALUE); });
-
-    // Restore original handles, though they should already be deactivated
-    mDirectChannelHandles = handles;
-}
-
 INSTANTIATE_TEST_SUITE_P(PerInstance, SensorsHidlTest,
                          testing::ValuesIn(android::hardware::getAllHalInstanceNames(
                                  android::hardware::sensors::V2_0::ISensors::descriptor)),
-                         android::hardware::PrintInstanceNameToString);
-// vim: set ts=2 sw=2
+                         android::hardware::PrintInstanceNameToString);
\ No newline at end of file
diff --git a/sensors/2.1/vts/functional/Android.bp b/sensors/2.1/vts/functional/Android.bp
new file mode 100644
index 0000000..c92bab3
--- /dev/null
+++ b/sensors/2.1/vts/functional/Android.bp
@@ -0,0 +1,48 @@
+//
+// Copyright (C) 2018 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_test {
+    name: "VtsHalSensorsV2_1TargetTest",
+    cflags: [
+        "-DLOG_TAG=\"sensors_hidl_hal_test\"",
+        "-DSENSORS_HAL_2_1",
+    ],
+    defaults: ["VtsHalTargetTestDefaults"],
+    srcs: [
+        "VtsHalSensorsV2_1TargetTest.cpp",
+    ],
+    header_libs: [
+        "android.hardware.sensors@2.X-shared-utils",
+    ],
+    static_libs: [
+        "android.hardware.graphics.allocator@2.0",
+        "android.hardware.graphics.allocator@3.0",
+        "android.hardware.graphics.mapper@2.0",
+        "android.hardware.graphics.mapper@2.1",
+        "android.hardware.graphics.mapper@3.0",
+        "android.hardware.sensors@1.0",
+        "android.hardware.sensors@1.0-convert",
+        "android.hardware.sensors@2.0",
+        "android.hardware.sensors@2.1",
+        "libfmq",
+        "VtsHalSensorsTargetTestUtils",
+        "VtsHalSensorsV2_XTargetTest",
+    ],
+    test_suites: [
+        "general-tests",
+        "vts-core",
+    ],
+}
diff --git a/sensors/2.1/vts/functional/AndroidTest.xml b/sensors/2.1/vts/functional/AndroidTest.xml
new file mode 100644
index 0000000..0d8593e
--- /dev/null
+++ b/sensors/2.1/vts/functional/AndroidTest.xml
@@ -0,0 +1,39 @@
+<?xml version="1.0" encoding="utf-8"?>
+<!-- Copyright (C) 2019 The Android Open Source Project
+
+     Licensed under the Apache License, Version 2.0 (the "License");
+     you may not use this file except in compliance with the License.
+     You may obtain a copy of the License at
+
+          http://www.apache.org/licenses/LICENSE-2.0
+
+     Unless required by applicable law or agreed to in writing, software
+     distributed under the License is distributed on an "AS IS" BASIS,
+     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+     See the License for the specific language governing permissions and
+     limitations under the License.
+-->
+<configuration description="Runs VtsHalSensorsV2_1TargetTest.">
+    <option name="test-suite-tag" value="apct" />
+    <option name="test-suite-tag" value="apct-native" />
+
+    <target_preparer class="com.android.tradefed.targetprep.RootTargetPreparer">
+    </target_preparer>
+
+    <target_preparer class="com.android.tradefed.targetprep.RunCommandTargetPreparer">
+        <option name="run-command" value="stop"/>
+        <option name="teardown-command" value="start"/>
+    </target_preparer>
+
+    <target_preparer class="com.android.tradefed.targetprep.PushFilePreparer">
+        <option name="cleanup" value="true" />
+        <option name="push" value="VtsHalSensorsV2_1TargetTest->/data/local/tmp/VtsHalSensorsV2_1TargetTest" />
+    </target_preparer>
+
+    <test class="com.android.tradefed.testtype.GTest" >
+        <option name="native-test-timeout" value="900000" />
+        <option name="runtime-hint" value="300000"/>
+        <option name="native-test-device-path" value="/data/local/tmp" />
+        <option name="module-name" value="VtsHalSensorsV2_1TargetTest" />
+    </test>
+</configuration>
diff --git a/sensors/2.1/vts/functional/OWNERS b/sensors/2.1/vts/functional/OWNERS
new file mode 100644
index 0000000..892da15
--- /dev/null
+++ b/sensors/2.1/vts/functional/OWNERS
@@ -0,0 +1,8 @@
+# Sensors team
+arthuri@google.com
+bduddie@google.com
+stange@google.com
+
+# VTS team
+trong@google.com
+yim@google.com
diff --git a/sensors/2.1/vts/functional/VtsHalSensorsV2_1TargetTest.cpp b/sensors/2.1/vts/functional/VtsHalSensorsV2_1TargetTest.cpp
new file mode 100644
index 0000000..230bb6c
--- /dev/null
+++ b/sensors/2.1/vts/functional/VtsHalSensorsV2_1TargetTest.cpp
@@ -0,0 +1,22 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "VtsHalSensorsV2_XTargetTest.h"
+
+INSTANTIATE_TEST_SUITE_P(PerInstance, SensorsHidlTest,
+                         testing::ValuesIn(android::hardware::getAllHalInstanceNames(
+                                 android::hardware::sensors::V2_1::ISensors::descriptor)),
+                         android::hardware::PrintInstanceNameToString);
diff --git a/sensors/common/vts/2_X/Android.bp b/sensors/common/vts/2_X/Android.bp
new file mode 100644
index 0000000..8cf1486
--- /dev/null
+++ b/sensors/common/vts/2_X/Android.bp
@@ -0,0 +1,44 @@
+//
+// Copyright (C) 2018 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+cc_test_library {
+    name: "VtsHalSensorsV2_XTargetTest",
+    cflags: ["-DLOG_TAG=\"sensors_hidl_hal_test\""],
+    defaults: ["VtsHalTargetTestDefaults"],
+    srcs: [
+        "SensorsHidlEnvironmentV2_X.cpp",
+    ],
+    export_include_dirs: ["."],
+    header_libs: [
+        "android.hardware.sensors@2.X-shared-utils",
+    ],
+    shared_libs: [
+        "libbinder",
+    ],
+    static_libs: [
+        "android.hardware.graphics.allocator@2.0",
+        "android.hardware.graphics.allocator@3.0",
+        "android.hardware.graphics.mapper@2.0",
+        "android.hardware.graphics.mapper@2.1",
+        "android.hardware.graphics.mapper@3.0",
+        "android.hardware.sensors@1.0",
+        "android.hardware.sensors@1.0-convert",
+        "android.hardware.sensors@2.0",
+        "android.hardware.sensors@2.1",
+        "libfmq",
+        "VtsHalSensorsTargetTestUtils",
+    ],
+}
diff --git a/sensors/2.0/vts/functional/SensorsHidlEnvironmentV2_0.cpp b/sensors/common/vts/2_X/SensorsHidlEnvironmentV2_X.cpp
similarity index 69%
rename from sensors/2.0/vts/functional/SensorsHidlEnvironmentV2_0.cpp
rename to sensors/common/vts/2_X/SensorsHidlEnvironmentV2_X.cpp
index 81db5a0..2771d97 100644
--- a/sensors/2.0/vts/functional/SensorsHidlEnvironmentV2_0.cpp
+++ b/sensors/common/vts/2_X/SensorsHidlEnvironmentV2_X.cpp
@@ -14,9 +14,11 @@
  * limitations under the License.
  */
 
-#include "SensorsHidlEnvironmentV2_0.h"
+#include "SensorsHidlEnvironmentV2_X.h"
 
 #include <android/hardware/sensors/2.0/types.h>
+#include <android/hardware/sensors/2.1/types.h>
+
 #include <log/log.h>
 
 #include <algorithm>
@@ -26,18 +28,20 @@
 using ::android::hardware::hidl_vec;
 using ::android::hardware::Return;
 using ::android::hardware::sensors::V1_0::Result;
-using ::android::hardware::sensors::V1_0::SensorInfo;
 using ::android::hardware::sensors::V2_0::EventQueueFlagBits;
+using ::android::hardware::sensors::V2_1::SensorInfo;
+#ifdef SENSORS_HAL_2_1
+using ::android::hardware::sensors::V2_1::ISensors;
+#else
 using ::android::hardware::sensors::V2_0::ISensors;
-using ::android::hardware::sensors::V2_0::ISensorsCallback;
+#endif
+using ::android::hardware::sensors::V2_1::ISensorsCallback;
 
 template <typename EnumType>
 constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
     return static_cast<typename std::underlying_type<EnumType>::type>(value);
 }
 
-constexpr size_t SensorsHidlEnvironmentV2_0::MAX_RECEIVE_BUFFER_EVENT_COUNT;
-
 void SensorsHalDeathRecipient::serviceDied(
         uint64_t /* cookie */,
         const ::android::wp<::android::hidl::base::V1_0::IBase>& /* service */) {
@@ -45,48 +49,34 @@
     FAIL() << "Sensors HAL died during test";
 }
 
-struct SensorsCallback : ISensorsCallback {
-    Return<void> onDynamicSensorsConnected(const hidl_vec<SensorInfo>& /* sensorInfos */) {
-        return Return<void>();
-    }
-
-    Return<void> onDynamicSensorsDisconnected(const hidl_vec<int32_t>& /* sensorHandles */) {
-        return Return<void>();
-    }
-};
-
-bool SensorsHidlEnvironmentV2_0::resetHal() {
+bool SensorsHidlEnvironmentV2_X::resetHal() {
     bool succeed = false;
     do {
-        mSensors = ISensors::getService(mServiceName);
+        mSensors = wrapISensors(ISensors::getService(mServiceName));
         if (mSensors == nullptr) {
             break;
         }
         mSensors->linkToDeath(mDeathRecipient, 0 /* cookie */);
 
         // Initialize FMQs
-        mEventQueue = std::make_unique<EventMessageQueue>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
-                                                          true /* configureEventFlagWord */);
-
         mWakeLockQueue = std::make_unique<WakeLockQueue>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
                                                          true /* configureEventFlagWord */);
 
-        if (mEventQueue == nullptr || mWakeLockQueue == nullptr) {
+        if (mWakeLockQueue == nullptr) {
             break;
         }
 
         EventFlag::deleteEventFlag(&mEventQueueFlag);
-        EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
+        EventFlag::createEventFlag(mSensors->getEventQueue().getEventFlagWord(), &mEventQueueFlag);
         if (mEventQueueFlag == nullptr) {
             break;
         }
 
-        mSensors->initialize(*mEventQueue->getDesc(), *mWakeLockQueue->getDesc(),
-                             new SensorsCallback());
+        mSensors->initialize(*mWakeLockQueue->getDesc(), new NoOpSensorsCallback());
 
         std::vector<SensorInfo> sensorList;
         if (!mSensors->getSensorsList([&](const hidl_vec<SensorInfo>& list) { sensorList = list; })
-                 .isOk()) {
+                     .isOk()) {
             break;
         }
 
@@ -113,7 +103,7 @@
     return succeed;
 }
 
-void SensorsHidlEnvironmentV2_0::HidlTearDown() {
+void SensorsHidlEnvironmentV2_X::HidlTearDown() {
     mStopThread = true;
 
     if (mEventQueueFlag != nullptr) {
@@ -127,25 +117,25 @@
     }
 }
 
-void SensorsHidlEnvironmentV2_0::startPollingThread() {
+void SensorsHidlEnvironmentV2_X::startPollingThread() {
     mStopThread = false;
     mEvents.reserve(MAX_RECEIVE_BUFFER_EVENT_COUNT);
     mPollThread = std::thread(pollingThread, this);
 }
 
-void SensorsHidlEnvironmentV2_0::readEvents() {
-    size_t availableEvents = mEventQueue->availableToRead();
+void SensorsHidlEnvironmentV2_X::readEvents() {
+    size_t availableEvents = mSensors->getEventQueue().availableToRead();
 
     if (availableEvents == 0) {
         uint32_t eventFlagState = 0;
 
         mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS), &eventFlagState);
-        availableEvents = mEventQueue->availableToRead();
+        availableEvents = mSensors->getEventQueue().availableToRead();
     }
 
     size_t eventsToRead = std::min(availableEvents, mEventBuffer.size());
     if (eventsToRead > 0) {
-        if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
+        if (mSensors->getEventQueue().read(mEventBuffer.data(), eventsToRead)) {
             mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ));
             for (size_t i = 0; i < eventsToRead; i++) {
                 addEvent(mEventBuffer[i]);
@@ -154,7 +144,7 @@
     }
 }
 
-void SensorsHidlEnvironmentV2_0::pollingThread(SensorsHidlEnvironmentV2_0* env) {
+void SensorsHidlEnvironmentV2_X::pollingThread(SensorsHidlEnvironmentV2_X* env) {
     ALOGD("polling thread start");
 
     while (!env->mStopThread.load()) {
diff --git a/sensors/2.0/vts/functional/SensorsHidlEnvironmentV2_0.h b/sensors/common/vts/2_X/SensorsHidlEnvironmentV2_X.h
similarity index 68%
rename from sensors/2.0/vts/functional/SensorsHidlEnvironmentV2_0.h
rename to sensors/common/vts/2_X/SensorsHidlEnvironmentV2_X.h
index 819cdd4..01f451f 100644
--- a/sensors/2.0/vts/functional/SensorsHidlEnvironmentV2_0.h
+++ b/sensors/common/vts/2_X/SensorsHidlEnvironmentV2_X.h
@@ -14,13 +14,15 @@
  * limitations under the License.
  */
 
-#ifndef ANDROID_SENSORS_HIDL_ENVIRONMENT_V2_0_H
-#define ANDROID_SENSORS_HIDL_ENVIRONMENT_V2_0_H
+#ifndef ANDROID_SENSORS_HIDL_ENVIRONMENT_V2_X_H
+#define ANDROID_SENSORS_HIDL_ENVIRONMENT_V2_X_H
 
+#include "ISensorsWrapper.h"
 #include "sensors-vts-utils/SensorsHidlEnvironmentBase.h"
 
-#include <android/hardware/sensors/1.0/types.h>
-#include <android/hardware/sensors/2.0/ISensors.h>
+#include <android/hardware/sensors/2.1/ISensors.h>
+#include <android/hardware/sensors/2.1/types.h>
+
 #include <fmq/MessageQueue.h>
 #include <utils/StrongPointer.h>
 
@@ -30,6 +32,10 @@
 
 using ::android::sp;
 using ::android::hardware::MessageQueue;
+using ::android::hardware::sensors::V2_1::implementation::ISensorsWrapperBase;
+using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
+using ::android::hardware::sensors::V2_1::implementation::NoOpSensorsCallback;
+using ::android::hardware::sensors::V2_1::implementation::wrapISensors;
 
 class SensorsHidlTest;
 
@@ -39,14 +45,14 @@
             const ::android::wp<::android::hidl::base::V1_0::IBase>& service) override;
 };
 
-class SensorsHidlEnvironmentV2_0 : public SensorsHidlEnvironmentBase {
-   public:
-    using Event = ::android::hardware::sensors::V1_0::Event;
+class SensorsHidlEnvironmentV2_X
+    : public SensorsHidlEnvironmentBase<::android::hardware::sensors::V2_1::Event> {
+  public:
     virtual void HidlTearDown() override;
 
-   protected:
+  protected:
     friend SensorsHidlTest;
-    SensorsHidlEnvironmentV2_0(const std::string& service_name)
+    SensorsHidlEnvironmentV2_X(const std::string& service_name)
         : SensorsHidlEnvironmentBase(service_name), mEventQueueFlag(nullptr) {}
 
     /**
@@ -66,19 +72,19 @@
      *
      * @param env SensorEnvironment to being polling for events on
      */
-    static void pollingThread(SensorsHidlEnvironmentV2_0* env);
+    static void pollingThread(SensorsHidlEnvironmentV2_X* env);
 
     /**
      * Reads and saves sensor events from the Event FMQ
      */
     void readEvents();
 
-    GTEST_DISALLOW_COPY_AND_ASSIGN_(SensorsHidlEnvironmentV2_0);
+    GTEST_DISALLOW_COPY_AND_ASSIGN_(SensorsHidlEnvironmentV2_X);
 
     /**
      * Pointer to the Sensors HAL Interface that allows the test to call HAL functions.
      */
-    sp<android::hardware::sensors::V2_0::ISensors> mSensors;
+    sp<ISensorsWrapperBase> mSensors;
 
     /**
      * Monitors the HAL for crashes, triggering test failure if seen
@@ -86,22 +92,11 @@
     sp<SensorsHalDeathRecipient> mDeathRecipient = new SensorsHalDeathRecipient();
 
     /**
-     * Type used to simplify the creation of the Event FMQ
-     */
-    typedef MessageQueue<Event, ::android::hardware::kSynchronizedReadWrite> EventMessageQueue;
-
-    /**
      * Type used to simplify the creation of the Wake Lock FMQ
      */
     typedef MessageQueue<uint32_t, ::android::hardware::kSynchronizedReadWrite> WakeLockQueue;
 
     /**
-     * The Event FMQ where the test framework is able to read sensor events that the Sensors HAL
-     * has written.
-     */
-    std::unique_ptr<EventMessageQueue> mEventQueue;
-
-    /**
      * The Wake Lock FMQ is used by the test to notify the Sensors HAL whenever it has processed
      * WAKE_UP sensor events.
      */
@@ -114,14 +109,10 @@
     ::android::hardware::EventFlag* mEventQueueFlag;
 
     /**
-     * The maximum number of sensor events that can be read from the Event FMQ at one time.
-     */
-    static constexpr size_t MAX_RECEIVE_BUFFER_EVENT_COUNT = 128;
-
-    /**
      * An array that is used to store sensor events read from the Event FMQ
      */
-    std::array<Event, MAX_RECEIVE_BUFFER_EVENT_COUNT> mEventBuffer;
+    std::array<::android::hardware::sensors::V2_1::Event, MAX_RECEIVE_BUFFER_EVENT_COUNT>
+            mEventBuffer;
 };
 
-#endif  // ANDROID_SENSORS_HIDL_ENVIRONMENT_V2_0_H
+#endif  // ANDROID_SENSORS_HIDL_ENVIRONMENT_V2_X_H
diff --git a/sensors/common/vts/2_X/VtsHalSensorsV2_XTargetTest.h b/sensors/common/vts/2_X/VtsHalSensorsV2_XTargetTest.h
new file mode 100644
index 0000000..53ed259
--- /dev/null
+++ b/sensors/common/vts/2_X/VtsHalSensorsV2_XTargetTest.h
@@ -0,0 +1,1186 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "SensorsHidlEnvironmentV2_X.h"
+#include "convertV2_1.h"
+#include "sensors-vts-utils/SensorsHidlTestBase.h"
+#include "sensors-vts-utils/SensorsTestSharedMemory.h"
+
+#include <android/hardware/sensors/2.1/ISensors.h>
+#include <android/hardware/sensors/2.1/types.h>
+
+#include <hidl/GtestPrinter.h>
+#include <hidl/ServiceManagement.h>
+#include <log/log.h>
+#include <utils/SystemClock.h>
+
+#include <cinttypes>
+#include <condition_variable>
+#include <cstring>
+#include <map>
+#include <vector>
+
+/**
+ * This file contains the core tests and test logic for both sensors HAL 2.0
+ * and 2.1. To make it easier to share the code between both VTS test suites,
+ * this is defined as a header so they can both include and use all pieces of
+ * code.
+ */
+
+using ::android::sp;
+using ::android::hardware::Return;
+using ::android::hardware::Void;
+using ::android::hardware::sensors::V1_0::MetaDataEventType;
+using ::android::hardware::sensors::V1_0::OperationMode;
+using ::android::hardware::sensors::V1_0::SensorsEventFormatOffset;
+using ::android::hardware::sensors::V1_0::SensorStatus;
+using ::android::hardware::sensors::V1_0::SharedMemType;
+using ::android::hardware::sensors::V1_0::Vec3;
+using ::android::hardware::sensors::V2_1::implementation::convertToOldSensorInfos;
+using std::chrono::duration_cast;
+using std::chrono::microseconds;
+using std::chrono::milliseconds;
+using std::chrono::nanoseconds;
+
+using EventV1_0 = ::android::hardware::sensors::V1_0::Event;
+using ISensorsType = ::android::hardware::sensors::V2_1::ISensors;
+using SensorTypeVersion = ::android::hardware::sensors::V2_1::SensorType;
+using EventType = ::android::hardware::sensors::V2_1::Event;
+using SensorInfoType = ::android::hardware::sensors::V2_1::SensorInfo;
+using SensorsHidlTestBaseV2_X = SensorsHidlTestBase<SensorTypeVersion, EventType, SensorInfoType>;
+
+constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);
+
+class EventCallback : public IEventCallback<EventType> {
+  public:
+    void reset() {
+        mFlushMap.clear();
+        mEventMap.clear();
+    }
+
+    void onEvent(const EventType& event) override {
+        if (event.sensorType == SensorTypeVersion::META_DATA &&
+            event.u.meta.what == MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
+            std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
+            mFlushMap[event.sensorHandle]++;
+            mFlushCV.notify_all();
+        } else if (event.sensorType != SensorTypeVersion::ADDITIONAL_INFO) {
+            std::unique_lock<std::recursive_mutex> lock(mEventMutex);
+            mEventMap[event.sensorHandle].push_back(event);
+            mEventCV.notify_all();
+        }
+    }
+
+    int32_t getFlushCount(int32_t sensorHandle) {
+        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
+        return mFlushMap[sensorHandle];
+    }
+
+    void waitForFlushEvents(const std::vector<SensorInfoType>& sensorsToWaitFor,
+                            int32_t numCallsToFlush, milliseconds timeout) {
+        std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
+        mFlushCV.wait_for(lock, timeout,
+                          [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
+    }
+
+    const std::vector<EventType> getEvents(int32_t sensorHandle) {
+        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
+        return mEventMap[sensorHandle];
+    }
+
+    void waitForEvents(const std::vector<SensorInfoType>& sensorsToWaitFor, milliseconds timeout) {
+        std::unique_lock<std::recursive_mutex> lock(mEventMutex);
+        mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
+    }
+
+  protected:
+    bool flushesReceived(const std::vector<SensorInfoType>& sensorsToWaitFor,
+                         int32_t numCallsToFlush) {
+        for (const SensorInfoType& sensor : sensorsToWaitFor) {
+            if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    bool eventsReceived(const std::vector<SensorInfoType>& sensorsToWaitFor) {
+        for (const SensorInfoType& sensor : sensorsToWaitFor) {
+            if (getEvents(sensor.sensorHandle).size() == 0) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    std::map<int32_t, int32_t> mFlushMap;
+    std::recursive_mutex mFlushMutex;
+    std::condition_variable_any mFlushCV;
+
+    std::map<int32_t, std::vector<EventType>> mEventMap;
+    std::recursive_mutex mEventMutex;
+    std::condition_variable_any mEventCV;
+};
+
+/**
+ * Define the template specific versions of the static helper methods in
+ * SensorsHidlTestBase used to test that hinge angle is exposed properly.
+ */
+template <>
+SensorFlagBits expectedReportModeForType(::android::hardware::sensors::V2_1::SensorType type) {
+    switch (type) {
+        case ::android::hardware::sensors::V2_1::SensorType::HINGE_ANGLE:
+            return SensorFlagBits::ON_CHANGE_MODE;
+        default:
+            return expectedReportModeForType(
+                    static_cast<::android::hardware::sensors::V1_0::SensorType>(type));
+    }
+}
+
+template <>
+void assertTypeMatchStringType(::android::hardware::sensors::V2_1::SensorType type,
+                               const hidl_string& stringType) {
+    switch (type) {
+        case (::android::hardware::sensors::V2_1::SensorType::HINGE_ANGLE):
+            ASSERT_STREQ(SENSOR_STRING_TYPE_HINGE_ANGLE, stringType.c_str());
+            break;
+        default:
+            assertTypeMatchStringType(
+                    static_cast<::android::hardware::sensors::V1_0::SensorType>(type), stringType);
+            break;
+    }
+}
+
+// The main test class for SENSORS HIDL HAL.
+class SensorsHidlTest : public SensorsHidlTestBaseV2_X {
+  public:
+    virtual void SetUp() override {
+        mEnvironment = new SensorsHidlEnvironmentV2_X(GetParam());
+        mEnvironment->HidlSetUp();
+        // Ensure that we have a valid environment before performing tests
+        ASSERT_NE(getSensors(), nullptr);
+    }
+
+    virtual void TearDown() override { mEnvironment->HidlTearDown(); }
+
+  protected:
+    SensorInfoType defaultSensorByType(SensorTypeVersion type) override;
+    std::vector<SensorInfoType> getSensorsList();
+    // implementation wrapper
+
+    Return<void> getSensorsList(ISensorsType::getSensorsList_cb _hidl_cb) override {
+        return getSensors()->getSensorsList(
+                [&](const auto& list) { _hidl_cb(convertToOldSensorInfos(list)); });
+    }
+
+    Return<Result> activate(int32_t sensorHandle, bool enabled) override;
+
+    Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
+                         int64_t maxReportLatencyNs) override {
+        return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
+    }
+
+    Return<Result> flush(int32_t sensorHandle) override {
+        return getSensors()->flush(sensorHandle);
+    }
+
+    Return<Result> injectSensorData(const EventType& event) override {
+        return getSensors()->injectSensorData(event);
+    }
+
+    Return<void> registerDirectChannel(const SharedMemInfo& mem,
+                                       ISensorsType::registerDirectChannel_cb _hidl_cb) override;
+
+    Return<Result> unregisterDirectChannel(int32_t channelHandle) override {
+        return getSensors()->unregisterDirectChannel(channelHandle);
+    }
+
+    Return<void> configDirectReport(int32_t sensorHandle, int32_t channelHandle, RateLevel rate,
+                                    ISensorsType::configDirectReport_cb _hidl_cb) override {
+        return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
+    }
+
+    inline sp<ISensorsWrapperBase>& getSensors() { return mEnvironment->mSensors; }
+
+    SensorsHidlEnvironmentBase<EventType>* getEnvironment() override { return mEnvironment; }
+
+    // Test helpers
+    void runSingleFlushTest(const std::vector<SensorInfoType>& sensors, bool activateSensor,
+                            int32_t expectedFlushCount, Result expectedResponse);
+    void runFlushTest(const std::vector<SensorInfoType>& sensors, bool activateSensor,
+                      int32_t flushCalls, int32_t expectedFlushCount, Result expectedResponse);
+
+    // Helper functions
+    void activateAllSensors(bool enable);
+    std::vector<SensorInfoType> getNonOneShotSensors();
+    std::vector<SensorInfoType> getNonOneShotAndNonSpecialSensors();
+    std::vector<SensorInfoType> getOneShotSensors();
+    std::vector<SensorInfoType> getInjectEventSensors();
+    int32_t getInvalidSensorHandle();
+    bool getDirectChannelSensor(SensorInfoType* sensor, SharedMemType* memType, RateLevel* rate);
+    void verifyDirectChannel(SharedMemType memType);
+    void verifyRegisterDirectChannel(
+            std::shared_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem,
+            int32_t* directChannelHandle, bool supportsSharedMemType,
+            bool supportsAnyDirectChannel);
+    void verifyConfigure(const SensorInfoType& sensor, SharedMemType memType,
+                         int32_t directChannelHandle, bool directChannelSupported);
+    void verifyUnregisterDirectChannel(int32_t directChannelHandle, bool directChannelSupported);
+    void checkRateLevel(const SensorInfoType& sensor, int32_t directChannelHandle,
+                        RateLevel rateLevel);
+    void queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType,
+                                   bool* supportsAnyDirectChannel);
+
+  private:
+    // Test environment for sensors HAL.
+    SensorsHidlEnvironmentV2_X* mEnvironment;
+};
+
+Return<Result> SensorsHidlTest::activate(int32_t sensorHandle, bool enabled) {
+    // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
+    // The handle is not removed when it is deactivating on purpose so that it is not necessary to
+    // check the return value of deactivation. Deactivating a sensor more than once does not have
+    // negative effect.
+    if (enabled) {
+        mSensorHandles.insert(sensorHandle);
+    }
+    return getSensors()->activate(sensorHandle, enabled);
+}
+
+Return<void> SensorsHidlTest::registerDirectChannel(const SharedMemInfo& mem,
+                                                    ISensors::registerDirectChannel_cb cb) {
+    // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
+    // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
+    // Unregistering a channel more than once should not have negative effect.
+    getSensors()->registerDirectChannel(mem, [&](auto result, auto channelHandle) {
+        if (result == Result::OK) {
+            mDirectChannelHandles.insert(channelHandle);
+        }
+        cb(result, channelHandle);
+    });
+    return Void();
+}
+
+SensorInfoType SensorsHidlTest::defaultSensorByType(SensorTypeVersion type) {
+    SensorInfoType ret;
+
+    ret.type = (SensorTypeVersion)-1;
+    getSensors()->getSensorsList([&](const auto& list) {
+        const size_t count = list.size();
+        for (size_t i = 0; i < count; ++i) {
+            if (list[i].type == type) {
+                ret = list[i];
+                return;
+            }
+        }
+    });
+
+    return ret;
+}
+
+std::vector<SensorInfoType> SensorsHidlTest::getSensorsList() {
+    std::vector<SensorInfoType> ret;
+
+    getSensors()->getSensorsList([&](const auto& list) {
+        const size_t count = list.size();
+        ret.reserve(list.size());
+        for (size_t i = 0; i < count; ++i) {
+            ret.push_back(list[i]);
+        }
+    });
+
+    return ret;
+}
+
+std::vector<SensorInfoType> SensorsHidlTest::getNonOneShotSensors() {
+    std::vector<SensorInfoType> sensors;
+    for (const SensorInfoType& info : getSensorsList()) {
+        if (extractReportMode(info.flags) != SensorFlagBits::ONE_SHOT_MODE) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+std::vector<SensorInfoType> SensorsHidlTest::getNonOneShotAndNonSpecialSensors() {
+    std::vector<SensorInfoType> sensors;
+    for (const SensorInfoType& info : getSensorsList()) {
+        SensorFlagBits reportMode = extractReportMode(info.flags);
+        if (reportMode != SensorFlagBits::ONE_SHOT_MODE &&
+            reportMode != SensorFlagBits::SPECIAL_REPORTING_MODE) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+std::vector<SensorInfoType> SensorsHidlTest::getOneShotSensors() {
+    std::vector<SensorInfoType> sensors;
+    for (const SensorInfoType& info : getSensorsList()) {
+        if (extractReportMode(info.flags) == SensorFlagBits::ONE_SHOT_MODE) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+std::vector<SensorInfoType> SensorsHidlTest::getInjectEventSensors() {
+    std::vector<SensorInfoType> sensors;
+    for (const SensorInfoType& info : getSensorsList()) {
+        if (info.flags & static_cast<uint32_t>(SensorFlagBits::DATA_INJECTION)) {
+            sensors.push_back(info);
+        }
+    }
+    return sensors;
+}
+
+int32_t SensorsHidlTest::getInvalidSensorHandle() {
+    // Find a sensor handle that does not exist in the sensor list
+    int32_t maxHandle = 0;
+    for (const SensorInfoType& sensor : getSensorsList()) {
+        maxHandle = std::max(maxHandle, sensor.sensorHandle);
+    }
+    return maxHandle + 1;
+}
+
+// Test if sensor list returned is valid
+TEST_P(SensorsHidlTest, SensorListValid) {
+    getSensors()->getSensorsList([&](const auto& list) {
+        const size_t count = list.size();
+        for (size_t i = 0; i < count; ++i) {
+            const auto& s = list[i];
+            SCOPED_TRACE(::testing::Message()
+                         << i << "/" << count << ": "
+                         << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
+                         << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
+                         << " name=" << s.name);
+
+            // Test non-empty type string
+            EXPECT_FALSE(s.typeAsString.empty());
+
+            // Test defined type matches defined string type
+            EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(s.type, s.typeAsString));
+
+            // Test if all sensor has name and vendor
+            EXPECT_FALSE(s.name.empty());
+            EXPECT_FALSE(s.vendor.empty());
+
+            // Test power > 0, maxRange > 0
+            EXPECT_LE(0, s.power);
+            EXPECT_LT(0, s.maxRange);
+
+            // Info type, should have no sensor
+            EXPECT_FALSE(s.type == SensorTypeVersion::ADDITIONAL_INFO ||
+                         s.type == SensorTypeVersion::META_DATA);
+
+            // Test fifoMax >= fifoReserved
+            EXPECT_GE(s.fifoMaxEventCount, s.fifoReservedEventCount)
+                    << "max=" << s.fifoMaxEventCount << " reserved=" << s.fifoReservedEventCount;
+
+            // Test Reporting mode valid
+            EXPECT_NO_FATAL_FAILURE(assertTypeMatchReportMode(s.type, extractReportMode(s.flags)));
+
+            // Test min max are in the right order
+            EXPECT_LE(s.minDelay, s.maxDelay);
+            // Test min/max delay matches reporting mode
+            EXPECT_NO_FATAL_FAILURE(
+                    assertDelayMatchReportMode(s.minDelay, s.maxDelay, extractReportMode(s.flags)));
+        }
+    });
+}
+
+// Test that SetOperationMode returns the expected value
+TEST_P(SensorsHidlTest, SetOperationMode) {
+    std::vector<SensorInfoType> sensors = getInjectEventSensors();
+    if (getInjectEventSensors().size() > 0) {
+        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
+        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
+        ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
+    } else {
+        ASSERT_EQ(Result::BAD_VALUE, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
+    }
+}
+
+// Test that an injected event is written back to the Event FMQ
+TEST_P(SensorsHidlTest, InjectSensorEventData) {
+    std::vector<SensorInfoType> sensors = getInjectEventSensors();
+    if (sensors.size() == 0) {
+        return;
+    }
+
+    ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::DATA_INJECTION));
+
+    EventCallback callback;
+    getEnvironment()->registerCallback(&callback);
+
+    // AdditionalInfo event should not be sent to Event FMQ
+    EventType additionalInfoEvent;
+    additionalInfoEvent.sensorType = SensorTypeVersion::ADDITIONAL_INFO;
+    additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
+
+    EventType injectedEvent;
+    injectedEvent.timestamp = android::elapsedRealtimeNano();
+    Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
+    injectedEvent.u.vec3 = data;
+
+    for (const auto& s : sensors) {
+        additionalInfoEvent.sensorHandle = s.sensorHandle;
+        EXPECT_EQ(Result::OK, getSensors()->injectSensorData(additionalInfoEvent));
+
+        injectedEvent.sensorType = s.type;
+        injectedEvent.sensorHandle = s.sensorHandle;
+        EXPECT_EQ(Result::OK, getSensors()->injectSensorData(injectedEvent));
+    }
+
+    // Wait for events to be written back to the Event FMQ
+    callback.waitForEvents(sensors, milliseconds(1000) /* timeout */);
+
+    for (const auto& s : sensors) {
+        auto events = callback.getEvents(s.sensorHandle);
+        auto lastEvent = events.back();
+
+        // Verify that only a single event has been received
+        ASSERT_EQ(events.size(), 1);
+
+        // Verify that the event received matches the event injected and is not the additional
+        // info event
+        ASSERT_EQ(lastEvent.sensorType, s.type);
+        ASSERT_EQ(lastEvent.sensorType, s.type);
+        ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
+        ASSERT_EQ(lastEvent.u.vec3.x, injectedEvent.u.vec3.x);
+        ASSERT_EQ(lastEvent.u.vec3.y, injectedEvent.u.vec3.y);
+        ASSERT_EQ(lastEvent.u.vec3.z, injectedEvent.u.vec3.z);
+        ASSERT_EQ(lastEvent.u.vec3.status, injectedEvent.u.vec3.status);
+    }
+
+    getEnvironment()->unregisterCallback();
+    ASSERT_EQ(Result::OK, getSensors()->setOperationMode(OperationMode::NORMAL));
+}
+
+// Test if sensor hal can do UI speed accelerometer streaming properly
+TEST_P(SensorsHidlTest, AccelerometerStreamingOperationSlow) {
+    testStreamingOperation(SensorTypeVersion::ACCELEROMETER, std::chrono::milliseconds(200),
+                           std::chrono::seconds(5), mAccelNormChecker);
+}
+
+// Test if sensor hal can do normal speed accelerometer streaming properly
+TEST_P(SensorsHidlTest, AccelerometerStreamingOperationNormal) {
+    testStreamingOperation(SensorTypeVersion::ACCELEROMETER, std::chrono::milliseconds(20),
+                           std::chrono::seconds(5), mAccelNormChecker);
+}
+
+// Test if sensor hal can do game speed accelerometer streaming properly
+TEST_P(SensorsHidlTest, AccelerometerStreamingOperationFast) {
+    testStreamingOperation(SensorTypeVersion::ACCELEROMETER, std::chrono::milliseconds(5),
+                           std::chrono::seconds(5), mAccelNormChecker);
+}
+
+// Test if sensor hal can do UI speed gyroscope streaming properly
+TEST_P(SensorsHidlTest, GyroscopeStreamingOperationSlow) {
+    testStreamingOperation(SensorTypeVersion::GYROSCOPE, std::chrono::milliseconds(200),
+                           std::chrono::seconds(5), mGyroNormChecker);
+}
+
+// Test if sensor hal can do normal speed gyroscope streaming properly
+TEST_P(SensorsHidlTest, GyroscopeStreamingOperationNormal) {
+    testStreamingOperation(SensorTypeVersion::GYROSCOPE, std::chrono::milliseconds(20),
+                           std::chrono::seconds(5), mGyroNormChecker);
+}
+
+// Test if sensor hal can do game speed gyroscope streaming properly
+TEST_P(SensorsHidlTest, GyroscopeStreamingOperationFast) {
+    testStreamingOperation(SensorTypeVersion::GYROSCOPE, std::chrono::milliseconds(5),
+                           std::chrono::seconds(5), mGyroNormChecker);
+}
+
+// Test if sensor hal can do UI speed magnetometer streaming properly
+TEST_P(SensorsHidlTest, MagnetometerStreamingOperationSlow) {
+    testStreamingOperation(SensorTypeVersion::MAGNETIC_FIELD, std::chrono::milliseconds(200),
+                           std::chrono::seconds(5), NullChecker<EventType>());
+}
+
+// Test if sensor hal can do normal speed magnetometer streaming properly
+TEST_P(SensorsHidlTest, MagnetometerStreamingOperationNormal) {
+    testStreamingOperation(SensorTypeVersion::MAGNETIC_FIELD, std::chrono::milliseconds(20),
+                           std::chrono::seconds(5), NullChecker<EventType>());
+}
+
+// Test if sensor hal can do game speed magnetometer streaming properly
+TEST_P(SensorsHidlTest, MagnetometerStreamingOperationFast) {
+    testStreamingOperation(SensorTypeVersion::MAGNETIC_FIELD, std::chrono::milliseconds(5),
+                           std::chrono::seconds(5), NullChecker<EventType>());
+}
+
+// Test if sensor hal can do accelerometer sampling rate switch properly when sensor is active
+TEST_P(SensorsHidlTest, AccelerometerSamplingPeriodHotSwitchOperation) {
+    testSamplingRateHotSwitchOperation(SensorTypeVersion::ACCELEROMETER);
+    testSamplingRateHotSwitchOperation(SensorTypeVersion::ACCELEROMETER, false /*fastToSlow*/);
+}
+
+// Test if sensor hal can do gyroscope sampling rate switch properly when sensor is active
+TEST_P(SensorsHidlTest, GyroscopeSamplingPeriodHotSwitchOperation) {
+    testSamplingRateHotSwitchOperation(SensorTypeVersion::GYROSCOPE);
+    testSamplingRateHotSwitchOperation(SensorTypeVersion::GYROSCOPE, false /*fastToSlow*/);
+}
+
+// Test if sensor hal can do magnetometer sampling rate switch properly when sensor is active
+TEST_P(SensorsHidlTest, MagnetometerSamplingPeriodHotSwitchOperation) {
+    testSamplingRateHotSwitchOperation(SensorTypeVersion::MAGNETIC_FIELD);
+    testSamplingRateHotSwitchOperation(SensorTypeVersion::MAGNETIC_FIELD, false /*fastToSlow*/);
+}
+
+// Test if sensor hal can do accelerometer batching properly
+TEST_P(SensorsHidlTest, AccelerometerBatchingOperation) {
+    testBatchingOperation(SensorTypeVersion::ACCELEROMETER);
+}
+
+// Test if sensor hal can do gyroscope batching properly
+TEST_P(SensorsHidlTest, GyroscopeBatchingOperation) {
+    testBatchingOperation(SensorTypeVersion::GYROSCOPE);
+}
+
+// Test if sensor hal can do magnetometer batching properly
+TEST_P(SensorsHidlTest, MagnetometerBatchingOperation) {
+    testBatchingOperation(SensorTypeVersion::MAGNETIC_FIELD);
+}
+
+// Test sensor event direct report with ashmem for accel sensor at normal rate
+TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationNormal) {
+    testDirectReportOperation(SensorTypeVersion::ACCELEROMETER, SharedMemType::ASHMEM,
+                              RateLevel::NORMAL, mAccelNormChecker);
+}
+
+// Test sensor event direct report with ashmem for accel sensor at fast rate
+TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationFast) {
+    testDirectReportOperation(SensorTypeVersion::ACCELEROMETER, SharedMemType::ASHMEM,
+                              RateLevel::FAST, mAccelNormChecker);
+}
+
+// Test sensor event direct report with ashmem for accel sensor at very fast rate
+TEST_P(SensorsHidlTest, AccelerometerAshmemDirectReportOperationVeryFast) {
+    testDirectReportOperation(SensorTypeVersion::ACCELEROMETER, SharedMemType::ASHMEM,
+                              RateLevel::VERY_FAST, mAccelNormChecker);
+}
+
+// Test sensor event direct report with ashmem for gyro sensor at normal rate
+TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationNormal) {
+    testDirectReportOperation(SensorTypeVersion::GYROSCOPE, SharedMemType::ASHMEM,
+                              RateLevel::NORMAL, mGyroNormChecker);
+}
+
+// Test sensor event direct report with ashmem for gyro sensor at fast rate
+TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationFast) {
+    testDirectReportOperation(SensorTypeVersion::GYROSCOPE, SharedMemType::ASHMEM, RateLevel::FAST,
+                              mGyroNormChecker);
+}
+
+// Test sensor event direct report with ashmem for gyro sensor at very fast rate
+TEST_P(SensorsHidlTest, GyroscopeAshmemDirectReportOperationVeryFast) {
+    testDirectReportOperation(SensorTypeVersion::GYROSCOPE, SharedMemType::ASHMEM,
+                              RateLevel::VERY_FAST, mGyroNormChecker);
+}
+
+// Test sensor event direct report with ashmem for mag sensor at normal rate
+TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationNormal) {
+    testDirectReportOperation(SensorTypeVersion::MAGNETIC_FIELD, SharedMemType::ASHMEM,
+                              RateLevel::NORMAL, NullChecker<EventType>());
+}
+
+// Test sensor event direct report with ashmem for mag sensor at fast rate
+TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationFast) {
+    testDirectReportOperation(SensorTypeVersion::MAGNETIC_FIELD, SharedMemType::ASHMEM,
+                              RateLevel::FAST, NullChecker<EventType>());
+}
+
+// Test sensor event direct report with ashmem for mag sensor at very fast rate
+TEST_P(SensorsHidlTest, MagnetometerAshmemDirectReportOperationVeryFast) {
+    testDirectReportOperation(SensorTypeVersion::MAGNETIC_FIELD, SharedMemType::ASHMEM,
+                              RateLevel::VERY_FAST, NullChecker<EventType>());
+}
+
+// Test sensor event direct report with gralloc for accel sensor at normal rate
+TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationNormal) {
+    testDirectReportOperation(SensorTypeVersion::ACCELEROMETER, SharedMemType::GRALLOC,
+                              RateLevel::NORMAL, mAccelNormChecker);
+}
+
+// Test sensor event direct report with gralloc for accel sensor at fast rate
+TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationFast) {
+    testDirectReportOperation(SensorTypeVersion::ACCELEROMETER, SharedMemType::GRALLOC,
+                              RateLevel::FAST, mAccelNormChecker);
+}
+
+// Test sensor event direct report with gralloc for accel sensor at very fast rate
+TEST_P(SensorsHidlTest, AccelerometerGrallocDirectReportOperationVeryFast) {
+    testDirectReportOperation(SensorTypeVersion::ACCELEROMETER, SharedMemType::GRALLOC,
+                              RateLevel::VERY_FAST, mAccelNormChecker);
+}
+
+// Test sensor event direct report with gralloc for gyro sensor at normal rate
+TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationNormal) {
+    testDirectReportOperation(SensorTypeVersion::GYROSCOPE, SharedMemType::GRALLOC,
+                              RateLevel::NORMAL, mGyroNormChecker);
+}
+
+// Test sensor event direct report with gralloc for gyro sensor at fast rate
+TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationFast) {
+    testDirectReportOperation(SensorTypeVersion::GYROSCOPE, SharedMemType::GRALLOC, RateLevel::FAST,
+                              mGyroNormChecker);
+}
+
+// Test sensor event direct report with gralloc for gyro sensor at very fast rate
+TEST_P(SensorsHidlTest, GyroscopeGrallocDirectReportOperationVeryFast) {
+    testDirectReportOperation(SensorTypeVersion::GYROSCOPE, SharedMemType::GRALLOC,
+                              RateLevel::VERY_FAST, mGyroNormChecker);
+}
+
+// Test sensor event direct report with gralloc for mag sensor at normal rate
+TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationNormal) {
+    testDirectReportOperation(SensorTypeVersion::MAGNETIC_FIELD, SharedMemType::GRALLOC,
+                              RateLevel::NORMAL, NullChecker<EventType>());
+}
+
+// Test sensor event direct report with gralloc for mag sensor at fast rate
+TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationFast) {
+    testDirectReportOperation(SensorTypeVersion::MAGNETIC_FIELD, SharedMemType::GRALLOC,
+                              RateLevel::FAST, NullChecker<EventType>());
+}
+
+// Test sensor event direct report with gralloc for mag sensor at very fast rate
+TEST_P(SensorsHidlTest, MagnetometerGrallocDirectReportOperationVeryFast) {
+    testDirectReportOperation(SensorTypeVersion::MAGNETIC_FIELD, SharedMemType::GRALLOC,
+                              RateLevel::VERY_FAST, NullChecker<EventType>());
+}
+
+void SensorsHidlTest::activateAllSensors(bool enable) {
+    for (const SensorInfoType& sensorInfo : getSensorsList()) {
+        if (isValidType(sensorInfo.type)) {
+            batch(sensorInfo.sensorHandle, sensorInfo.minDelay, 0 /* maxReportLatencyNs */);
+            activate(sensorInfo.sensorHandle, enable);
+        }
+    }
+}
+
+// Test that if initialize is called twice, then the HAL writes events to the FMQs from the second
+// call to the function.
+TEST_P(SensorsHidlTest, CallInitializeTwice) {
+    // Create a helper class so that a second environment is able to be instantiated
+    class SensorsHidlEnvironmentTest : public SensorsHidlEnvironmentV2_X {
+      public:
+        SensorsHidlEnvironmentTest(const std::string& service_name)
+            : SensorsHidlEnvironmentV2_X(service_name) {}
+    };
+
+    if (getSensorsList().size() == 0) {
+        // No sensors
+        return;
+    }
+
+    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
+    constexpr int32_t kNumEvents = 1;
+
+    // Create a new environment that calls initialize()
+    std::unique_ptr<SensorsHidlEnvironmentTest> newEnv =
+            std::make_unique<SensorsHidlEnvironmentTest>(GetParam());
+    newEnv->HidlSetUp();
+    if (HasFatalFailure()) {
+        return;  // Exit early if setting up the new environment failed
+    }
+
+    activateAllSensors(true);
+    // Verify that the old environment does not receive any events
+    EXPECT_EQ(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), 0);
+    // Verify that the new event queue receives sensor events
+    EXPECT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents, newEnv.get(), newEnv.get()).size(),
+              kNumEvents);
+    activateAllSensors(false);
+
+    // Cleanup the test environment
+    newEnv->HidlTearDown();
+
+    // Restore the test environment for future tests
+    getEnvironment()->HidlTearDown();
+    getEnvironment()->HidlSetUp();
+    if (HasFatalFailure()) {
+        return;  // Exit early if resetting the environment failed
+    }
+
+    // Ensure that the original environment is receiving events
+    activateAllSensors(true);
+    EXPECT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
+    activateAllSensors(false);
+}
+
+TEST_P(SensorsHidlTest, CleanupConnectionsOnInitialize) {
+    activateAllSensors(true);
+
+    // Verify that events are received
+    constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
+    constexpr int32_t kNumEvents = 1;
+    ASSERT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), kNumEvents);
+
+    // Clear the active sensor handles so they are not disabled during TearDown
+    auto handles = mSensorHandles;
+    mSensorHandles.clear();
+    getEnvironment()->HidlTearDown();
+    getEnvironment()->HidlSetUp();
+    if (HasFatalFailure()) {
+        return;  // Exit early if resetting the environment failed
+    }
+
+    // Verify no events are received until sensors are re-activated
+    ASSERT_EQ(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), 0);
+    activateAllSensors(true);
+    ASSERT_GE(collectEvents(kCollectionTimeoutUs, kNumEvents, getEnvironment()).size(), kNumEvents);
+
+    // Disable sensors
+    activateAllSensors(false);
+
+    // Restore active sensors prior to clearing the environment
+    mSensorHandles = handles;
+}
+
+void SensorsHidlTest::runSingleFlushTest(const std::vector<SensorInfoType>& sensors,
+                                         bool activateSensor, int32_t expectedFlushCount,
+                                         Result expectedResponse) {
+    runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResponse);
+}
+
+void SensorsHidlTest::runFlushTest(const std::vector<SensorInfoType>& sensors, bool activateSensor,
+                                   int32_t flushCalls, int32_t expectedFlushCount,
+                                   Result expectedResponse) {
+    EventCallback callback;
+    getEnvironment()->registerCallback(&callback);
+
+    for (const SensorInfoType& sensor : sensors) {
+        // Configure and activate the sensor
+        batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */);
+        activate(sensor.sensorHandle, activateSensor);
+
+        // Flush the sensor
+        for (int32_t i = 0; i < flushCalls; i++) {
+            Result flushResult = flush(sensor.sensorHandle);
+            ASSERT_EQ(flushResult, expectedResponse);
+        }
+    }
+
+    // Wait up to one second for the flush events
+    callback.waitForFlushEvents(sensors, flushCalls, milliseconds(1000) /* timeout */);
+
+    // Deactivate all sensors after waiting for flush events so pending flush events are not
+    // abandoned by the HAL.
+    for (const SensorInfoType& sensor : sensors) {
+        activate(sensor.sensorHandle, false);
+    }
+    getEnvironment()->unregisterCallback();
+
+    // Check that the correct number of flushes are present for each sensor
+    for (const SensorInfoType& sensor : sensors) {
+        ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
+    }
+}
+
+TEST_P(SensorsHidlTest, FlushSensor) {
+    // Find a sensor that is not a one-shot sensor
+    std::vector<SensorInfoType> sensors = getNonOneShotSensors();
+    if (sensors.size() == 0) {
+        return;
+    }
+
+    constexpr int32_t kFlushes = 5;
+    runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */, Result::OK);
+    runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, Result::OK);
+}
+
+TEST_P(SensorsHidlTest, FlushOneShotSensor) {
+    // Find a sensor that is a one-shot sensor
+    std::vector<SensorInfoType> sensors = getOneShotSensors();
+    if (sensors.size() == 0) {
+        return;
+    }
+
+    runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
+                       Result::BAD_VALUE);
+}
+
+TEST_P(SensorsHidlTest, FlushInactiveSensor) {
+    // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
+    std::vector<SensorInfoType> sensors = getNonOneShotSensors();
+    if (sensors.size() == 0) {
+        sensors = getOneShotSensors();
+        if (sensors.size() == 0) {
+            return;
+        }
+    }
+
+    runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
+                       Result::BAD_VALUE);
+}
+
+TEST_P(SensorsHidlTest, FlushNonexistentSensor) {
+    SensorInfoType sensor;
+    std::vector<SensorInfoType> sensors = getNonOneShotSensors();
+    if (sensors.size() == 0) {
+        sensors = getOneShotSensors();
+        if (sensors.size() == 0) {
+            return;
+        }
+    }
+    sensor = sensors.front();
+    sensor.sensorHandle = getInvalidSensorHandle();
+    runSingleFlushTest(std::vector<SensorInfoType>{sensor}, false /* activateSensor */,
+                       0 /* expectedFlushCount */, Result::BAD_VALUE);
+}
+
+TEST_P(SensorsHidlTest, Batch) {
+    if (getSensorsList().size() == 0) {
+        return;
+    }
+
+    activateAllSensors(false /* enable */);
+    for (const SensorInfoType& sensor : getSensorsList()) {
+        // Call batch on inactive sensor
+        // One shot sensors have minDelay set to -1 which is an invalid
+        // parameter. Use 0 instead to avoid errors.
+        int64_t samplingPeriodNs = extractReportMode(sensor.flags) == SensorFlagBits::ONE_SHOT_MODE
+                                           ? 0
+                                           : sensor.minDelay;
+        ASSERT_EQ(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */),
+                  Result::OK);
+
+        // Activate the sensor
+        activate(sensor.sensorHandle, true /* enabled */);
+
+        // Call batch on an active sensor
+        ASSERT_EQ(batch(sensor.sensorHandle, sensor.maxDelay, 0 /* maxReportLatencyNs */),
+                  Result::OK);
+    }
+    activateAllSensors(false /* enable */);
+
+    // Call batch on an invalid sensor
+    SensorInfoType sensor = getSensorsList().front();
+    sensor.sensorHandle = getInvalidSensorHandle();
+    ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */),
+              Result::BAD_VALUE);
+}
+
+TEST_P(SensorsHidlTest, Activate) {
+    if (getSensorsList().size() == 0) {
+        return;
+    }
+
+    // Verify that sensor events are generated when activate is called
+    for (const SensorInfoType& sensor : getSensorsList()) {
+        batch(sensor.sensorHandle, sensor.minDelay, 0 /* maxReportLatencyNs */);
+        ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK);
+
+        // Call activate on a sensor that is already activated
+        ASSERT_EQ(activate(sensor.sensorHandle, true), Result::OK);
+
+        // Deactivate the sensor
+        ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK);
+
+        // Call deactivate on a sensor that is already deactivated
+        ASSERT_EQ(activate(sensor.sensorHandle, false), Result::OK);
+    }
+
+    // Attempt to activate an invalid sensor
+    int32_t invalidHandle = getInvalidSensorHandle();
+    ASSERT_EQ(activate(invalidHandle, true), Result::BAD_VALUE);
+    ASSERT_EQ(activate(invalidHandle, false), Result::BAD_VALUE);
+}
+
+TEST_P(SensorsHidlTest, NoStaleEvents) {
+    constexpr milliseconds kFiveHundredMs(500);
+    constexpr milliseconds kOneSecond(1000);
+
+    // Register the callback to receive sensor events
+    EventCallback callback;
+    getEnvironment()->registerCallback(&callback);
+
+    // This test is not valid for one-shot or special-report-mode sensors
+    const std::vector<SensorInfoType> sensors = getNonOneShotAndNonSpecialSensors();
+    milliseconds maxMinDelay(0);
+    for (const SensorInfoType& sensor : sensors) {
+        milliseconds minDelay = duration_cast<milliseconds>(microseconds(sensor.minDelay));
+        maxMinDelay = milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
+    }
+
+    // Activate the sensors so that they start generating events
+    activateAllSensors(true);
+
+    // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
+    // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
+    // of time to guarantee that a sample has arrived.
+    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
+    activateAllSensors(false);
+
+    // Save the last received event for each sensor
+    std::map<int32_t, int64_t> lastEventTimestampMap;
+    for (const SensorInfoType& sensor : sensors) {
+        // Some on-change sensors may not report an event without stimulus
+        if (extractReportMode(sensor.flags) != SensorFlagBits::ON_CHANGE_MODE) {
+            ASSERT_GE(callback.getEvents(sensor.sensorHandle).size(), 1);
+        }
+        if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
+            lastEventTimestampMap[sensor.sensorHandle] =
+                    callback.getEvents(sensor.sensorHandle).back().timestamp;
+        }
+    }
+
+    // Allow some time to pass, reset the callback, then reactivate the sensors
+    usleep(duration_cast<microseconds>(kOneSecond + (5 * maxMinDelay)).count());
+    callback.reset();
+    activateAllSensors(true);
+    callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
+    activateAllSensors(false);
+
+    for (const SensorInfoType& sensor : sensors) {
+        // Skip sensors that did not previously report an event
+        if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
+            continue;
+        }
+        // Skip on-change sensors that do not consistently report an initial event
+        if (callback.getEvents(sensor.sensorHandle).size() < 1) {
+            continue;
+        }
+        // Ensure that the first event received is not stale by ensuring that its timestamp is
+        // sufficiently different from the previous event
+        const EventType newEvent = callback.getEvents(sensor.sensorHandle).front();
+        milliseconds delta = duration_cast<milliseconds>(
+                nanoseconds(newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
+        milliseconds sensorMinDelay = duration_cast<milliseconds>(microseconds(sensor.minDelay));
+        ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
+    }
+}
+
+void SensorsHidlTest::checkRateLevel(const SensorInfoType& sensor, int32_t directChannelHandle,
+                                     RateLevel rateLevel) {
+    configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel,
+                       [&](Result result, int32_t reportToken) {
+                           if (isDirectReportRateSupported(sensor, rateLevel)) {
+                               ASSERT_EQ(result, Result::OK);
+                               if (rateLevel != RateLevel::STOP) {
+                                   ASSERT_GT(reportToken, 0);
+                               }
+                           } else {
+                               ASSERT_EQ(result, Result::BAD_VALUE);
+                           }
+                       });
+}
+
+void SensorsHidlTest::queryDirectChannelSupport(SharedMemType memType, bool* supportsSharedMemType,
+                                                bool* supportsAnyDirectChannel) {
+    *supportsSharedMemType = false;
+    *supportsAnyDirectChannel = false;
+    for (const SensorInfoType& curSensor : getSensorsList()) {
+        if (isDirectChannelTypeSupported(curSensor, memType)) {
+            *supportsSharedMemType = true;
+        }
+        if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM) ||
+            isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) {
+            *supportsAnyDirectChannel = true;
+        }
+
+        if (*supportsSharedMemType && *supportsAnyDirectChannel) {
+            break;
+        }
+    }
+}
+
+void SensorsHidlTest::verifyRegisterDirectChannel(
+        std::shared_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem,
+        int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
+    char* buffer = mem->getBuffer();
+    memset(buffer, 0xff, mem->getSize());
+
+    registerDirectChannel(mem->getSharedMemInfo(), [&](Result result, int32_t channelHandle) {
+        if (supportsSharedMemType) {
+            ASSERT_EQ(result, Result::OK);
+            ASSERT_GT(channelHandle, 0);
+
+            // Verify that the memory has been zeroed
+            for (size_t i = 0; i < mem->getSize(); i++) {
+                ASSERT_EQ(buffer[i], 0x00);
+            }
+        } else {
+            Result expectedResult =
+                    supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION;
+            ASSERT_EQ(result, expectedResult);
+            ASSERT_EQ(channelHandle, -1);
+        }
+        *directChannelHandle = channelHandle;
+    });
+}
+
+void SensorsHidlTest::verifyConfigure(const SensorInfoType& sensor, SharedMemType memType,
+                                      int32_t directChannelHandle, bool supportsAnyDirectChannel) {
+    if (isDirectChannelTypeSupported(sensor, memType)) {
+        // Verify that each rate level is properly supported
+        checkRateLevel(sensor, directChannelHandle, RateLevel::NORMAL);
+        checkRateLevel(sensor, directChannelHandle, RateLevel::FAST);
+        checkRateLevel(sensor, directChannelHandle, RateLevel::VERY_FAST);
+        checkRateLevel(sensor, directChannelHandle, RateLevel::STOP);
+
+        // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
+        configDirectReport(-1 /* sensorHandle */, directChannelHandle, RateLevel::NORMAL,
+                           [](Result result, int32_t /* reportToken */) {
+                               ASSERT_EQ(result, Result::BAD_VALUE);
+                           });
+        configDirectReport(
+                -1 /* sensorHandle */, directChannelHandle, RateLevel::STOP,
+                [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::OK); });
+    } else {
+        // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
+        // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
+        // channel is not supported at all
+        Result expectedResult =
+                supportsAnyDirectChannel ? Result::BAD_VALUE : Result::INVALID_OPERATION;
+        configDirectReport(sensor.sensorHandle, directChannelHandle, RateLevel::NORMAL,
+                           [expectedResult](Result result, int32_t /* reportToken */) {
+                               ASSERT_EQ(result, expectedResult);
+                           });
+    }
+}
+
+void SensorsHidlTest::verifyUnregisterDirectChannel(int32_t directChannelHandle,
+                                                    bool supportsAnyDirectChannel) {
+    Result expectedResult = supportsAnyDirectChannel ? Result::OK : Result::INVALID_OPERATION;
+    ASSERT_EQ(unregisterDirectChannel(directChannelHandle), expectedResult);
+}
+
+void SensorsHidlTest::verifyDirectChannel(SharedMemType memType) {
+    constexpr size_t kNumEvents = 1;
+    constexpr size_t kMemSize = kNumEvents * kEventSize;
+
+    std::shared_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem(
+            SensorsTestSharedMemory<SensorTypeVersion, EventType>::create(memType, kMemSize));
+    ASSERT_NE(mem, nullptr);
+
+    bool supportsSharedMemType;
+    bool supportsAnyDirectChannel;
+    queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
+
+    for (const SensorInfoType& sensor : getSensorsList()) {
+        int32_t directChannelHandle = 0;
+        verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
+                                    supportsAnyDirectChannel);
+        verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
+        verifyUnregisterDirectChannel(directChannelHandle, supportsAnyDirectChannel);
+    }
+}
+
+TEST_P(SensorsHidlTest, DirectChannelAshmem) {
+    verifyDirectChannel(SharedMemType::ASHMEM);
+}
+
+TEST_P(SensorsHidlTest, DirectChannelGralloc) {
+    verifyDirectChannel(SharedMemType::GRALLOC);
+}
+
+bool SensorsHidlTest::getDirectChannelSensor(SensorInfoType* sensor, SharedMemType* memType,
+                                             RateLevel* rate) {
+    bool found = false;
+    for (const SensorInfoType& curSensor : getSensorsList()) {
+        if (isDirectChannelTypeSupported(curSensor, SharedMemType::ASHMEM)) {
+            *memType = SharedMemType::ASHMEM;
+            *sensor = curSensor;
+            found = true;
+            break;
+        } else if (isDirectChannelTypeSupported(curSensor, SharedMemType::GRALLOC)) {
+            *memType = SharedMemType::GRALLOC;
+            *sensor = curSensor;
+            found = true;
+            break;
+        }
+    }
+
+    if (found) {
+        // Find a supported rate level
+        constexpr int kNumRateLevels = 3;
+        RateLevel rates[kNumRateLevels] = {RateLevel::NORMAL, RateLevel::FAST,
+                                           RateLevel::VERY_FAST};
+        *rate = RateLevel::STOP;
+        for (int i = 0; i < kNumRateLevels; i++) {
+            if (isDirectReportRateSupported(*sensor, rates[i])) {
+                *rate = rates[i];
+            }
+        }
+
+        // At least one rate level must be supported
+        EXPECT_NE(*rate, RateLevel::STOP);
+    }
+    return found;
+}
+
+TEST_P(SensorsHidlTest, ConfigureDirectChannelWithInvalidHandle) {
+    SensorInfoType sensor;
+    SharedMemType memType;
+    RateLevel rate;
+    if (!getDirectChannelSensor(&sensor, &memType, &rate)) {
+        return;
+    }
+
+    // Verify that an invalid channel handle produces a BAD_VALUE result
+    configDirectReport(sensor.sensorHandle, -1, rate, [](Result result, int32_t /* reportToken */) {
+        ASSERT_EQ(result, Result::BAD_VALUE);
+    });
+}
+
+TEST_P(SensorsHidlTest, CleanupDirectConnectionOnInitialize) {
+    constexpr size_t kNumEvents = 1;
+    constexpr size_t kMemSize = kNumEvents * kEventSize;
+
+    SensorInfoType sensor;
+    SharedMemType memType;
+    RateLevel rate;
+
+    if (!getDirectChannelSensor(&sensor, &memType, &rate)) {
+        return;
+    }
+
+    std::shared_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem(
+            SensorsTestSharedMemory<SensorTypeVersion, EventType>::create(memType, kMemSize));
+    ASSERT_NE(mem, nullptr);
+
+    int32_t directChannelHandle = 0;
+    registerDirectChannel(mem->getSharedMemInfo(), [&](Result result, int32_t channelHandle) {
+        ASSERT_EQ(result, Result::OK);
+        directChannelHandle = channelHandle;
+    });
+
+    // Configure the channel and expect success
+    configDirectReport(
+            sensor.sensorHandle, directChannelHandle, rate,
+            [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::OK); });
+
+    // Call initialize() via the environment setup to cause the HAL to re-initialize
+    // Clear the active direct connections so they are not stopped during TearDown
+    auto handles = mDirectChannelHandles;
+    mDirectChannelHandles.clear();
+    getEnvironment()->HidlTearDown();
+    getEnvironment()->HidlSetUp();
+    if (HasFatalFailure()) {
+        return;  // Exit early if resetting the environment failed
+    }
+
+    // Attempt to configure the direct channel and expect it to fail
+    configDirectReport(
+            sensor.sensorHandle, directChannelHandle, rate,
+            [](Result result, int32_t /* reportToken */) { ASSERT_EQ(result, Result::BAD_VALUE); });
+
+    // Restore original handles, though they should already be deactivated
+    mDirectChannelHandles = handles;
+}
diff --git a/sensors/common/vts/utils/Android.bp b/sensors/common/vts/utils/Android.bp
index bb4d329..ca4346a 100644
--- a/sensors/common/vts/utils/Android.bp
+++ b/sensors/common/vts/utils/Android.bp
@@ -20,9 +20,6 @@
     cflags: ["-DLOG_TAG=\"sensors_hidl_hal_test\""],
     srcs: [
         "GrallocWrapper.cpp",
-        "SensorsHidlEnvironmentBase.cpp",
-        "SensorsHidlTestBase.cpp",
-        "SensorsTestSharedMemory.cpp",
     ],
     export_include_dirs: [
         "include",
@@ -30,6 +27,9 @@
     local_include_dirs: [
         "include/sensors-vts-utils",
     ],
+    shared_libs: [
+        "libutils",
+    ],
     static_libs: [
         "android.hardware.graphics.allocator@2.0",
         "android.hardware.graphics.allocator@3.0",
@@ -37,5 +37,7 @@
         "android.hardware.graphics.mapper@2.1",
         "android.hardware.graphics.mapper@3.0",
         "android.hardware.sensors@1.0",
+        "android.hardware.sensors@2.0",
+        "android.hardware.sensors@2.1",
     ],
 }
diff --git a/sensors/common/vts/utils/SensorsHidlEnvironmentBase.cpp b/sensors/common/vts/utils/SensorsHidlEnvironmentBase.cpp
deleted file mode 100644
index fa0e2e9..0000000
--- a/sensors/common/vts/utils/SensorsHidlEnvironmentBase.cpp
+++ /dev/null
@@ -1,69 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "SensorsHidlEnvironmentBase.h"
-
-void SensorsHidlEnvironmentBase::HidlSetUp() {
-    ASSERT_TRUE(resetHal()) << "could not get hidl service";
-
-    mCollectionEnabled = false;
-    startPollingThread();
-
-    // In case framework just stopped for test and there is sensor events in the pipe,
-    // wait some time for those events to be cleared to avoid them messing up the test.
-    std::this_thread::sleep_for(std::chrono::seconds(3));
-}
-
-void SensorsHidlEnvironmentBase::HidlTearDown() {
-    mStopThread = true;
-    if (mPollThread.joinable()) {
-        mPollThread.detach();
-    }
-}
-
-void SensorsHidlEnvironmentBase::catEvents(std::vector<Event>* output) {
-    std::lock_guard<std::mutex> lock(mEventsMutex);
-    if (output) {
-        output->insert(output->end(), mEvents.begin(), mEvents.end());
-    }
-    mEvents.clear();
-}
-
-void SensorsHidlEnvironmentBase::setCollection(bool enable) {
-    std::lock_guard<std::mutex> lock(mEventsMutex);
-    mCollectionEnabled = enable;
-}
-
-void SensorsHidlEnvironmentBase::addEvent(const Event& ev) {
-    std::lock_guard<std::mutex> lock(mEventsMutex);
-    if (mCollectionEnabled) {
-        mEvents.push_back(ev);
-    }
-
-    if (mCallback != nullptr) {
-        mCallback->onEvent(ev);
-    }
-}
-
-void SensorsHidlEnvironmentBase::registerCallback(IEventCallback* callback) {
-    std::lock_guard<std::mutex> lock(mEventsMutex);
-    mCallback = callback;
-}
-
-void SensorsHidlEnvironmentBase::unregisterCallback() {
-    std::lock_guard<std::mutex> lock(mEventsMutex);
-    mCallback = nullptr;
-}
\ No newline at end of file
diff --git a/sensors/common/vts/utils/SensorsHidlTestBase.cpp b/sensors/common/vts/utils/SensorsHidlTestBase.cpp
deleted file mode 100644
index 18549df..0000000
--- a/sensors/common/vts/utils/SensorsHidlTestBase.cpp
+++ /dev/null
@@ -1,584 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "SensorsHidlTestBase.h"
-
-#include "sensors-vts-utils/GrallocWrapper.h"
-#include "sensors-vts-utils/SensorsTestSharedMemory.h"
-
-#include <hardware/sensors.h>  // for sensor type strings
-#include <log/log.h>
-#include <utils/SystemClock.h>
-
-#include <cinttypes>
-
-using ::android::sp;
-using ::android::hardware::hidl_string;
-using ::android::hardware::Return;
-using ::android::hardware::Void;
-using ::android::hardware::sensors::V1_0::SensorFlagShift;
-using ::android::hardware::sensors::V1_0::SensorsEventFormatOffset;
-
-const Vec3NormChecker SensorsHidlTestBase::sAccelNormChecker(
-    Vec3NormChecker::byNominal(GRAVITY_EARTH, 1.0f /*m/s^2*/));
-const Vec3NormChecker SensorsHidlTestBase::sGyroNormChecker(
-    Vec3NormChecker::byNominal(0.f, 0.1f /*rad/s*/));
-
-std::vector<Event> SensorsHidlTestBase::collectEvents(useconds_t timeLimitUs, size_t nEventLimit,
-                                                      bool clearBeforeStart,
-                                                      bool changeCollection) {
-    return collectEvents(timeLimitUs, nEventLimit, getEnvironment(), clearBeforeStart,
-                         changeCollection);
-}
-
-std::vector<Event> SensorsHidlTestBase::collectEvents(useconds_t timeLimitUs, size_t nEventLimit,
-                                                      SensorsHidlEnvironmentBase* environment,
-                                                      bool clearBeforeStart,
-                                                      bool changeCollection) {
-    std::vector<Event> events;
-    constexpr useconds_t SLEEP_GRANULARITY = 100 * 1000;  // granularity 100 ms
-
-    ALOGI("collect max of %zu events for %d us, clearBeforeStart %d", nEventLimit, timeLimitUs,
-          clearBeforeStart);
-
-    if (changeCollection) {
-        environment->setCollection(true);
-    }
-    if (clearBeforeStart) {
-        environment->catEvents(nullptr);
-    }
-
-    while (timeLimitUs > 0) {
-        useconds_t duration = std::min(SLEEP_GRANULARITY, timeLimitUs);
-        usleep(duration);
-        timeLimitUs -= duration;
-
-        environment->catEvents(&events);
-        if (events.size() >= nEventLimit) {
-            break;
-        }
-        ALOGV("time to go = %d, events to go = %d", (int)timeLimitUs,
-              (int)(nEventLimit - events.size()));
-    }
-
-    if (changeCollection) {
-        environment->setCollection(false);
-    }
-    return events;
-}
-
-void SensorsHidlTestBase::assertTypeMatchStringType(SensorType type,
-                                                    const hidl_string& stringType) {
-    if (type >= SensorType::DEVICE_PRIVATE_BASE) {
-        return;
-    }
-
-    switch (type) {
-#define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type)                      \
-    case SensorType::type:                                           \
-        ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
-        break;
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TEMPERATURE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
-        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
-        default:
-            FAIL() << "Type " << static_cast<int>(type)
-                   << " in android defined range is not checked, "
-                   << "stringType = " << stringType;
-#undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
-    }
-}
-
-void SensorsHidlTestBase::assertTypeMatchReportMode(SensorType type, SensorFlagBits reportMode) {
-    if (type >= SensorType::DEVICE_PRIVATE_BASE) {
-        return;
-    }
-
-    SensorFlagBits expected = expectedReportModeForType(type);
-
-    ASSERT_TRUE(expected == (SensorFlagBits)-1 || expected == reportMode)
-        << "reportMode=" << static_cast<int>(reportMode)
-        << "expected=" << static_cast<int>(expected);
-}
-
-void SensorsHidlTestBase::assertDelayMatchReportMode(int32_t minDelay, int32_t maxDelay,
-                                                     SensorFlagBits reportMode) {
-    switch (reportMode) {
-        case SensorFlagBits::CONTINUOUS_MODE:
-            ASSERT_LT(0, minDelay);
-            ASSERT_LE(0, maxDelay);
-            break;
-        case SensorFlagBits::ON_CHANGE_MODE:
-            ASSERT_LE(0, minDelay);
-            ASSERT_LE(0, maxDelay);
-            break;
-        case SensorFlagBits::ONE_SHOT_MODE:
-            ASSERT_EQ(-1, minDelay);
-            ASSERT_EQ(0, maxDelay);
-            break;
-        case SensorFlagBits::SPECIAL_REPORTING_MODE:
-            // do not enforce anything for special reporting mode
-            break;
-        default:
-            FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
-    }
-}
-
-// return -1 means no expectation for this type
-SensorFlagBits SensorsHidlTestBase::expectedReportModeForType(SensorType type) {
-    switch (type) {
-        case SensorType::ACCELEROMETER:
-        case SensorType::ACCELEROMETER_UNCALIBRATED:
-        case SensorType::GYROSCOPE:
-        case SensorType::MAGNETIC_FIELD:
-        case SensorType::ORIENTATION:
-        case SensorType::PRESSURE:
-        case SensorType::TEMPERATURE:
-        case SensorType::GRAVITY:
-        case SensorType::LINEAR_ACCELERATION:
-        case SensorType::ROTATION_VECTOR:
-        case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
-        case SensorType::GAME_ROTATION_VECTOR:
-        case SensorType::GYROSCOPE_UNCALIBRATED:
-        case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
-        case SensorType::POSE_6DOF:
-        case SensorType::HEART_BEAT:
-            return SensorFlagBits::CONTINUOUS_MODE;
-
-        case SensorType::LIGHT:
-        case SensorType::PROXIMITY:
-        case SensorType::RELATIVE_HUMIDITY:
-        case SensorType::AMBIENT_TEMPERATURE:
-        case SensorType::HEART_RATE:
-        case SensorType::DEVICE_ORIENTATION:
-        case SensorType::STEP_COUNTER:
-        case SensorType::LOW_LATENCY_OFFBODY_DETECT:
-            return SensorFlagBits::ON_CHANGE_MODE;
-
-        case SensorType::SIGNIFICANT_MOTION:
-        case SensorType::WAKE_GESTURE:
-        case SensorType::GLANCE_GESTURE:
-        case SensorType::PICK_UP_GESTURE:
-        case SensorType::MOTION_DETECT:
-        case SensorType::STATIONARY_DETECT:
-            return SensorFlagBits::ONE_SHOT_MODE;
-
-        case SensorType::STEP_DETECTOR:
-        case SensorType::TILT_DETECTOR:
-        case SensorType::WRIST_TILT_GESTURE:
-        case SensorType::DYNAMIC_SENSOR_META:
-            return SensorFlagBits::SPECIAL_REPORTING_MODE;
-
-        default:
-            ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
-            return (SensorFlagBits)-1;
-    }
-}
-
-bool SensorsHidlTestBase::isDirectReportRateSupported(SensorInfo sensor, RateLevel rate) {
-    unsigned int r = static_cast<unsigned int>(sensor.flags & SensorFlagBits::MASK_DIRECT_REPORT) >>
-                     static_cast<unsigned int>(SensorFlagShift::DIRECT_REPORT);
-    return r >= static_cast<unsigned int>(rate);
-}
-
-bool SensorsHidlTestBase::isDirectChannelTypeSupported(SensorInfo sensor, SharedMemType type) {
-    switch (type) {
-        case SharedMemType::ASHMEM:
-            return (sensor.flags & SensorFlagBits::DIRECT_CHANNEL_ASHMEM) != 0;
-        case SharedMemType::GRALLOC:
-            return (sensor.flags & SensorFlagBits::DIRECT_CHANNEL_GRALLOC) != 0;
-        default:
-            return false;
-    }
-}
-
-void SensorsHidlTestBase::testDirectReportOperation(SensorType type, SharedMemType memType,
-                                                    RateLevel rate,
-                                                    const SensorEventsChecker& checker) {
-    constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);
-    constexpr size_t kNEvent = 4096;
-    constexpr size_t kMemSize = kEventSize * kNEvent;
-
-    constexpr float kNormalNominal = 50;
-    constexpr float kFastNominal = 200;
-    constexpr float kVeryFastNominal = 800;
-
-    constexpr float kNominalTestTimeSec = 1.f;
-    constexpr float kMaxTestTimeSec = kNominalTestTimeSec + 0.5f;  // 0.5 second for initialization
-
-    SensorInfo sensor = defaultSensorByType(type);
-
-    if (!isValidType(sensor.type)) {
-        // no default sensor of this type
-        return;
-    }
-
-    if (!isDirectReportRateSupported(sensor, rate)) {
-        return;
-    }
-
-    if (!isDirectChannelTypeSupported(sensor, memType)) {
-        return;
-    }
-
-    std::unique_ptr<SensorsTestSharedMemory> mem(
-        SensorsTestSharedMemory::create(memType, kMemSize));
-    ASSERT_NE(mem, nullptr);
-
-    char* buffer = mem->getBuffer();
-    // fill memory with data
-    for (size_t i = 0; i < kMemSize; ++i) {
-        buffer[i] = '\xcc';
-    }
-
-    int32_t channelHandle;
-    registerDirectChannel(mem->getSharedMemInfo(),
-                          [&channelHandle](auto result, auto channelHandle_) {
-                              ASSERT_EQ(result, Result::OK);
-                              channelHandle = channelHandle_;
-                          });
-
-    // check memory is zeroed
-    for (size_t i = 0; i < kMemSize; ++i) {
-        ASSERT_EQ(buffer[i], '\0');
-    }
-
-    int32_t eventToken;
-    configDirectReport(sensor.sensorHandle, channelHandle, rate,
-                       [&eventToken](auto result, auto token) {
-                           ASSERT_EQ(result, Result::OK);
-                           eventToken = token;
-                       });
-
-    usleep(static_cast<useconds_t>(kMaxTestTimeSec * 1e6f));
-    auto events = mem->parseEvents();
-
-    // find norminal rate
-    float nominalFreq = 0.f;
-    switch (rate) {
-        case RateLevel::NORMAL:
-            nominalFreq = kNormalNominal;
-            break;
-        case RateLevel::FAST:
-            nominalFreq = kFastNominal;
-            break;
-        case RateLevel::VERY_FAST:
-            nominalFreq = kVeryFastNominal;
-            break;
-        case RateLevel::STOP:
-            FAIL();
-    }
-
-    // allowed to be between 55% and 220% of nominal freq
-    ASSERT_GT(events.size(), static_cast<size_t>(nominalFreq * 0.55f * kNominalTestTimeSec));
-    ASSERT_LT(events.size(), static_cast<size_t>(nominalFreq * 2.2f * kMaxTestTimeSec));
-
-    int64_t lastTimestamp = 0;
-    bool typeErrorReported = false;
-    bool tokenErrorReported = false;
-    bool timestampErrorReported = false;
-    std::vector<Event> sensorEvents;
-    for (auto& e : events) {
-        if (!tokenErrorReported) {
-            EXPECT_EQ(eventToken, e.sensorHandle)
-                << (tokenErrorReported = true,
-                    "Event token does not match that retured from configDirectReport");
-        }
-
-        if (isMetaSensorType(e.sensorType)) {
-            continue;
-        }
-        sensorEvents.push_back(e);
-
-        if (!typeErrorReported) {
-            EXPECT_EQ(type, e.sensorType)
-                << (typeErrorReported = true,
-                    "Type in event does not match type of sensor registered.");
-        }
-        if (!timestampErrorReported) {
-            EXPECT_GT(e.timestamp, lastTimestamp)
-                << (timestampErrorReported = true, "Timestamp not monotonically increasing");
-        }
-        lastTimestamp = e.timestamp;
-    }
-
-    std::string s;
-    EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
-
-    // stop sensor and unregister channel
-    configDirectReport(sensor.sensorHandle, channelHandle, RateLevel::STOP,
-                       [](auto result, auto) { EXPECT_EQ(result, Result::OK); });
-    EXPECT_EQ(unregisterDirectChannel(channelHandle), Result::OK);
-}
-
-void SensorsHidlTestBase::testStreamingOperation(SensorType type,
-                                                 std::chrono::nanoseconds samplingPeriod,
-                                                 std::chrono::seconds duration,
-                                                 const SensorEventsChecker& checker) {
-    std::vector<Event> events;
-    std::vector<Event> sensorEvents;
-
-    const int64_t samplingPeriodInNs = samplingPeriod.count();
-    const int64_t batchingPeriodInNs = 0;  // no batching
-    const useconds_t minTimeUs = std::chrono::microseconds(duration).count();
-    const size_t minNEvent = duration / samplingPeriod;
-
-    SensorInfo sensor = defaultSensorByType(type);
-
-    if (!isValidType(sensor.type)) {
-        // no default sensor of this type
-        return;
-    }
-
-    if (std::chrono::microseconds(sensor.minDelay) > samplingPeriod) {
-        // rate not supported
-        return;
-    }
-
-    int32_t handle = sensor.sensorHandle;
-
-    ASSERT_EQ(batch(handle, samplingPeriodInNs, batchingPeriodInNs), Result::OK);
-    ASSERT_EQ(activate(handle, 1), Result::OK);
-    events = collectEvents(minTimeUs, minNEvent, true /*clearBeforeStart*/);
-    ASSERT_EQ(activate(handle, 0), Result::OK);
-
-    ALOGI("Collected %zu samples", events.size());
-
-    ASSERT_GT(events.size(), 0u);
-
-    bool handleMismatchReported = false;
-    bool metaSensorTypeErrorReported = false;
-    for (auto& e : events) {
-        if (e.sensorType == type) {
-            // avoid generating hundreds of error
-            if (!handleMismatchReported) {
-                EXPECT_EQ(e.sensorHandle, handle)
-                    << (handleMismatchReported = true,
-                        "Event of the same type must come from the sensor registered");
-            }
-            sensorEvents.push_back(e);
-        } else {
-            // avoid generating hundreds of error
-            if (!metaSensorTypeErrorReported) {
-                EXPECT_TRUE(isMetaSensorType(e.sensorType))
-                    << (metaSensorTypeErrorReported = true,
-                        "Only meta types are allowed besides the type registered");
-            }
-        }
-    }
-
-    std::string s;
-    EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
-
-    EXPECT_GE(sensorEvents.size(),
-              minNEvent / 2);  // make sure returned events are not all meta
-}
-
-void SensorsHidlTestBase::testSamplingRateHotSwitchOperation(SensorType type, bool fastToSlow) {
-    std::vector<Event> events1, events2;
-
-    constexpr int64_t batchingPeriodInNs = 0;          // no batching
-    constexpr int64_t collectionTimeoutUs = 60000000;  // 60s
-    constexpr size_t minNEvent = 50;
-
-    SensorInfo sensor = defaultSensorByType(type);
-
-    if (!isValidType(sensor.type)) {
-        // no default sensor of this type
-        return;
-    }
-
-    int32_t handle = sensor.sensorHandle;
-    int64_t minSamplingPeriodInNs = sensor.minDelay * 1000ll;
-    int64_t maxSamplingPeriodInNs = sensor.maxDelay * 1000ll;
-
-    if (minSamplingPeriodInNs == maxSamplingPeriodInNs) {
-        // only support single rate
-        return;
-    }
-
-    int64_t firstCollectionPeriod = fastToSlow ? minSamplingPeriodInNs : maxSamplingPeriodInNs;
-    int64_t secondCollectionPeriod = !fastToSlow ? minSamplingPeriodInNs : maxSamplingPeriodInNs;
-
-    // first collection
-    ASSERT_EQ(batch(handle, firstCollectionPeriod, batchingPeriodInNs), Result::OK);
-    ASSERT_EQ(activate(handle, 1), Result::OK);
-
-    usleep(500000);  // sleep 0.5 sec to wait for change rate to happen
-    events1 = collectEvents(collectionTimeoutUs, minNEvent);
-
-    // second collection, without stop sensor
-    ASSERT_EQ(batch(handle, secondCollectionPeriod, batchingPeriodInNs), Result::OK);
-
-    usleep(500000);  // sleep 0.5 sec to wait for change rate to happen
-    events2 = collectEvents(collectionTimeoutUs, minNEvent);
-
-    // end of collection, stop sensor
-    ASSERT_EQ(activate(handle, 0), Result::OK);
-
-    ALOGI("Collected %zu fast samples and %zu slow samples", events1.size(), events2.size());
-
-    ASSERT_GT(events1.size(), 0u);
-    ASSERT_GT(events2.size(), 0u);
-
-    int64_t minDelayAverageInterval, maxDelayAverageInterval;
-    std::vector<Event>& minDelayEvents(fastToSlow ? events1 : events2);
-    std::vector<Event>& maxDelayEvents(fastToSlow ? events2 : events1);
-
-    size_t nEvent = 0;
-    int64_t prevTimestamp = -1;
-    int64_t timestampInterval = 0;
-    for (auto& e : minDelayEvents) {
-        if (e.sensorType == type) {
-            ASSERT_EQ(e.sensorHandle, handle);
-            if (prevTimestamp > 0) {
-                timestampInterval += e.timestamp - prevTimestamp;
-            }
-            prevTimestamp = e.timestamp;
-            ++nEvent;
-        }
-    }
-    ASSERT_GT(nEvent, 2u);
-    minDelayAverageInterval = timestampInterval / (nEvent - 1);
-
-    nEvent = 0;
-    prevTimestamp = -1;
-    timestampInterval = 0;
-    for (auto& e : maxDelayEvents) {
-        if (e.sensorType == type) {
-            ASSERT_EQ(e.sensorHandle, handle);
-            if (prevTimestamp > 0) {
-                timestampInterval += e.timestamp - prevTimestamp;
-            }
-            prevTimestamp = e.timestamp;
-            ++nEvent;
-        }
-    }
-    ASSERT_GT(nEvent, 2u);
-    maxDelayAverageInterval = timestampInterval / (nEvent - 1);
-
-    // change of rate is significant.
-    ALOGI("min/maxDelayAverageInterval = %" PRId64 " %" PRId64, minDelayAverageInterval,
-          maxDelayAverageInterval);
-    EXPECT_GT((maxDelayAverageInterval - minDelayAverageInterval), minDelayAverageInterval / 10);
-
-    // fastest rate sampling time is close to spec
-    EXPECT_LT(std::abs(minDelayAverageInterval - minSamplingPeriodInNs),
-              minSamplingPeriodInNs / 10);
-
-    // slowest rate sampling time is close to spec
-    EXPECT_LT(std::abs(maxDelayAverageInterval - maxSamplingPeriodInNs),
-              maxSamplingPeriodInNs / 10);
-}
-
-void SensorsHidlTestBase::testBatchingOperation(SensorType type) {
-    std::vector<Event> events;
-
-    constexpr int64_t maxBatchingTestTimeNs = 30ull * 1000 * 1000 * 1000;
-    constexpr int64_t oneSecondInNs = 1ull * 1000 * 1000 * 1000;
-
-    SensorInfo sensor = defaultSensorByType(type);
-
-    if (!isValidType(sensor.type)) {
-        // no default sensor of this type
-        return;
-    }
-
-    int32_t handle = sensor.sensorHandle;
-    int64_t minSamplingPeriodInNs = sensor.minDelay * 1000ll;
-    uint32_t minFifoCount = sensor.fifoReservedEventCount;
-    int64_t batchingPeriodInNs = minFifoCount * minSamplingPeriodInNs;
-
-    if (batchingPeriodInNs < oneSecondInNs) {
-        // batching size too small to test reliably
-        return;
-    }
-
-    batchingPeriodInNs = std::min(batchingPeriodInNs, maxBatchingTestTimeNs);
-
-    ALOGI("Test batching for %d ms", (int)(batchingPeriodInNs / 1000 / 1000));
-
-    int64_t allowedBatchDeliverTimeNs = std::max(oneSecondInNs, batchingPeriodInNs / 10);
-
-    ASSERT_EQ(batch(handle, minSamplingPeriodInNs, INT64_MAX), Result::OK);
-    ASSERT_EQ(activate(handle, 1), Result::OK);
-
-    usleep(500000);  // sleep 0.5 sec to wait for initialization
-    ASSERT_EQ(flush(handle), Result::OK);
-
-    // wait for 80% of the reserved batching period
-    // there should not be any significant amount of events
-    // since collection is not enabled all events will go down the drain
-    usleep(batchingPeriodInNs / 1000 * 8 / 10);
-
-    getEnvironment()->setCollection(true);
-    // clean existing collections
-    collectEvents(0 /*timeLimitUs*/, 0 /*nEventLimit*/, true /*clearBeforeStart*/,
-                  false /*change collection*/);
-
-    // 0.8 + 0.2 times the batching period
-    usleep(batchingPeriodInNs / 1000 * 8 / 10);
-    ASSERT_EQ(flush(handle), Result::OK);
-
-    // plus some time for the event to deliver
-    events = collectEvents(allowedBatchDeliverTimeNs / 1000, minFifoCount,
-                           false /*clearBeforeStart*/, false /*change collection*/);
-
-    getEnvironment()->setCollection(false);
-    ASSERT_EQ(activate(handle, 0), Result::OK);
-
-    size_t nEvent = 0;
-    for (auto& e : events) {
-        if (e.sensorType == type && e.sensorHandle == handle) {
-            ++nEvent;
-        }
-    }
-
-    // at least reach 90% of advertised capacity
-    ASSERT_GT(nEvent, (size_t)(minFifoCount * 9 / 10));
-}
diff --git a/sensors/common/vts/utils/SensorsTestSharedMemory.cpp b/sensors/common/vts/utils/SensorsTestSharedMemory.cpp
deleted file mode 100644
index 3b068bd..0000000
--- a/sensors/common/vts/utils/SensorsTestSharedMemory.cpp
+++ /dev/null
@@ -1,189 +0,0 @@
-/*
- * Copyright (C) 2018 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "SensorsTestSharedMemory.h"
-
-#include <log/log.h>
-
-#include <sys/mman.h>
-#include <cinttypes>
-
-using namespace ::android::hardware::sensors::V1_0;
-
-SharedMemInfo SensorsTestSharedMemory::getSharedMemInfo() const {
-    SharedMemInfo mem = {.type = mType,
-                         .format = SharedMemFormat::SENSORS_EVENT,
-                         .size = static_cast<uint32_t>(mSize),
-                         .memoryHandle = mNativeHandle};
-    return mem;
-}
-
-char* SensorsTestSharedMemory::getBuffer() const {
-    return mBuffer;
-}
-
-size_t SensorsTestSharedMemory::getSize() const {
-    return mSize;
-}
-
-std::vector<Event> SensorsTestSharedMemory::parseEvents(int64_t lastCounter, size_t offset) const {
-    constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);
-    constexpr size_t kOffsetSize = static_cast<size_t>(SensorsEventFormatOffset::SIZE_FIELD);
-    constexpr size_t kOffsetToken = static_cast<size_t>(SensorsEventFormatOffset::REPORT_TOKEN);
-    constexpr size_t kOffsetType = static_cast<size_t>(SensorsEventFormatOffset::SENSOR_TYPE);
-    constexpr size_t kOffsetAtomicCounter =
-        static_cast<size_t>(SensorsEventFormatOffset::ATOMIC_COUNTER);
-    constexpr size_t kOffsetTimestamp = static_cast<size_t>(SensorsEventFormatOffset::TIMESTAMP);
-    constexpr size_t kOffsetData = static_cast<size_t>(SensorsEventFormatOffset::DATA);
-
-    std::vector<Event> events;
-    std::vector<float> data(16);
-
-    while (offset + kEventSize <= mSize) {
-        int64_t atomicCounter =
-            *reinterpret_cast<uint32_t*>(mBuffer + offset + kOffsetAtomicCounter);
-        if (atomicCounter <= lastCounter) {
-            ALOGV("atomicCounter = %" PRId64 ", lastCounter = %" PRId64, atomicCounter,
-                  lastCounter);
-            break;
-        }
-
-        int32_t size = *reinterpret_cast<int32_t*>(mBuffer + offset + kOffsetSize);
-        if (size != kEventSize) {
-            // unknown error, events parsed may be wrong, remove all
-            events.clear();
-            break;
-        }
-
-        int32_t token = *reinterpret_cast<int32_t*>(mBuffer + offset + kOffsetToken);
-        int32_t type = *reinterpret_cast<int32_t*>(mBuffer + offset + kOffsetType);
-        int64_t timestamp = *reinterpret_cast<int64_t*>(mBuffer + offset + kOffsetTimestamp);
-
-        ALOGV("offset = %zu, cnt %" PRId64 ", token %" PRId32 ", type %" PRId32
-              ", timestamp %" PRId64,
-              offset, atomicCounter, token, type, timestamp);
-
-        Event event = {
-            .timestamp = timestamp,
-            .sensorHandle = token,
-            .sensorType = static_cast<SensorType>(type),
-        };
-        event.u.data = android::hardware::hidl_array<float, 16>(
-            reinterpret_cast<float*>(mBuffer + offset + kOffsetData));
-
-        events.push_back(event);
-
-        lastCounter = atomicCounter;
-        offset += kEventSize;
-    }
-
-    return events;
-}
-
-SensorsTestSharedMemory::SensorsTestSharedMemory(SharedMemType type, size_t size)
-    : mType(type), mSize(0), mBuffer(nullptr) {
-    native_handle_t* handle = nullptr;
-    char* buffer = nullptr;
-    switch (type) {
-        case SharedMemType::ASHMEM: {
-            int fd;
-            handle = ::native_handle_create(1 /*nFds*/, 0 /*nInts*/);
-            if (handle != nullptr) {
-                handle->data[0] = fd = ::ashmem_create_region("SensorsTestSharedMemory", size);
-                if (handle->data[0] > 0) {
-                    // memory is pinned by default
-                    buffer = static_cast<char*>(
-                        ::mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
-                    if (buffer != reinterpret_cast<char*>(MAP_FAILED)) {
-                        break;
-                    }
-                    ::native_handle_close(handle);
-                }
-                ::native_handle_delete(handle);
-                handle = nullptr;
-            }
-            break;
-        }
-        case SharedMemType::GRALLOC: {
-            mGrallocWrapper = std::make_unique<::android::GrallocWrapper>();
-            if (!mGrallocWrapper->isInitialized()) {
-                break;
-            }
-
-            std::pair<native_handle_t*, void*> buf = mGrallocWrapper->allocate(size);
-            handle = buf.first;
-            buffer = static_cast<char*>(buf.second);
-            break;
-        }
-        default:
-            break;
-    }
-
-    if (buffer != nullptr) {
-        mNativeHandle = handle;
-        mSize = size;
-        mBuffer = buffer;
-    }
-}
-
-SensorsTestSharedMemory::~SensorsTestSharedMemory() {
-    switch (mType) {
-        case SharedMemType::ASHMEM: {
-            if (mSize != 0) {
-                ::munmap(mBuffer, mSize);
-                mBuffer = nullptr;
-
-                ::native_handle_close(mNativeHandle);
-                ::native_handle_delete(mNativeHandle);
-
-                mNativeHandle = nullptr;
-                mSize = 0;
-            }
-            break;
-        }
-        case SharedMemType::GRALLOC: {
-            if (mSize != 0) {
-                mGrallocWrapper->freeBuffer(mNativeHandle);
-                mNativeHandle = nullptr;
-                mSize = 0;
-            }
-            break;
-        }
-        default: {
-            if (mNativeHandle != nullptr || mSize != 0 || mBuffer != nullptr) {
-                ALOGE(
-                    "SensorsTestSharedMemory %p not properly destructed: "
-                    "type %d, native handle %p, size %zu, buffer %p",
-                    this, static_cast<int>(mType), mNativeHandle, mSize, mBuffer);
-            }
-            break;
-        }
-    }
-}
-
-SensorsTestSharedMemory* SensorsTestSharedMemory::create(SharedMemType type, size_t size) {
-    constexpr size_t kMaxSize = 128 * 1024 * 1024;  // sensor test should not need more than 128M
-    if (size == 0 || size >= kMaxSize) {
-        return nullptr;
-    }
-
-    auto m = new SensorsTestSharedMemory(type, size);
-    if (m->mSize != size || m->mBuffer == nullptr) {
-        delete m;
-        m = nullptr;
-    }
-    return m;
-}
diff --git a/sensors/common/vts/utils/include/sensors-vts-utils/SensorEventsChecker.h b/sensors/common/vts/utils/include/sensors-vts-utils/SensorEventsChecker.h
index b5daccc..d6d3227 100644
--- a/sensors/common/vts/utils/include/sensors-vts-utils/SensorEventsChecker.h
+++ b/sensors/common/vts/utils/include/sensors-vts-utils/SensorEventsChecker.h
@@ -17,26 +17,26 @@
 #ifndef ANDROID_SENSOR_EVENTS_CHECKER_H
 #define ANDROID_SENSOR_EVENTS_CHECKER_H
 
-#include <android/hardware/sensors/1.0/types.h>
-
 #include <cmath>
 
+template <class EventType>
 class SensorEventsChecker {
-   public:
-    using Event = ::android::hardware::sensors::V1_0::Event;
-    virtual bool check(const std::vector<Event>& events, std::string* out) const = 0;
+  public:
+    virtual bool check(const std::vector<EventType>& events, std::string* out) const = 0;
     virtual ~SensorEventsChecker() {}
 };
 
-class NullChecker : public SensorEventsChecker {
-   public:
-    virtual bool check(const std::vector<Event>&, std::string*) const { return true; }
+template <class EventType>
+class NullChecker : public SensorEventsChecker<EventType> {
+  public:
+    virtual bool check(const std::vector<EventType>&, std::string*) const { return true; }
 };
 
-class SensorEventPerEventChecker : public SensorEventsChecker {
-   public:
-    virtual bool checkEvent(const Event& event, std::string* out) const = 0;
-    virtual bool check(const std::vector<Event>& events, std::string* out) const {
+template <class EventType>
+class SensorEventPerEventChecker : public SensorEventsChecker<EventType> {
+  public:
+    virtual bool checkEvent(const EventType& event, std::string* out) const = 0;
+    virtual bool check(const std::vector<EventType>& events, std::string* out) const {
         for (const auto& e : events) {
             if (!checkEvent(e, out)) {
                 return false;
@@ -46,14 +46,15 @@
     }
 };
 
-class Vec3NormChecker : public SensorEventPerEventChecker {
-   public:
+template <class EventType>
+class Vec3NormChecker : public SensorEventPerEventChecker<EventType> {
+  public:
     Vec3NormChecker(float min, float max) : mLowerLimit(min), mUpperLimit(max) {}
-    static Vec3NormChecker byNominal(float nominal, float allowedError) {
-        return Vec3NormChecker(nominal - allowedError, nominal + allowedError);
+    static Vec3NormChecker<EventType> byNominal(float nominal, float allowedError) {
+        return Vec3NormChecker<EventType>(nominal - allowedError, nominal + allowedError);
     }
 
-    virtual bool checkEvent(const Event& event, std::string* out) const {
+    virtual bool checkEvent(const EventType& event, std::string* out) const {
         android::hardware::sensors::V1_0::Vec3 v = event.u.vec3;
         float norm = std::sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
         if (norm < mLowerLimit || norm > mUpperLimit) {
diff --git a/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlEnvironmentBase.h b/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlEnvironmentBase.h
index dbc9392..781427d 100644
--- a/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlEnvironmentBase.h
+++ b/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlEnvironmentBase.h
@@ -17,7 +17,6 @@
 #ifndef ANDROID_SENSORS_HIDL_ENVIRONMENT_BASE_H
 #define ANDROID_SENSORS_HIDL_ENVIRONMENT_BASE_H
 
-#include <android/hardware/sensors/1.0/types.h>
 #include <gtest/gtest.h>
 
 #include <atomic>
@@ -26,27 +25,59 @@
 #include <thread>
 #include <vector>
 
+template <class Event>
 class IEventCallback {
-   public:
+  public:
     virtual ~IEventCallback() = default;
-    virtual void onEvent(const ::android::hardware::sensors::V1_0::Event& event) = 0;
+    virtual void onEvent(const Event& event) = 0;
 };
 
+template <class Event>
 class SensorsHidlEnvironmentBase {
   public:
-    using Event = ::android::hardware::sensors::V1_0::Event;
-    virtual void HidlSetUp();
-    virtual void HidlTearDown();
+    virtual void HidlSetUp() {
+        ASSERT_TRUE(resetHal()) << "could not get hidl service";
+
+        mCollectionEnabled = false;
+        startPollingThread();
+
+        // In case framework just stopped for test and there is sensor events in the pipe,
+        // wait some time for those events to be cleared to avoid them messing up the test.
+        std::this_thread::sleep_for(std::chrono::seconds(3));
+    }
+
+    virtual void HidlTearDown() {
+        mStopThread = true;
+        if (mPollThread.joinable()) {
+            mPollThread.join();
+        }
+    }
 
     // Get and clear all events collected so far (like "cat" shell command).
     // If output is nullptr, it clears all collected events.
-    void catEvents(std::vector<Event>* output);
+    void catEvents(std::vector<Event>* output) {
+        std::lock_guard<std::mutex> lock(mEventsMutex);
+        if (output) {
+            output->insert(output->end(), mEvents.begin(), mEvents.end());
+        }
+        mEvents.clear();
+    }
 
     // set sensor event collection status
-    void setCollection(bool enable);
+    void setCollection(bool enable) {
+        std::lock_guard<std::mutex> lock(mEventsMutex);
+        mCollectionEnabled = enable;
+    }
 
-    void registerCallback(IEventCallback* callback);
-    void unregisterCallback();
+    void registerCallback(IEventCallback<Event>* callback) {
+        std::lock_guard<std::mutex> lock(mEventsMutex);
+        mCallback = callback;
+    }
+
+    void unregisterCallback() {
+        std::lock_guard<std::mutex> lock(mEventsMutex);
+        mCallback = nullptr;
+    }
 
    protected:
      SensorsHidlEnvironmentBase(const std::string& service_name)
@@ -55,7 +86,16 @@
      }
      virtual ~SensorsHidlEnvironmentBase(){};
 
-     void addEvent(const Event& ev);
+     void addEvent(const Event& ev) {
+         std::lock_guard<std::mutex> lock(mEventsMutex);
+         if (mCollectionEnabled) {
+             mEvents.push_back(ev);
+         }
+
+         if (mCallback != nullptr) {
+             mCallback->onEvent(ev);
+         }
+     }
 
      virtual void startPollingThread() = 0;
      virtual bool resetHal() = 0;
@@ -67,9 +107,9 @@
      std::vector<Event> mEvents;
      std::mutex mEventsMutex;
 
-     IEventCallback* mCallback;
+     IEventCallback<Event>* mCallback;
 
-     GTEST_DISALLOW_COPY_AND_ASSIGN_(SensorsHidlEnvironmentBase);
+     GTEST_DISALLOW_COPY_AND_ASSIGN_(SensorsHidlEnvironmentBase<Event>);
 };
 
 #endif  // ANDROID_SENSORS_HIDL_ENVIRONMENT_BASE_H
\ No newline at end of file
diff --git a/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlTestBase.h b/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlTestBase.h
index 54e899b..03bec87 100644
--- a/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlTestBase.h
+++ b/sensors/common/vts/utils/include/sensors-vts-utils/SensorsHidlTestBase.h
@@ -19,11 +19,15 @@
 
 #include "sensors-vts-utils/SensorEventsChecker.h"
 #include "sensors-vts-utils/SensorsHidlEnvironmentBase.h"
+#include "sensors-vts-utils/SensorsTestSharedMemory.h"
 
 #include <android/hardware/sensors/1.0/ISensors.h>
 #include <android/hardware/sensors/1.0/types.h>
 #include <gtest/gtest.h>
+#include <hardware/sensors.h>
+#include <log/log.h>
 
+#include <cinttypes>
 #include <unordered_set>
 #include <vector>
 
@@ -34,19 +38,130 @@
 
 using ::android::sp;
 using ::android::hardware::hidl_string;
-using ::android::hardware::sensors::V1_0::Event;
-using ::android::hardware::sensors::V1_0::ISensors;
 using ::android::hardware::sensors::V1_0::RateLevel;
 using ::android::hardware::sensors::V1_0::Result;
 using ::android::hardware::sensors::V1_0::SensorFlagBits;
-using ::android::hardware::sensors::V1_0::SensorInfo;
-using ::android::hardware::sensors::V1_0::SensorType;
+using ::android::hardware::sensors::V1_0::SensorFlagShift;
+using ::android::hardware::sensors::V1_0::SensorsEventFormatOffset;
 using ::android::hardware::sensors::V1_0::SharedMemInfo;
 using ::android::hardware::sensors::V1_0::SharedMemType;
 
+template <class SensorTypeT>
+static void assertTypeMatchStringType(SensorTypeT type, const hidl_string& stringType) {
+    if (type >= SensorTypeT::DEVICE_PRIVATE_BASE) {
+        return;
+    }
+
+    switch (type) {
+#define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type)                      \
+    case SensorTypeT::type:                                          \
+        ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
+        break;
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TEMPERATURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
+        CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
+        default:
+            FAIL() << "Type " << static_cast<int>(type)
+                   << " in android defined range is not checked, "
+                   << "stringType = " << stringType;
+#undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
+    }
+}
+
+template <class SensorTypeT>
+static SensorFlagBits expectedReportModeForType(SensorTypeT type) {
+    switch (type) {
+        case SensorTypeT::ACCELEROMETER:
+        case SensorTypeT::ACCELEROMETER_UNCALIBRATED:
+        case SensorTypeT::GYROSCOPE:
+        case SensorTypeT::MAGNETIC_FIELD:
+        case SensorTypeT::ORIENTATION:
+        case SensorTypeT::PRESSURE:
+        case SensorTypeT::TEMPERATURE:
+        case SensorTypeT::GRAVITY:
+        case SensorTypeT::LINEAR_ACCELERATION:
+        case SensorTypeT::ROTATION_VECTOR:
+        case SensorTypeT::MAGNETIC_FIELD_UNCALIBRATED:
+        case SensorTypeT::GAME_ROTATION_VECTOR:
+        case SensorTypeT::GYROSCOPE_UNCALIBRATED:
+        case SensorTypeT::GEOMAGNETIC_ROTATION_VECTOR:
+        case SensorTypeT::POSE_6DOF:
+        case SensorTypeT::HEART_BEAT:
+            return SensorFlagBits::CONTINUOUS_MODE;
+
+        case SensorTypeT::LIGHT:
+        case SensorTypeT::PROXIMITY:
+        case SensorTypeT::RELATIVE_HUMIDITY:
+        case SensorTypeT::AMBIENT_TEMPERATURE:
+        case SensorTypeT::HEART_RATE:
+        case SensorTypeT::DEVICE_ORIENTATION:
+        case SensorTypeT::STEP_COUNTER:
+        case SensorTypeT::LOW_LATENCY_OFFBODY_DETECT:
+            return SensorFlagBits::ON_CHANGE_MODE;
+
+        case SensorTypeT::SIGNIFICANT_MOTION:
+        case SensorTypeT::WAKE_GESTURE:
+        case SensorTypeT::GLANCE_GESTURE:
+        case SensorTypeT::PICK_UP_GESTURE:
+        case SensorTypeT::MOTION_DETECT:
+        case SensorTypeT::STATIONARY_DETECT:
+            return SensorFlagBits::ONE_SHOT_MODE;
+
+        case SensorTypeT::STEP_DETECTOR:
+        case SensorTypeT::TILT_DETECTOR:
+        case SensorTypeT::WRIST_TILT_GESTURE:
+        case SensorTypeT::DYNAMIC_SENSOR_META:
+            return SensorFlagBits::SPECIAL_REPORTING_MODE;
+
+        default:
+            ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
+            return (SensorFlagBits)-1;
+    }
+}
+
+template <class SensorTypeVersion, class EventType, class SensorInfoType>
 class SensorsHidlTestBase : public testing::TestWithParam<std::string> {
   public:
-    virtual SensorsHidlEnvironmentBase* getEnvironment() = 0;
+    using ISensors = ::android::hardware::sensors::V1_0::ISensors;
+
+    SensorsHidlTestBase()
+        : mAccelNormChecker(Vec3NormChecker<EventType>::byNominal(GRAVITY_EARTH, 1.0f /*m/s^2*/)),
+          mGyroNormChecker(Vec3NormChecker<EventType>::byNominal(0.f, 0.1f /*rad/s*/)) {}
+
+    virtual SensorsHidlEnvironmentBase<EventType>* getEnvironment() = 0;
+
     virtual void SetUp() override {}
 
     virtual void TearDown() override {
@@ -66,16 +181,13 @@
     }
 
     // implementation wrapper
-    virtual SensorInfo defaultSensorByType(SensorType type) = 0;
+    virtual SensorInfoType defaultSensorByType(SensorTypeVersion type) = 0;
     virtual Return<void> getSensorsList(ISensors::getSensorsList_cb _hidl_cb) = 0;
-
+    virtual Return<Result> injectSensorData(const EventType& event) = 0;
     virtual Return<Result> activate(int32_t sensorHandle, bool enabled) = 0;
-
     virtual Return<Result> batch(int32_t sensorHandle, int64_t samplingPeriodNs,
                                  int64_t maxReportLatencyNs) = 0;
-
     virtual Return<Result> flush(int32_t sensorHandle) = 0;
-    virtual Return<Result> injectSensorData(const Event& event) = 0;
     virtual Return<void> registerDirectChannel(const SharedMemInfo& mem,
                                                ISensors::registerDirectChannel_cb _hidl_cb) = 0;
     virtual Return<Result> unregisterDirectChannel(int32_t channelHandle) = 0;
@@ -83,12 +195,395 @@
                                             RateLevel rate,
                                             ISensors::configDirectReport_cb _hidl_cb) = 0;
 
-    std::vector<Event> collectEvents(useconds_t timeLimitUs, size_t nEventLimit,
-                                     bool clearBeforeStart = true, bool changeCollection = true);
-    static std::vector<Event> collectEvents(useconds_t timeLimitUs, size_t nEventLimit,
-                                            SensorsHidlEnvironmentBase* environment,
-                                            bool clearBeforeStart = true,
-                                            bool changeCollection = true);
+    std::vector<EventType> collectEvents(useconds_t timeLimitUs, size_t nEventLimit,
+                                         bool clearBeforeStart = true,
+                                         bool changeCollection = true) {
+        return collectEvents(timeLimitUs, nEventLimit, getEnvironment(), clearBeforeStart,
+                             changeCollection);
+    }
+
+    std::vector<EventType> collectEvents(useconds_t timeLimitUs, size_t nEventLimit,
+                                         SensorsHidlEnvironmentBase<EventType>* environment,
+                                         bool clearBeforeStart = true,
+                                         bool changeCollection = true) {
+        std::vector<EventType> events;
+        constexpr useconds_t SLEEP_GRANULARITY = 100 * 1000;  // granularity 100 ms
+
+        ALOGI("collect max of %zu events for %d us, clearBeforeStart %d", nEventLimit, timeLimitUs,
+              clearBeforeStart);
+
+        if (changeCollection) {
+            environment->setCollection(true);
+        }
+        if (clearBeforeStart) {
+            environment->catEvents(nullptr);
+        }
+
+        while (timeLimitUs > 0) {
+            useconds_t duration = std::min(SLEEP_GRANULARITY, timeLimitUs);
+            usleep(duration);
+            timeLimitUs -= duration;
+
+            environment->catEvents(&events);
+            if (events.size() >= nEventLimit) {
+                break;
+            }
+            ALOGV("time to go = %d, events to go = %d", (int)timeLimitUs,
+                  (int)(nEventLimit - events.size()));
+        }
+
+        if (changeCollection) {
+            environment->setCollection(false);
+        }
+        return events;
+    }
+
+    void testStreamingOperation(SensorTypeVersion type, std::chrono::nanoseconds samplingPeriod,
+                                std::chrono::seconds duration,
+                                const SensorEventsChecker<EventType>& checker) {
+        std::vector<EventType> events;
+        std::vector<EventType> sensorEvents;
+
+        const int64_t samplingPeriodInNs = samplingPeriod.count();
+        const int64_t batchingPeriodInNs = 0;  // no batching
+        const useconds_t minTimeUs = std::chrono::microseconds(duration).count();
+        const size_t minNEvent = duration / samplingPeriod;
+
+        SensorInfoType sensor = defaultSensorByType(type);
+
+        if (!isValidType(sensor.type)) {
+            // no default sensor of this type
+            return;
+        }
+
+        if (std::chrono::microseconds(sensor.minDelay) > samplingPeriod) {
+            // rate not supported
+            return;
+        }
+
+        int32_t handle = sensor.sensorHandle;
+
+        ASSERT_EQ(batch(handle, samplingPeriodInNs, batchingPeriodInNs), Result::OK);
+        ASSERT_EQ(activate(handle, 1), Result::OK);
+        events = collectEvents(minTimeUs, minNEvent, getEnvironment(), true /*clearBeforeStart*/);
+        ASSERT_EQ(activate(handle, 0), Result::OK);
+
+        ALOGI("Collected %zu samples", events.size());
+
+        ASSERT_GT(events.size(), 0u);
+
+        bool handleMismatchReported = false;
+        bool metaSensorTypeErrorReported = false;
+        for (auto& e : events) {
+            if (e.sensorType == type) {
+                // avoid generating hundreds of error
+                if (!handleMismatchReported) {
+                    EXPECT_EQ(e.sensorHandle, handle)
+                            << (handleMismatchReported = true,
+                                "Event of the same type must come from the sensor registered");
+                }
+                sensorEvents.push_back(e);
+            } else {
+                // avoid generating hundreds of error
+                if (!metaSensorTypeErrorReported) {
+                    EXPECT_TRUE(isMetaSensorType(e.sensorType))
+                            << (metaSensorTypeErrorReported = true,
+                                "Only meta types are allowed besides the type registered");
+                }
+            }
+        }
+
+        std::string s;
+        EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
+
+        EXPECT_GE(sensorEvents.size(),
+                  minNEvent / 2);  // make sure returned events are not all meta
+    }
+
+    void testSamplingRateHotSwitchOperation(SensorTypeVersion type, bool fastToSlow = true) {
+        std::vector<EventType> events1, events2;
+
+        constexpr int64_t batchingPeriodInNs = 0;          // no batching
+        constexpr int64_t collectionTimeoutUs = 60000000;  // 60s
+        constexpr size_t minNEvent = 50;
+
+        SensorInfoType sensor = defaultSensorByType(type);
+
+        if (!isValidType(sensor.type)) {
+            // no default sensor of this type
+            return;
+        }
+
+        int32_t handle = sensor.sensorHandle;
+        int64_t minSamplingPeriodInNs = sensor.minDelay * 1000ll;
+        int64_t maxSamplingPeriodInNs = sensor.maxDelay * 1000ll;
+
+        if (minSamplingPeriodInNs == maxSamplingPeriodInNs) {
+            // only support single rate
+            return;
+        }
+
+        int64_t firstCollectionPeriod = fastToSlow ? minSamplingPeriodInNs : maxSamplingPeriodInNs;
+        int64_t secondCollectionPeriod =
+                !fastToSlow ? minSamplingPeriodInNs : maxSamplingPeriodInNs;
+
+        // first collection
+        ASSERT_EQ(batch(handle, firstCollectionPeriod, batchingPeriodInNs), Result::OK);
+        ASSERT_EQ(activate(handle, 1), Result::OK);
+
+        usleep(500000);  // sleep 0.5 sec to wait for change rate to happen
+        events1 = collectEvents(collectionTimeoutUs, minNEvent, getEnvironment());
+
+        // second collection, without stop sensor
+        ASSERT_EQ(batch(handle, secondCollectionPeriod, batchingPeriodInNs), Result::OK);
+
+        usleep(500000);  // sleep 0.5 sec to wait for change rate to happen
+        events2 = collectEvents(collectionTimeoutUs, minNEvent, getEnvironment());
+
+        // end of collection, stop sensor
+        ASSERT_EQ(activate(handle, 0), Result::OK);
+
+        ALOGI("Collected %zu fast samples and %zu slow samples", events1.size(), events2.size());
+
+        ASSERT_GT(events1.size(), 0u);
+        ASSERT_GT(events2.size(), 0u);
+
+        int64_t minDelayAverageInterval, maxDelayAverageInterval;
+        std::vector<EventType>& minDelayEvents(fastToSlow ? events1 : events2);
+        std::vector<EventType>& maxDelayEvents(fastToSlow ? events2 : events1);
+
+        size_t nEvent = 0;
+        int64_t prevTimestamp = -1;
+        int64_t timestampInterval = 0;
+        for (auto& e : minDelayEvents) {
+            if (e.sensorType == type) {
+                ASSERT_EQ(e.sensorHandle, handle);
+                if (prevTimestamp > 0) {
+                    timestampInterval += e.timestamp - prevTimestamp;
+                }
+                prevTimestamp = e.timestamp;
+                ++nEvent;
+            }
+        }
+        ASSERT_GT(nEvent, 2u);
+        minDelayAverageInterval = timestampInterval / (nEvent - 1);
+
+        nEvent = 0;
+        prevTimestamp = -1;
+        timestampInterval = 0;
+        for (auto& e : maxDelayEvents) {
+            if (e.sensorType == type) {
+                ASSERT_EQ(e.sensorHandle, handle);
+                if (prevTimestamp > 0) {
+                    timestampInterval += e.timestamp - prevTimestamp;
+                }
+                prevTimestamp = e.timestamp;
+                ++nEvent;
+            }
+        }
+        ASSERT_GT(nEvent, 2u);
+        maxDelayAverageInterval = timestampInterval / (nEvent - 1);
+
+        // change of rate is significant.
+        ALOGI("min/maxDelayAverageInterval = %" PRId64 " %" PRId64, minDelayAverageInterval,
+              maxDelayAverageInterval);
+        EXPECT_GT((maxDelayAverageInterval - minDelayAverageInterval),
+                  minDelayAverageInterval / 10);
+
+        // fastest rate sampling time is close to spec
+        EXPECT_LT(std::abs(minDelayAverageInterval - minSamplingPeriodInNs),
+                  minSamplingPeriodInNs / 10);
+
+        // slowest rate sampling time is close to spec
+        EXPECT_LT(std::abs(maxDelayAverageInterval - maxSamplingPeriodInNs),
+                  maxSamplingPeriodInNs / 10);
+    }
+
+    void testBatchingOperation(SensorTypeVersion type) {
+        std::vector<EventType> events;
+
+        constexpr int64_t maxBatchingTestTimeNs = 30ull * 1000 * 1000 * 1000;
+        constexpr int64_t oneSecondInNs = 1ull * 1000 * 1000 * 1000;
+
+        SensorInfoType sensor = defaultSensorByType(type);
+
+        if (!isValidType(sensor.type)) {
+            // no default sensor of this type
+            return;
+        }
+
+        int32_t handle = sensor.sensorHandle;
+        int64_t minSamplingPeriodInNs = sensor.minDelay * 1000ll;
+        uint32_t minFifoCount = sensor.fifoReservedEventCount;
+        int64_t batchingPeriodInNs = minFifoCount * minSamplingPeriodInNs;
+
+        if (batchingPeriodInNs < oneSecondInNs) {
+            // batching size too small to test reliably
+            return;
+        }
+
+        batchingPeriodInNs = std::min(batchingPeriodInNs, maxBatchingTestTimeNs);
+
+        ALOGI("Test batching for %d ms", (int)(batchingPeriodInNs / 1000 / 1000));
+
+        int64_t allowedBatchDeliverTimeNs = std::max(oneSecondInNs, batchingPeriodInNs / 10);
+
+        ASSERT_EQ(batch(handle, minSamplingPeriodInNs, INT64_MAX), Result::OK);
+        ASSERT_EQ(activate(handle, 1), Result::OK);
+
+        usleep(500000);  // sleep 0.5 sec to wait for initialization
+        ASSERT_EQ(flush(handle), Result::OK);
+
+        // wait for 80% of the reserved batching period
+        // there should not be any significant amount of events
+        // since collection is not enabled all events will go down the drain
+        usleep(batchingPeriodInNs / 1000 * 8 / 10);
+
+        getEnvironment()->setCollection(true);
+        // clean existing collections
+        collectEvents(0 /*timeLimitUs*/, 0 /*nEventLimit*/, true /*clearBeforeStart*/,
+                      false /*change collection*/);
+
+        // 0.8 + 0.2 times the batching period
+        usleep(batchingPeriodInNs / 1000 * 8 / 10);
+        ASSERT_EQ(flush(handle), Result::OK);
+
+        // plus some time for the event to deliver
+        events = collectEvents(allowedBatchDeliverTimeNs / 1000, minFifoCount,
+                               false /*clearBeforeStart*/, false /*change collection*/);
+
+        getEnvironment()->setCollection(false);
+        ASSERT_EQ(activate(handle, 0), Result::OK);
+
+        size_t nEvent = 0;
+        for (auto& e : events) {
+            if (e.sensorType == type && e.sensorHandle == handle) {
+                ++nEvent;
+            }
+        }
+
+        // at least reach 90% of advertised capacity
+        ASSERT_GT(nEvent, (size_t)(minFifoCount * 9 / 10));
+    }
+
+    void testDirectReportOperation(SensorTypeVersion type, SharedMemType memType, RateLevel rate,
+                                   const SensorEventsChecker<EventType>& checker) {
+        constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);
+        constexpr size_t kNEvent = 4096;
+        constexpr size_t kMemSize = kEventSize * kNEvent;
+
+        constexpr float kNormalNominal = 50;
+        constexpr float kFastNominal = 200;
+        constexpr float kVeryFastNominal = 800;
+
+        constexpr float kNominalTestTimeSec = 1.f;
+        constexpr float kMaxTestTimeSec =
+                kNominalTestTimeSec + 0.5f;  // 0.5 second for initialization
+
+        SensorInfoType sensor = defaultSensorByType(type);
+
+        if (!isValidType(sensor.type)) {
+            // no default sensor of this type
+            return;
+        }
+
+        if (!isDirectReportRateSupported(sensor, rate)) {
+            return;
+        }
+
+        if (!isDirectChannelTypeSupported(sensor, memType)) {
+            return;
+        }
+
+        std::unique_ptr<SensorsTestSharedMemory<SensorTypeVersion, EventType>> mem(
+                SensorsTestSharedMemory<SensorTypeVersion, EventType>::create(memType, kMemSize));
+        ASSERT_NE(mem, nullptr);
+
+        char* buffer = mem->getBuffer();
+        // fill memory with data
+        for (size_t i = 0; i < kMemSize; ++i) {
+            buffer[i] = '\xcc';
+        }
+
+        int32_t channelHandle;
+        registerDirectChannel(mem->getSharedMemInfo(),
+                              [&channelHandle](auto result, auto channelHandle_) {
+                                  ASSERT_EQ(result, Result::OK);
+                                  channelHandle = channelHandle_;
+                              });
+
+        // check memory is zeroed
+        for (size_t i = 0; i < kMemSize; ++i) {
+            ASSERT_EQ(buffer[i], '\0');
+        }
+
+        int32_t eventToken;
+        configDirectReport(sensor.sensorHandle, channelHandle, rate,
+                           [&eventToken](auto result, auto token) {
+                               ASSERT_EQ(result, Result::OK);
+                               eventToken = token;
+                           });
+
+        usleep(static_cast<useconds_t>(kMaxTestTimeSec * 1e6f));
+        auto events = mem->parseEvents();
+
+        // find norminal rate
+        float nominalFreq = 0.f;
+        switch (rate) {
+            case RateLevel::NORMAL:
+                nominalFreq = kNormalNominal;
+                break;
+            case RateLevel::FAST:
+                nominalFreq = kFastNominal;
+                break;
+            case RateLevel::VERY_FAST:
+                nominalFreq = kVeryFastNominal;
+                break;
+            case RateLevel::STOP:
+                FAIL();
+        }
+
+        // allowed to be between 55% and 220% of nominal freq
+        ASSERT_GT(events.size(), static_cast<size_t>(nominalFreq * 0.55f * kNominalTestTimeSec));
+        ASSERT_LT(events.size(), static_cast<size_t>(nominalFreq * 2.2f * kMaxTestTimeSec));
+
+        int64_t lastTimestamp = 0;
+        bool typeErrorReported = false;
+        bool tokenErrorReported = false;
+        bool timestampErrorReported = false;
+        std::vector<EventType> sensorEvents;
+        for (auto& e : events) {
+            if (!tokenErrorReported) {
+                EXPECT_EQ(eventToken, e.sensorHandle)
+                        << (tokenErrorReported = true,
+                            "Event token does not match that retured from configDirectReport");
+            }
+
+            if (isMetaSensorType(e.sensorType)) {
+                continue;
+            }
+            sensorEvents.push_back(e);
+
+            if (!typeErrorReported) {
+                EXPECT_EQ(type, e.sensorType)
+                        << (typeErrorReported = true,
+                            "Type in event does not match type of sensor registered.");
+            }
+            if (!timestampErrorReported) {
+                EXPECT_GT(e.timestamp, lastTimestamp) << (timestampErrorReported = true,
+                                                          "Timestamp not monotonically increasing");
+            }
+            lastTimestamp = e.timestamp;
+        }
+
+        std::string s;
+        EXPECT_TRUE(checker.check(sensorEvents, &s)) << s;
+
+        // stop sensor and unregister channel
+        configDirectReport(sensor.sensorHandle, channelHandle, RateLevel::STOP,
+                           [](auto result, auto) { EXPECT_EQ(result, Result::OK); });
+        EXPECT_EQ(unregisterDirectChannel(channelHandle), Result::OK);
+    }
 
     inline static SensorFlagBits extractReportMode(uint64_t flag) {
         return (SensorFlagBits)(flag & ((uint64_t)SensorFlagBits::CONTINUOUS_MODE |
@@ -97,32 +592,71 @@
                                         (uint64_t)SensorFlagBits::SPECIAL_REPORTING_MODE));
     }
 
-    inline static bool isMetaSensorType(SensorType type) {
-        return (type == SensorType::META_DATA || type == SensorType::DYNAMIC_SENSOR_META ||
-                type == SensorType::ADDITIONAL_INFO);
+    inline static bool isMetaSensorType(SensorTypeVersion type) {
+        return (type == SensorTypeVersion::META_DATA ||
+                type == SensorTypeVersion::DYNAMIC_SENSOR_META ||
+                type == SensorTypeVersion::ADDITIONAL_INFO);
     }
 
-    inline static bool isValidType(SensorType type) { return (int32_t)type > 0; }
+    inline static bool isValidType(SensorTypeVersion type) { return (int32_t)type > 0; }
 
-    void testStreamingOperation(SensorType type, std::chrono::nanoseconds samplingPeriod,
-                                std::chrono::seconds duration, const SensorEventsChecker& checker);
-    void testSamplingRateHotSwitchOperation(SensorType type, bool fastToSlow = true);
-    void testBatchingOperation(SensorType type);
-    void testDirectReportOperation(SensorType type, SharedMemType memType, RateLevel rate,
-                                   const SensorEventsChecker& checker);
-
-    static void assertTypeMatchStringType(SensorType type, const hidl_string& stringType);
-    static void assertTypeMatchReportMode(SensorType type, SensorFlagBits reportMode);
     static void assertDelayMatchReportMode(int32_t minDelay, int32_t maxDelay,
-                                           SensorFlagBits reportMode);
-    static SensorFlagBits expectedReportModeForType(SensorType type);
-    static bool isDirectReportRateSupported(SensorInfo sensor, RateLevel rate);
-    static bool isDirectChannelTypeSupported(SensorInfo sensor, SharedMemType type);
+                                           SensorFlagBits reportMode) {
+        switch (reportMode) {
+            case SensorFlagBits::CONTINUOUS_MODE:
+                ASSERT_LT(0, minDelay);
+                ASSERT_LE(0, maxDelay);
+                break;
+            case SensorFlagBits::ON_CHANGE_MODE:
+                ASSERT_LE(0, minDelay);
+                ASSERT_LE(0, maxDelay);
+                break;
+            case SensorFlagBits::ONE_SHOT_MODE:
+                ASSERT_EQ(-1, minDelay);
+                ASSERT_EQ(0, maxDelay);
+                break;
+            case SensorFlagBits::SPECIAL_REPORTING_MODE:
+                // do not enforce anything for special reporting mode
+                break;
+            default:
+                FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
+        }
+    }
 
-   protected:
-    // checkers
-    static const Vec3NormChecker sAccelNormChecker;
-    static const Vec3NormChecker sGyroNormChecker;
+  protected:
+    static void assertTypeMatchReportMode(SensorTypeVersion type, SensorFlagBits reportMode) {
+        if (type >= SensorTypeVersion::DEVICE_PRIVATE_BASE) {
+            return;
+        }
+
+        SensorFlagBits expected = expectedReportModeForType(type);
+
+        ASSERT_TRUE(expected == (SensorFlagBits)-1 || expected == reportMode)
+                << "reportMode=" << static_cast<int>(reportMode)
+                << "expected=" << static_cast<int>(expected);
+    }
+
+    static bool isDirectReportRateSupported(SensorInfoType sensor, RateLevel rate) {
+        unsigned int r =
+                static_cast<unsigned int>(sensor.flags & SensorFlagBits::MASK_DIRECT_REPORT) >>
+                static_cast<unsigned int>(SensorFlagShift::DIRECT_REPORT);
+        return r >= static_cast<unsigned int>(rate);
+    }
+
+    static bool isDirectChannelTypeSupported(SensorInfoType sensor, SharedMemType type) {
+        switch (type) {
+            case SharedMemType::ASHMEM:
+                return (sensor.flags & SensorFlagBits::DIRECT_CHANNEL_ASHMEM) != 0;
+            case SharedMemType::GRALLOC:
+                return (sensor.flags & SensorFlagBits::DIRECT_CHANNEL_GRALLOC) != 0;
+            default:
+                return false;
+        }
+    }
+
+    // Checkers
+    Vec3NormChecker<EventType> mAccelNormChecker;
+    Vec3NormChecker<EventType> mGyroNormChecker;
 
     // all sensors and direct channnels used
     std::unordered_set<int32_t> mSensorHandles;
diff --git a/sensors/common/vts/utils/include/sensors-vts-utils/SensorsTestSharedMemory.h b/sensors/common/vts/utils/include/sensors-vts-utils/SensorsTestSharedMemory.h
index 002f42c..39084a4 100644
--- a/sensors/common/vts/utils/include/sensors-vts-utils/SensorsTestSharedMemory.h
+++ b/sensors/common/vts/utils/include/sensors-vts-utils/SensorsTestSharedMemory.h
@@ -20,25 +20,177 @@
 #include "GrallocWrapper.h"
 
 #include <android-base/macros.h>
-#include <android/hardware/sensors/1.0/types.h>
+#include <log/log.h>
+
+#include <sys/mman.h>
+#include <cinttypes>
 
 #include <cutils/ashmem.h>
 
+using namespace ::android::hardware::sensors::V1_0;
+
+template <class SensorTypeVersion, class EventType>
 class SensorsTestSharedMemory {
-    using SharedMemType = ::android::hardware::sensors::V1_0::SharedMemType;
-    using SharedMemInfo = ::android::hardware::sensors::V1_0::SharedMemInfo;
-    using Event = ::android::hardware::sensors::V1_0::Event;
+  public:
+    static SensorsTestSharedMemory* create(SharedMemType type, size_t size) {
+        constexpr size_t kMaxSize =
+                128 * 1024 * 1024;  // sensor test should not need more than 128M
+        if (size == 0 || size >= kMaxSize) {
+            return nullptr;
+        }
 
-   public:
-    static SensorsTestSharedMemory* create(SharedMemType type, size_t size);
-    SharedMemInfo getSharedMemInfo() const;
-    char* getBuffer() const;
-    size_t getSize() const;
-    std::vector<Event> parseEvents(int64_t lastCounter = -1, size_t offset = 0) const;
-    virtual ~SensorsTestSharedMemory();
+        auto m = new SensorsTestSharedMemory<SensorTypeVersion, EventType>(type, size);
+        if (m->mSize != size || m->mBuffer == nullptr) {
+            delete m;
+            m = nullptr;
+        }
+        return m;
+    }
 
-   private:
-    SensorsTestSharedMemory(SharedMemType type, size_t size);
+    SharedMemInfo getSharedMemInfo() const {
+        SharedMemInfo mem = {.type = mType,
+                             .format = SharedMemFormat::SENSORS_EVENT,
+                             .size = static_cast<uint32_t>(mSize),
+                             .memoryHandle = mNativeHandle};
+        return mem;
+    }
+    char* getBuffer() const { return mBuffer; }
+    size_t getSize() const { return mSize; }
+    std::vector<EventType> parseEvents(int64_t lastCounter = -1, size_t offset = 0) const {
+        constexpr size_t kEventSize = static_cast<size_t>(SensorsEventFormatOffset::TOTAL_LENGTH);
+        constexpr size_t kOffsetSize = static_cast<size_t>(SensorsEventFormatOffset::SIZE_FIELD);
+        constexpr size_t kOffsetToken = static_cast<size_t>(SensorsEventFormatOffset::REPORT_TOKEN);
+        constexpr size_t kOffsetType = static_cast<size_t>(SensorsEventFormatOffset::SENSOR_TYPE);
+        constexpr size_t kOffsetAtomicCounter =
+                static_cast<size_t>(SensorsEventFormatOffset::ATOMIC_COUNTER);
+        constexpr size_t kOffsetTimestamp =
+                static_cast<size_t>(SensorsEventFormatOffset::TIMESTAMP);
+        constexpr size_t kOffsetData = static_cast<size_t>(SensorsEventFormatOffset::DATA);
+
+        std::vector<EventType> events;
+        std::vector<float> data(16);
+
+        while (offset + kEventSize <= mSize) {
+            int64_t atomicCounter =
+                    *reinterpret_cast<uint32_t*>(mBuffer + offset + kOffsetAtomicCounter);
+            if (atomicCounter <= lastCounter) {
+                ALOGV("atomicCounter = %" PRId64 ", lastCounter = %" PRId64, atomicCounter,
+                      lastCounter);
+                break;
+            }
+
+            int32_t size = *reinterpret_cast<int32_t*>(mBuffer + offset + kOffsetSize);
+            if (size != kEventSize) {
+                // unknown error, events parsed may be wrong, remove all
+                events.clear();
+                break;
+            }
+
+            int32_t token = *reinterpret_cast<int32_t*>(mBuffer + offset + kOffsetToken);
+            int32_t type = *reinterpret_cast<int32_t*>(mBuffer + offset + kOffsetType);
+            int64_t timestamp = *reinterpret_cast<int64_t*>(mBuffer + offset + kOffsetTimestamp);
+
+            ALOGV("offset = %zu, cnt %" PRId64 ", token %" PRId32 ", type %" PRId32
+                  ", timestamp %" PRId64,
+                  offset, atomicCounter, token, type, timestamp);
+
+            EventType event = {
+                    .timestamp = timestamp,
+                    .sensorHandle = token,
+                    .sensorType = static_cast<SensorTypeVersion>(type),
+            };
+            event.u.data = android::hardware::hidl_array<float, 16>(
+                    reinterpret_cast<float*>(mBuffer + offset + kOffsetData));
+
+            events.push_back(event);
+
+            lastCounter = atomicCounter;
+            offset += kEventSize;
+        }
+
+        return events;
+    }
+
+    virtual ~SensorsTestSharedMemory() {
+        switch (mType) {
+            case SharedMemType::ASHMEM: {
+                if (mSize != 0) {
+                    ::munmap(mBuffer, mSize);
+                    mBuffer = nullptr;
+
+                    ::native_handle_close(mNativeHandle);
+                    ::native_handle_delete(mNativeHandle);
+
+                    mNativeHandle = nullptr;
+                    mSize = 0;
+                }
+                break;
+            }
+            case SharedMemType::GRALLOC: {
+                if (mSize != 0) {
+                    mGrallocWrapper->freeBuffer(mNativeHandle);
+                    mNativeHandle = nullptr;
+                    mSize = 0;
+                }
+                break;
+            }
+            default: {
+                if (mNativeHandle != nullptr || mSize != 0 || mBuffer != nullptr) {
+                    ALOGE("SensorsTestSharedMemory %p not properly destructed: "
+                          "type %d, native handle %p, size %zu, buffer %p",
+                          this, static_cast<int>(mType), mNativeHandle, mSize, mBuffer);
+                }
+                break;
+            }
+        }
+    }
+
+  private:
+    SensorsTestSharedMemory(SharedMemType type, size_t size)
+        : mType(type), mSize(0), mBuffer(nullptr) {
+        native_handle_t* handle = nullptr;
+        char* buffer = nullptr;
+        switch (type) {
+            case SharedMemType::ASHMEM: {
+                int fd;
+                handle = ::native_handle_create(1 /*nFds*/, 0 /*nInts*/);
+                if (handle != nullptr) {
+                    handle->data[0] = fd = ::ashmem_create_region("SensorsTestSharedMemory", size);
+                    if (handle->data[0] > 0) {
+                        // memory is pinned by default
+                        buffer = static_cast<char*>(
+                                ::mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
+                        if (buffer != reinterpret_cast<char*>(MAP_FAILED)) {
+                            break;
+                        }
+                        ::native_handle_close(handle);
+                    }
+                    ::native_handle_delete(handle);
+                    handle = nullptr;
+                }
+                break;
+            }
+            case SharedMemType::GRALLOC: {
+                mGrallocWrapper = std::make_unique<::android::GrallocWrapper>();
+                if (!mGrallocWrapper->isInitialized()) {
+                    break;
+                }
+
+                std::pair<native_handle_t*, void*> buf = mGrallocWrapper->allocate(size);
+                handle = buf.first;
+                buffer = static_cast<char*>(buf.second);
+                break;
+            }
+            default:
+                break;
+        }
+
+        if (buffer != nullptr) {
+            mNativeHandle = handle;
+            mSize = size;
+            mBuffer = buffer;
+        }
+    }
 
     SharedMemType mType;
     native_handle_t* mNativeHandle;