blob: 4c54e3b12ed4bd14abe2166b7f30adaa5778fc33 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/1.2/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>
namespace {
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
} // namespace
namespace android::nn {
namespace {
constexpr auto validOperandType(nn::OperandType operandType) {
switch (operandType) {
case nn::OperandType::FLOAT32:
case nn::OperandType::INT32:
case nn::OperandType::UINT32:
case nn::OperandType::TENSOR_FLOAT32:
case nn::OperandType::TENSOR_INT32:
case nn::OperandType::TENSOR_QUANT8_ASYMM:
case nn::OperandType::BOOL:
case nn::OperandType::TENSOR_QUANT16_SYMM:
case nn::OperandType::TENSOR_FLOAT16:
case nn::OperandType::TENSOR_BOOL8:
case nn::OperandType::FLOAT16:
case nn::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case nn::OperandType::TENSOR_QUANT16_ASYMM:
case nn::OperandType::TENSOR_QUANT8_SYMM:
case nn::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case nn::OperandType::SUBGRAPH:
case nn::OperandType::OEM:
case nn::OperandType::TENSOR_OEM_BYTE:
return true;
}
return nn::isExtension(operandType);
}
using hardware::hidl_vec;
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
Result<std::vector<ConvertOutput<Type>>> convertVec(const hidl_vec<Type>& arguments) {
std::vector<ConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::convert(argument)));
}
return canonical;
}
template <typename Type>
Result<std::vector<ConvertOutput<Type>>> convert(const hidl_vec<Type>& arguments) {
return convertVec(arguments);
}
} // anonymous namespace
Result<OperandType> convert(const hal::V1_3::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
Result<OperationType> convert(const hal::V1_3::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
Result<Priority> convert(const hal::V1_3::Priority& priority) {
return static_cast<Priority>(priority);
}
Result<Capabilities> convert(const hal::V1_3::Capabilities& capabilities) {
const bool validOperandTypes = std::all_of(
capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
[](const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
const auto maybeType = convert(operandPerformance.type);
return !maybeType.has_value() ? false : validOperandType(maybeType.value());
});
if (!validOperandTypes) {
return NN_ERROR()
<< "Invalid OperandType when converting OperandPerformance in Capabilities";
}
auto operandPerformance = NN_TRY(convert(capabilities.operandPerformance));
auto table =
NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = std::move(table),
.ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
};
}
Result<Capabilities::OperandPerformance> convert(
const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(convert(operandPerformance.type)),
.info = NN_TRY(convert(operandPerformance.info)),
};
}
Result<Operation> convert(const hal::V1_3::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
Result<Operand::LifeTime> convert(const hal::V1_3::OperandLifeTime& operandLifeTime) {
return static_cast<Operand::LifeTime>(operandLifeTime);
}
Result<Operand> convert(const hal::V1_3::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
.extraParams = NN_TRY(convert(operand.extraParams)),
};
}
Result<Model> convert(const hal::V1_3::Model& model) {
return Model{
.main = NN_TRY(convert(model.main)),
.referenced = NN_TRY(convert(model.referenced)),
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
};
}
Result<Model::Subgraph> convert(const hal::V1_3::Subgraph& subgraph) {
auto operations = NN_TRY(convert(subgraph.operations));
// Verify number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(subgraph.operands.size(), operations);
CHECK(subgraph.operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < subgraph.operands.size(); ++i) {
if (subgraph.operands[i].numberOfConsumers != numberOfConsumers[i]) {
return NN_ERROR() << "Invalid numberOfConsumers for operand " << i << ", expected "
<< numberOfConsumers[i] << " but found "
<< subgraph.operands[i].numberOfConsumers;
}
}
return Model::Subgraph{
.operands = NN_TRY(convert(subgraph.operands)),
.operations = std::move(operations),
.inputIndexes = subgraph.inputIndexes,
.outputIndexes = subgraph.outputIndexes,
};
}
Result<BufferDesc> convert(const hal::V1_3::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = bufferDesc.dimensions};
}
Result<BufferRole> convert(const hal::V1_3::BufferRole& bufferRole) {
return BufferRole{
.modelIndex = bufferRole.modelIndex,
.ioIndex = bufferRole.ioIndex,
.frequency = bufferRole.frequency,
};
}
Result<Request> convert(const hal::V1_3::Request& request) {
return Request{
.inputs = NN_TRY(convert(request.inputs)),
.outputs = NN_TRY(convert(request.outputs)),
.pools = NN_TRY(convert(request.pools)),
};
}
Result<Request::MemoryPool> convert(const hal::V1_3::Request::MemoryPool& memoryPool) {
using Discriminator = hal::V1_3::Request::MemoryPool::hidl_discriminator;
switch (memoryPool.getDiscriminator()) {
case Discriminator::hidlMemory:
return createSharedMemoryFromHidlMemory(memoryPool.hidlMemory());
case Discriminator::token:
return static_cast<Request::MemoryDomainToken>(memoryPool.token());
}
return NN_ERROR() << "Invalid Request::MemoryPool discriminator "
<< underlyingType(memoryPool.getDiscriminator());
}
Result<OptionalTimePoint> convert(const hal::V1_3::OptionalTimePoint& optionalTimePoint) {
constexpr auto kTimePointMaxCount = TimePoint::max().time_since_epoch().count();
const auto makeTimePoint = [](uint64_t count) -> Result<OptionalTimePoint> {
if (count > kTimePointMaxCount) {
return NN_ERROR()
<< "Unable to convert OptionalTimePoint because the count exceeds the max";
}
const auto nanoseconds = std::chrono::nanoseconds{count};
return TimePoint{nanoseconds};
};
using Discriminator = hal::V1_3::OptionalTimePoint::hidl_discriminator;
switch (optionalTimePoint.getDiscriminator()) {
case Discriminator::none:
return std::nullopt;
case Discriminator::nanosecondsSinceEpoch:
return makeTimePoint(optionalTimePoint.nanosecondsSinceEpoch());
}
return NN_ERROR() << "Invalid OptionalTimePoint discriminator "
<< underlyingType(optionalTimePoint.getDiscriminator());
}
Result<OptionalTimeoutDuration> convert(
const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration) {
constexpr auto kTimeoutDurationMaxCount = TimeoutDuration::max().count();
const auto makeTimeoutDuration = [](uint64_t count) -> Result<OptionalTimeoutDuration> {
if (count > kTimeoutDurationMaxCount) {
return NN_ERROR()
<< "Unable to convert OptionalTimeoutDuration because the count exceeds the max";
}
return TimeoutDuration{count};
};
using Discriminator = hal::V1_3::OptionalTimeoutDuration::hidl_discriminator;
switch (optionalTimeoutDuration.getDiscriminator()) {
case Discriminator::none:
return std::nullopt;
case Discriminator::nanoseconds:
return makeTimeoutDuration(optionalTimeoutDuration.nanoseconds());
}
return NN_ERROR() << "Invalid OptionalTimeoutDuration discriminator "
<< underlyingType(optionalTimeoutDuration.getDiscriminator());
}
Result<ErrorStatus> convert(const hal::V1_3::ErrorStatus& status) {
switch (status) {
case hal::V1_3::ErrorStatus::NONE:
case hal::V1_3::ErrorStatus::DEVICE_UNAVAILABLE:
case hal::V1_3::ErrorStatus::GENERAL_FAILURE:
case hal::V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case hal::V1_3::ErrorStatus::INVALID_ARGUMENT:
case hal::V1_3::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case hal::V1_3::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(status);
}
return NN_ERROR() << "Invalid ErrorStatus " << underlyingType(status);
}
Result<std::vector<BufferRole>> convert(
const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles) {
return convertVec(bufferRoles);
}
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_3::utils {
namespace {
using utils::convert;
nn::Result<V1_0::PerformanceInfo> convert(
const nn::Capabilities::PerformanceInfo& performanceInfo) {
return V1_0::utils::convert(performanceInfo);
}
nn::Result<V1_0::DataLocation> convert(const nn::DataLocation& dataLocation) {
return V1_0::utils::convert(dataLocation);
}
nn::Result<hidl_vec<uint8_t>> convert(const nn::Model::OperandValues& operandValues) {
return V1_0::utils::convert(operandValues);
}
nn::Result<hidl_memory> convert(const nn::Memory& memory) {
return V1_0::utils::convert(memory);
}
nn::Result<V1_0::RequestArgument> convert(const nn::Request::Argument& argument) {
return V1_0::utils::convert(argument);
}
nn::Result<V1_2::Operand::ExtraParams> convert(const nn::Operand::ExtraParams& extraParams) {
return V1_2::utils::convert(extraParams);
}
nn::Result<V1_2::Model::ExtensionNameAndPrefix> convert(
const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return V1_2::utils::convert(extensionNameAndPrefix);
}
template <typename Input>
using ConvertOutput = std::decay_t<decltype(convert(std::declval<Input>()).value())>;
template <typename Type>
nn::Result<hidl_vec<ConvertOutput<Type>>> convertVec(const std::vector<Type>& arguments) {
hidl_vec<ConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(convert(arguments[i]));
}
return halObject;
}
template <typename Type>
nn::Result<hidl_vec<ConvertOutput<Type>>> convert(const std::vector<Type>& arguments) {
return convertVec(arguments);
}
nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Memory& memory) {
Request::MemoryPool ret;
ret.hidlMemory(NN_TRY(convert(memory)));
return ret;
}
nn::Result<Request::MemoryPool> makeMemoryPool(const nn::Request::MemoryDomainToken& token) {
Request::MemoryPool ret;
ret.token(underlyingType(token));
return ret;
}
nn::Result<Request::MemoryPool> makeMemoryPool(
const std::shared_ptr<const nn::IBuffer>& /*buffer*/) {
return NN_ERROR() << "Unable to make memory pool from IBuffer";
}
} // anonymous namespace
nn::Result<OperandType> convert(const nn::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
nn::Result<OperationType> convert(const nn::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
nn::Result<Priority> convert(const nn::Priority& priority) {
return static_cast<Priority>(priority);
}
nn::Result<Capabilities> convert(const nn::Capabilities& capabilities) {
std::vector<nn::Capabilities::OperandPerformance> operandPerformance;
operandPerformance.reserve(capabilities.operandPerformance.asVector().size());
std::copy_if(capabilities.operandPerformance.asVector().begin(),
capabilities.operandPerformance.asVector().end(),
std::back_inserter(operandPerformance),
[](const nn::Capabilities::OperandPerformance& operandPerformance) {
return nn::validOperandType(operandPerformance.type);
});
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor =
NN_TRY(convert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = NN_TRY(convert(operandPerformance)),
.ifPerformance = NN_TRY(convert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(convert(capabilities.whilePerformance)),
};
}
nn::Result<Capabilities::OperandPerformance> convert(
const nn::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(convert(operandPerformance.type)),
.info = NN_TRY(convert(operandPerformance.info)),
};
}
nn::Result<Operation> convert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(convert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
nn::Result<OperandLifeTime> convert(const nn::Operand::LifeTime& operandLifeTime) {
if (operandLifeTime == nn::Operand::LifeTime::POINTER) {
return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
}
return static_cast<OperandLifeTime>(operandLifeTime);
}
nn::Result<Operand> convert(const nn::Operand& operand) {
return Operand{
.type = NN_TRY(convert(operand.type)),
.dimensions = operand.dimensions,
.numberOfConsumers = 0,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(convert(operand.lifetime)),
.location = NN_TRY(convert(operand.location)),
.extraParams = NN_TRY(convert(operand.extraParams)),
};
}
nn::Result<Model> convert(const nn::Model& model) {
if (!hal::utils::hasNoPointerData(model)) {
return NN_ERROR() << "Model cannot be converted because it contains pointer-based memory";
}
return Model{
.main = NN_TRY(convert(model.main)),
.referenced = NN_TRY(convert(model.referenced)),
.operandValues = NN_TRY(convert(model.operandValues)),
.pools = NN_TRY(convert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(convert(model.extensionNameToPrefix)),
};
}
nn::Result<Subgraph> convert(const nn::Model::Subgraph& subgraph) {
auto operands = NN_TRY(convert(subgraph.operands));
// Update number of consumers.
const auto numberOfConsumers =
hal::utils::countNumberOfConsumers(operands.size(), subgraph.operations);
CHECK(operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < operands.size(); ++i) {
operands[i].numberOfConsumers = numberOfConsumers[i];
}
return Subgraph{
.operands = std::move(operands),
.operations = NN_TRY(convert(subgraph.operations)),
.inputIndexes = subgraph.inputIndexes,
.outputIndexes = subgraph.outputIndexes,
};
}
nn::Result<BufferDesc> convert(const nn::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = bufferDesc.dimensions};
}
nn::Result<BufferRole> convert(const nn::BufferRole& bufferRole) {
return BufferRole{
.modelIndex = bufferRole.modelIndex,
.ioIndex = bufferRole.ioIndex,
.frequency = bufferRole.frequency,
};
}
nn::Result<Request> convert(const nn::Request& request) {
if (!hal::utils::hasNoPointerData(request)) {
return NN_ERROR() << "Request cannot be converted because it contains pointer-based memory";
}
return Request{
.inputs = NN_TRY(convert(request.inputs)),
.outputs = NN_TRY(convert(request.outputs)),
.pools = NN_TRY(convert(request.pools)),
};
}
nn::Result<Request::MemoryPool> convert(const nn::Request::MemoryPool& memoryPool) {
return std::visit([](const auto& o) { return makeMemoryPool(o); }, memoryPool);
}
nn::Result<OptionalTimePoint> convert(const nn::OptionalTimePoint& optionalTimePoint) {
OptionalTimePoint ret;
if (optionalTimePoint.has_value()) {
const auto count = optionalTimePoint.value().time_since_epoch().count();
if (count < 0) {
return NN_ERROR() << "Unable to convert OptionalTimePoint because time since epoch "
"count is negative";
}
ret.nanosecondsSinceEpoch(count);
}
return ret;
}
nn::Result<OptionalTimeoutDuration> convert(
const nn::OptionalTimeoutDuration& optionalTimeoutDuration) {
OptionalTimeoutDuration ret;
if (optionalTimeoutDuration.has_value()) {
const auto count = optionalTimeoutDuration.value().count();
if (count < 0) {
return NN_ERROR()
<< "Unable to convert OptionalTimeoutDuration because count is negative";
}
ret.nanoseconds(count);
}
return ret;
}
nn::Result<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
switch (errorStatus) {
case nn::ErrorStatus::NONE:
case nn::ErrorStatus::DEVICE_UNAVAILABLE:
case nn::ErrorStatus::GENERAL_FAILURE:
case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case nn::ErrorStatus::INVALID_ARGUMENT:
case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(errorStatus);
default:
return ErrorStatus::GENERAL_FAILURE;
}
}
nn::Result<hidl_vec<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles) {
return convertVec(bufferRoles);
}
} // namespace android::hardware::neuralnetworks::V1_3::utils