blob: 3bd05570f612e6b82b630f97e8d9362158c7c09d [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <android-base/logging.h>
#include <android-base/unique_fd.h>
#include <cutils/properties.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include "hidl_return_util.h"
#include "hidl_struct_util.h"
#include "wifi_chip.h"
#include "wifi_status_util.h"
namespace {
using android::base::unique_fd;
using android::hardware::hidl_string;
using android::hardware::hidl_vec;
using android::hardware::wifi::V1_0::ChipModeId;
using android::hardware::wifi::V1_0::IfaceType;
using android::hardware::wifi::V1_0::IWifiChip;
using android::sp;
constexpr ChipModeId kInvalidModeId = UINT32_MAX;
// These mode ID's should be unique (even across combo versions). Refer to
// handleChipConfiguration() for it's usage.
// Mode ID's for V1
constexpr ChipModeId kV1StaChipModeId = 0;
constexpr ChipModeId kV1ApChipModeId = 1;
// Mode ID for V2
constexpr ChipModeId kV2ChipModeId = 2;
constexpr char kCpioMagic[] = "070701";
constexpr size_t kMaxBufferSizeBytes = 1024 * 1024;
constexpr uint32_t kMaxRingBufferFileAgeSeconds = 60 * 60;
constexpr uint32_t kMaxRingBufferFileNum = 20;
constexpr char kTombstoneFolderPath[] = "/data/vendor/tombstones/wifi/";
template <typename Iface>
void invalidateAndClear(std::vector<sp<Iface>>& ifaces, sp<Iface> iface) {
iface->invalidate();
ifaces.erase(std::remove(ifaces.begin(), ifaces.end(), iface),
ifaces.end());
}
template <typename Iface>
void invalidateAndClearAll(std::vector<sp<Iface>>& ifaces) {
for (const auto& iface : ifaces) {
iface->invalidate();
}
ifaces.clear();
}
template <typename Iface>
std::vector<hidl_string> getNames(std::vector<sp<Iface>>& ifaces) {
std::vector<hidl_string> names;
for (const auto& iface : ifaces) {
names.emplace_back(iface->getName());
}
return names;
}
template <typename Iface>
sp<Iface> findUsingName(std::vector<sp<Iface>>& ifaces,
const std::string& name) {
std::vector<hidl_string> names;
for (const auto& iface : ifaces) {
if (name == iface->getName()) {
return iface;
}
}
return nullptr;
}
std::string getWlan0IfaceName() {
std::array<char, PROPERTY_VALUE_MAX> buffer;
property_get("wifi.interface", buffer.data(), "wlan0");
return buffer.data();
}
std::string getWlan1IfaceName() {
std::array<char, PROPERTY_VALUE_MAX> buffer;
property_get("wifi.concurrent.interface", buffer.data(), "wlan1");
return buffer.data();
}
std::string getP2pIfaceName() {
std::array<char, PROPERTY_VALUE_MAX> buffer;
property_get("wifi.direct.interface", buffer.data(), "p2p0");
return buffer.data();
}
// delete files that meet either conditions:
// 1. older than a predefined time in the wifi tombstone dir.
// 2. Files in excess to a predefined amount, starting from the oldest ones
bool removeOldFilesInternal() {
time_t now = time(0);
const time_t delete_files_before = now - kMaxRingBufferFileAgeSeconds;
DIR* dir_dump = opendir(kTombstoneFolderPath);
if (!dir_dump) {
LOG(ERROR) << "Failed to open directory: " << strerror(errno);
return false;
}
unique_fd dir_auto_closer(dirfd(dir_dump));
struct dirent* dp;
bool success = true;
std::list<std::pair<const time_t, std::string>> valid_files;
while ((dp = readdir(dir_dump))) {
if (dp->d_type != DT_REG) {
continue;
}
std::string cur_file_name(dp->d_name);
struct stat cur_file_stat;
std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
if (stat(cur_file_path.c_str(), &cur_file_stat) == -1) {
LOG(ERROR) << "Failed to get file stat for " << cur_file_path
<< ": " << strerror(errno);
success = false;
continue;
}
const time_t cur_file_time = cur_file_stat.st_mtime;
valid_files.push_back(
std::pair<const time_t, std::string>(cur_file_time, cur_file_path));
}
valid_files.sort(); // sort the list of files by last modified time from
// small to big.
uint32_t cur_file_count = valid_files.size();
for (auto cur_file : valid_files) {
if (cur_file_count > kMaxRingBufferFileNum ||
cur_file.first < delete_files_before) {
if (unlink(cur_file.second.c_str()) != 0) {
LOG(ERROR) << "Error deleting file " << strerror(errno);
success = false;
}
cur_file_count--;
} else {
break;
}
}
return success;
}
// Helper function for |cpioArchiveFilesInDir|
bool cpioWriteHeader(int out_fd, struct stat& st, const char* file_name,
size_t file_name_len) {
std::array<char, 32 * 1024> read_buf;
ssize_t llen =
sprintf(read_buf.data(),
"%s%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X",
kCpioMagic, static_cast<int>(st.st_ino), st.st_mode, st.st_uid,
st.st_gid, static_cast<int>(st.st_nlink),
static_cast<int>(st.st_mtime), static_cast<int>(st.st_size),
major(st.st_dev), minor(st.st_dev), major(st.st_rdev),
minor(st.st_rdev), static_cast<uint32_t>(file_name_len), 0);
if (write(out_fd, read_buf.data(), llen) == -1) {
LOG(ERROR) << "Error writing cpio header to file " << file_name << " "
<< strerror(errno);
return false;
}
if (write(out_fd, file_name, file_name_len) == -1) {
LOG(ERROR) << "Error writing filename to file " << file_name << " "
<< strerror(errno);
return false;
}
// NUL Pad header up to 4 multiple bytes.
llen = (llen + file_name_len) % 4;
if (llen != 0) {
const uint32_t zero = 0;
if (write(out_fd, &zero, 4 - llen) == -1) {
LOG(ERROR) << "Error padding 0s to file " << file_name << " "
<< strerror(errno);
return false;
}
}
return true;
}
// Helper function for |cpioArchiveFilesInDir|
size_t cpioWriteFileContent(int fd_read, int out_fd, struct stat& st) {
// writing content of file
std::array<char, 32 * 1024> read_buf;
ssize_t llen = st.st_size;
size_t n_error = 0;
while (llen > 0) {
ssize_t bytes_read = read(fd_read, read_buf.data(), read_buf.size());
if (bytes_read == -1) {
LOG(ERROR) << "Error reading file " << strerror(errno);
return ++n_error;
}
llen -= bytes_read;
if (write(out_fd, read_buf.data(), bytes_read) == -1) {
LOG(ERROR) << "Error writing data to file " << strerror(errno);
return ++n_error;
}
if (bytes_read == 0) { // this should never happen, but just in case
// to unstuck from while loop
LOG(ERROR) << "Unexpected read result for " << strerror(errno);
n_error++;
break;
}
}
llen = st.st_size % 4;
if (llen != 0) {
const uint32_t zero = 0;
if (write(out_fd, &zero, 4 - llen) == -1) {
LOG(ERROR) << "Error padding 0s to file " << strerror(errno);
return ++n_error;
}
}
return n_error;
}
// Helper function for |cpioArchiveFilesInDir|
bool cpioWriteFileTrailer(int out_fd) {
std::array<char, 4096> read_buf;
read_buf.fill(0);
if (write(out_fd, read_buf.data(),
sprintf(read_buf.data(), "070701%040X%056X%08XTRAILER!!!", 1,
0x0b, 0) +
4) == -1) {
LOG(ERROR) << "Error writing trailing bytes " << strerror(errno);
return false;
}
return true;
}
// Archives all files in |input_dir| and writes result into |out_fd|
// Logic obtained from //external/toybox/toys/posix/cpio.c "Output cpio archive"
// portion
size_t cpioArchiveFilesInDir(int out_fd, const char* input_dir) {
struct dirent* dp;
size_t n_error = 0;
DIR* dir_dump = opendir(input_dir);
if (!dir_dump) {
LOG(ERROR) << "Failed to open directory: " << strerror(errno);
return ++n_error;
}
unique_fd dir_auto_closer(dirfd(dir_dump));
while ((dp = readdir(dir_dump))) {
if (dp->d_type != DT_REG) {
continue;
}
std::string cur_file_name(dp->d_name);
// string.size() does not include the null terminator. The cpio FreeBSD
// file header expects the null character to be included in the length.
const size_t file_name_len = cur_file_name.size() + 1;
struct stat st;
const std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
if (stat(cur_file_path.c_str(), &st) == -1) {
LOG(ERROR) << "Failed to get file stat for " << cur_file_path
<< ": " << strerror(errno);
n_error++;
continue;
}
const int fd_read = open(cur_file_path.c_str(), O_RDONLY);
if (fd_read == -1) {
LOG(ERROR) << "Failed to open file " << cur_file_path << " "
<< strerror(errno);
n_error++;
continue;
}
unique_fd file_auto_closer(fd_read);
if (!cpioWriteHeader(out_fd, st, cur_file_name.c_str(),
file_name_len)) {
return ++n_error;
}
size_t write_error = cpioWriteFileContent(fd_read, out_fd, st);
if (write_error) {
return n_error + write_error;
}
}
if (!cpioWriteFileTrailer(out_fd)) {
return ++n_error;
}
return n_error;
}
// Helper function to create a non-const char*.
std::vector<char> makeCharVec(const std::string& str) {
std::vector<char> vec(str.size() + 1);
vec.assign(str.begin(), str.end());
vec.push_back('\0');
return vec;
}
} // namespace
namespace android {
namespace hardware {
namespace wifi {
namespace V1_2 {
namespace implementation {
using hidl_return_util::validateAndCall;
using hidl_return_util::validateAndCallWithLock;
WifiChip::WifiChip(
ChipId chip_id, const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,
const std::weak_ptr<mode_controller::WifiModeController> mode_controller,
const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags)
: chip_id_(chip_id),
legacy_hal_(legacy_hal),
mode_controller_(mode_controller),
feature_flags_(feature_flags),
is_valid_(true),
current_mode_id_(kInvalidModeId),
debug_ring_buffer_cb_registered_(false) {
populateModes();
}
void WifiChip::invalidate() {
if (!writeRingbufferFilesInternal()) {
LOG(ERROR) << "Error writing files to flash";
}
invalidateAndRemoveAllIfaces();
legacy_hal_.reset();
event_cb_handler_.invalidate();
is_valid_ = false;
}
bool WifiChip::isValid() { return is_valid_; }
std::set<sp<IWifiChipEventCallback>> WifiChip::getEventCallbacks() {
return event_cb_handler_.getCallbacks();
}
Return<void> WifiChip::getId(getId_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getIdInternal, hidl_status_cb);
}
Return<void> WifiChip::registerEventCallback(
const sp<V1_0::IWifiChipEventCallback>& event_callback,
registerEventCallback_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::registerEventCallbackInternal,
hidl_status_cb, event_callback);
}
Return<void> WifiChip::getCapabilities(getCapabilities_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getCapabilitiesInternal, hidl_status_cb);
}
Return<void> WifiChip::getAvailableModes(getAvailableModes_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getAvailableModesInternal,
hidl_status_cb);
}
Return<void> WifiChip::configureChip(ChipModeId mode_id,
configureChip_cb hidl_status_cb) {
return validateAndCallWithLock(
this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::configureChipInternal, hidl_status_cb, mode_id);
}
Return<void> WifiChip::getMode(getMode_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getModeInternal, hidl_status_cb);
}
Return<void> WifiChip::requestChipDebugInfo(
requestChipDebugInfo_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::requestChipDebugInfoInternal,
hidl_status_cb);
}
Return<void> WifiChip::requestDriverDebugDump(
requestDriverDebugDump_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::requestDriverDebugDumpInternal,
hidl_status_cb);
}
Return<void> WifiChip::requestFirmwareDebugDump(
requestFirmwareDebugDump_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::requestFirmwareDebugDumpInternal,
hidl_status_cb);
}
Return<void> WifiChip::createApIface(createApIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createApIfaceInternal, hidl_status_cb);
}
Return<void> WifiChip::getApIfaceNames(getApIfaceNames_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getApIfaceNamesInternal, hidl_status_cb);
}
Return<void> WifiChip::getApIface(const hidl_string& ifname,
getApIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getApIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::removeApIface(const hidl_string& ifname,
removeApIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeApIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::createNanIface(createNanIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createNanIfaceInternal, hidl_status_cb);
}
Return<void> WifiChip::getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getNanIfaceNamesInternal, hidl_status_cb);
}
Return<void> WifiChip::getNanIface(const hidl_string& ifname,
getNanIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getNanIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::removeNanIface(const hidl_string& ifname,
removeNanIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeNanIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::createP2pIface(createP2pIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createP2pIfaceInternal, hidl_status_cb);
}
Return<void> WifiChip::getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getP2pIfaceNamesInternal, hidl_status_cb);
}
Return<void> WifiChip::getP2pIface(const hidl_string& ifname,
getP2pIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getP2pIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::removeP2pIface(const hidl_string& ifname,
removeP2pIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeP2pIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::createStaIface(createStaIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createStaIfaceInternal, hidl_status_cb);
}
Return<void> WifiChip::getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getStaIfaceNamesInternal, hidl_status_cb);
}
Return<void> WifiChip::getStaIface(const hidl_string& ifname,
getStaIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getStaIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::removeStaIface(const hidl_string& ifname,
removeStaIface_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeStaIfaceInternal, hidl_status_cb,
ifname);
}
Return<void> WifiChip::createRttController(
const sp<IWifiIface>& bound_iface, createRttController_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createRttControllerInternal,
hidl_status_cb, bound_iface);
}
Return<void> WifiChip::getDebugRingBuffersStatus(
getDebugRingBuffersStatus_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getDebugRingBuffersStatusInternal,
hidl_status_cb);
}
Return<void> WifiChip::startLoggingToDebugRingBuffer(
const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes,
startLoggingToDebugRingBuffer_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::startLoggingToDebugRingBufferInternal,
hidl_status_cb, ring_name, verbose_level,
max_interval_in_sec, min_data_size_in_bytes);
}
Return<void> WifiChip::forceDumpToDebugRingBuffer(
const hidl_string& ring_name,
forceDumpToDebugRingBuffer_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::forceDumpToDebugRingBufferInternal,
hidl_status_cb, ring_name);
}
Return<void> WifiChip::stopLoggingToDebugRingBuffer(
stopLoggingToDebugRingBuffer_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::stopLoggingToDebugRingBufferInternal,
hidl_status_cb);
}
Return<void> WifiChip::getDebugHostWakeReasonStats(
getDebugHostWakeReasonStats_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getDebugHostWakeReasonStatsInternal,
hidl_status_cb);
}
Return<void> WifiChip::enableDebugErrorAlerts(
bool enable, enableDebugErrorAlerts_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::enableDebugErrorAlertsInternal,
hidl_status_cb, enable);
}
Return<void> WifiChip::selectTxPowerScenario(
V1_1::IWifiChip::TxPowerScenario scenario, selectTxPowerScenario_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::selectTxPowerScenarioInternal,
hidl_status_cb, scenario);
}
Return<void> WifiChip::resetTxPowerScenario(
resetTxPowerScenario_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::resetTxPowerScenarioInternal,
hidl_status_cb);
}
Return<void> WifiChip::registerEventCallback_1_2(
const sp<IWifiChipEventCallback>& event_callback,
registerEventCallback_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::registerEventCallbackInternal_1_2,
hidl_status_cb, event_callback);
}
Return<void> WifiChip::selectTxPowerScenario_1_2(
TxPowerScenario scenario, selectTxPowerScenario_cb hidl_status_cb) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::selectTxPowerScenarioInternal_1_2, hidl_status_cb, scenario);
}
Return<void> WifiChip::debug(const hidl_handle& handle,
const hidl_vec<hidl_string>&) {
if (handle != nullptr && handle->numFds >= 1) {
int fd = handle->data[0];
if (!writeRingbufferFilesInternal()) {
LOG(ERROR) << "Error writing files to flash";
}
uint32_t n_error = cpioArchiveFilesInDir(fd, kTombstoneFolderPath);
if (n_error != 0) {
LOG(ERROR) << n_error << " errors occured in cpio function";
}
fsync(fd);
} else {
LOG(ERROR) << "File handle error";
}
return Void();
}
void WifiChip::invalidateAndRemoveAllIfaces() {
invalidateAndClearAll(ap_ifaces_);
invalidateAndClearAll(nan_ifaces_);
invalidateAndClearAll(p2p_ifaces_);
invalidateAndClearAll(sta_ifaces_);
// Since all the ifaces are invalid now, all RTT controller objects
// using those ifaces also need to be invalidated.
for (const auto& rtt : rtt_controllers_) {
rtt->invalidate();
}
rtt_controllers_.clear();
}
std::pair<WifiStatus, ChipId> WifiChip::getIdInternal() {
return {createWifiStatus(WifiStatusCode::SUCCESS), chip_id_};
}
WifiStatus WifiChip::registerEventCallbackInternal(
const sp<V1_0::IWifiChipEventCallback>& /* event_callback */) {
// Deprecated support for this callback.
return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
}
std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal() {
legacy_hal::wifi_error legacy_status;
uint32_t legacy_feature_set;
uint32_t legacy_logger_feature_set;
std::tie(legacy_status, legacy_feature_set) =
legacy_hal_.lock()->getSupportedFeatureSet(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
return {createWifiStatusFromLegacyError(legacy_status), 0};
}
std::tie(legacy_status, legacy_logger_feature_set) =
legacy_hal_.lock()->getLoggerSupportedFeatureSet(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
// some devices don't support querying logger feature set
legacy_logger_feature_set = 0;
}
uint32_t hidl_caps;
if (!hidl_struct_util::convertLegacyFeaturesToHidlChipCapabilities(
legacy_feature_set, legacy_logger_feature_set, &hidl_caps)) {
return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), 0};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_caps};
}
std::pair<WifiStatus, std::vector<IWifiChip::ChipMode>>
WifiChip::getAvailableModesInternal() {
return {createWifiStatus(WifiStatusCode::SUCCESS), modes_};
}
WifiStatus WifiChip::configureChipInternal(
/* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
ChipModeId mode_id) {
if (!isValidModeId(mode_id)) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
if (mode_id == current_mode_id_) {
LOG(DEBUG) << "Already in the specified mode " << mode_id;
return createWifiStatus(WifiStatusCode::SUCCESS);
}
WifiStatus status = handleChipConfiguration(lock, mode_id);
if (status.code != WifiStatusCode::SUCCESS) {
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onChipReconfigureFailure(status).isOk()) {
LOG(ERROR)
<< "Failed to invoke onChipReconfigureFailure callback";
}
}
return status;
}
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onChipReconfigured(mode_id).isOk()) {
LOG(ERROR) << "Failed to invoke onChipReconfigured callback";
}
}
current_mode_id_ = mode_id;
LOG(INFO) << "Configured chip in mode " << mode_id;
return status;
}
std::pair<WifiStatus, uint32_t> WifiChip::getModeInternal() {
if (!isValidModeId(current_mode_id_)) {
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE),
current_mode_id_};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), current_mode_id_};
}
std::pair<WifiStatus, IWifiChip::ChipDebugInfo>
WifiChip::requestChipDebugInfoInternal() {
IWifiChip::ChipDebugInfo result;
legacy_hal::wifi_error legacy_status;
std::string driver_desc;
std::tie(legacy_status, driver_desc) =
legacy_hal_.lock()->getDriverVersion(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get driver version: "
<< legacyErrorToString(legacy_status);
WifiStatus status = createWifiStatusFromLegacyError(
legacy_status, "failed to get driver version");
return {status, result};
}
result.driverDescription = driver_desc.c_str();
std::string firmware_desc;
std::tie(legacy_status, firmware_desc) =
legacy_hal_.lock()->getFirmwareVersion(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get firmware version: "
<< legacyErrorToString(legacy_status);
WifiStatus status = createWifiStatusFromLegacyError(
legacy_status, "failed to get firmware version");
return {status, result};
}
result.firmwareDescription = firmware_desc.c_str();
return {createWifiStatus(WifiStatusCode::SUCCESS), result};
}
std::pair<WifiStatus, std::vector<uint8_t>>
WifiChip::requestDriverDebugDumpInternal() {
legacy_hal::wifi_error legacy_status;
std::vector<uint8_t> driver_dump;
std::tie(legacy_status, driver_dump) =
legacy_hal_.lock()->requestDriverMemoryDump(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get driver debug dump: "
<< legacyErrorToString(legacy_status);
return {createWifiStatusFromLegacyError(legacy_status),
std::vector<uint8_t>()};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), driver_dump};
}
std::pair<WifiStatus, std::vector<uint8_t>>
WifiChip::requestFirmwareDebugDumpInternal() {
legacy_hal::wifi_error legacy_status;
std::vector<uint8_t> firmware_dump;
std::tie(legacy_status, firmware_dump) =
legacy_hal_.lock()->requestFirmwareMemoryDump(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get firmware debug dump: "
<< legacyErrorToString(legacy_status);
return {createWifiStatusFromLegacyError(legacy_status), {}};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), firmware_dump};
}
std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::createApIfaceInternal() {
if (!canCurrentModeSupportIfaceOfType(IfaceType::AP)) {
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
}
std::string ifname = allocateApOrStaIfaceName();
sp<WifiApIface> iface = new WifiApIface(ifname, legacy_hal_);
ap_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::AP, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
std::pair<WifiStatus, std::vector<hidl_string>>
WifiChip::getApIfaceNamesInternal() {
if (ap_ifaces_.empty()) {
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(ap_ifaces_)};
}
std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::getApIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(ap_ifaces_, ifname);
if (!iface.get()) {
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
WifiStatus WifiChip::removeApIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(ap_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
invalidateAndClear(ap_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::AP, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
}
}
return createWifiStatus(WifiStatusCode::SUCCESS);
}
std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::createNanIfaceInternal() {
if (!canCurrentModeSupportIfaceOfType(IfaceType::NAN)) {
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
}
// These are still assumed to be based on wlan0.
std::string ifname = getWlan0IfaceName();
sp<WifiNanIface> iface = new WifiNanIface(ifname, legacy_hal_);
nan_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::NAN, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
std::pair<WifiStatus, std::vector<hidl_string>>
WifiChip::getNanIfaceNamesInternal() {
if (nan_ifaces_.empty()) {
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(nan_ifaces_)};
}
std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::getNanIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(nan_ifaces_, ifname);
if (!iface.get()) {
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
WifiStatus WifiChip::removeNanIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(nan_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
invalidateAndClear(nan_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::NAN, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return createWifiStatus(WifiStatusCode::SUCCESS);
}
std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::createP2pIfaceInternal() {
if (!canCurrentModeSupportIfaceOfType(IfaceType::P2P)) {
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
}
std::string ifname = getP2pIfaceName();
sp<WifiP2pIface> iface = new WifiP2pIface(ifname, legacy_hal_);
p2p_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::P2P, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
std::pair<WifiStatus, std::vector<hidl_string>>
WifiChip::getP2pIfaceNamesInternal() {
if (p2p_ifaces_.empty()) {
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(p2p_ifaces_)};
}
std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::getP2pIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(p2p_ifaces_, ifname);
if (!iface.get()) {
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
WifiStatus WifiChip::removeP2pIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(p2p_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
invalidateAndClear(p2p_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::P2P, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
}
}
return createWifiStatus(WifiStatusCode::SUCCESS);
}
std::pair<WifiStatus, sp<IWifiStaIface>> WifiChip::createStaIfaceInternal() {
if (!canCurrentModeSupportIfaceOfType(IfaceType::STA)) {
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
}
std::string ifname = allocateApOrStaIfaceName();
sp<WifiStaIface> iface = new WifiStaIface(ifname, legacy_hal_);
sta_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::STA, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
std::pair<WifiStatus, std::vector<hidl_string>>
WifiChip::getStaIfaceNamesInternal() {
if (sta_ifaces_.empty()) {
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(sta_ifaces_)};
}
std::pair<WifiStatus, sp<IWifiStaIface>> WifiChip::getStaIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(sta_ifaces_, ifname);
if (!iface.get()) {
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
}
WifiStatus WifiChip::removeStaIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(sta_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
invalidateAndClear(sta_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::STA, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
}
}
return createWifiStatus(WifiStatusCode::SUCCESS);
}
std::pair<WifiStatus, sp<IWifiRttController>>
WifiChip::createRttControllerInternal(const sp<IWifiIface>& bound_iface) {
sp<WifiRttController> rtt =
new WifiRttController(getWlan0IfaceName(), bound_iface, legacy_hal_);
rtt_controllers_.emplace_back(rtt);
return {createWifiStatus(WifiStatusCode::SUCCESS), rtt};
}
std::pair<WifiStatus, std::vector<WifiDebugRingBufferStatus>>
WifiChip::getDebugRingBuffersStatusInternal() {
legacy_hal::wifi_error legacy_status;
std::vector<legacy_hal::wifi_ring_buffer_status>
legacy_ring_buffer_status_vec;
std::tie(legacy_status, legacy_ring_buffer_status_vec) =
legacy_hal_.lock()->getRingBuffersStatus(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
return {createWifiStatusFromLegacyError(legacy_status), {}};
}
std::vector<WifiDebugRingBufferStatus> hidl_ring_buffer_status_vec;
if (!hidl_struct_util::convertLegacyVectorOfDebugRingBufferStatusToHidl(
legacy_ring_buffer_status_vec, &hidl_ring_buffer_status_vec)) {
return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
}
return {createWifiStatus(WifiStatusCode::SUCCESS),
hidl_ring_buffer_status_vec};
}
WifiStatus WifiChip::startLoggingToDebugRingBufferInternal(
const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes) {
WifiStatus status = registerDebugRingBufferCallback();
if (status.code != WifiStatusCode::SUCCESS) {
return status;
}
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->startRingBufferLogging(
getWlan0IfaceName(), ring_name,
static_cast<
std::underlying_type<WifiDebugRingBufferVerboseLevel>::type>(
verbose_level),
max_interval_in_sec, min_data_size_in_bytes);
ringbuffer_map_.insert(std::pair<std::string, Ringbuffer>(
ring_name, Ringbuffer(kMaxBufferSizeBytes)));
return createWifiStatusFromLegacyError(legacy_status);
}
WifiStatus WifiChip::forceDumpToDebugRingBufferInternal(
const hidl_string& ring_name) {
WifiStatus status = registerDebugRingBufferCallback();
if (status.code != WifiStatusCode::SUCCESS) {
return status;
}
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->getRingBufferData(getWlan0IfaceName(), ring_name);
return createWifiStatusFromLegacyError(legacy_status);
}
WifiStatus WifiChip::stopLoggingToDebugRingBufferInternal() {
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->deregisterRingBufferCallbackHandler(
getWlan0IfaceName());
return createWifiStatusFromLegacyError(legacy_status);
}
std::pair<WifiStatus, WifiDebugHostWakeReasonStats>
WifiChip::getDebugHostWakeReasonStatsInternal() {
legacy_hal::wifi_error legacy_status;
legacy_hal::WakeReasonStats legacy_stats;
std::tie(legacy_status, legacy_stats) =
legacy_hal_.lock()->getWakeReasonStats(getWlan0IfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
return {createWifiStatusFromLegacyError(legacy_status), {}};
}
WifiDebugHostWakeReasonStats hidl_stats;
if (!hidl_struct_util::convertLegacyWakeReasonStatsToHidl(legacy_stats,
&hidl_stats)) {
return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
}
return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_stats};
}
WifiStatus WifiChip::enableDebugErrorAlertsInternal(bool enable) {
legacy_hal::wifi_error legacy_status;
if (enable) {
android::wp<WifiChip> weak_ptr_this(this);
const auto& on_alert_callback = [weak_ptr_this](
int32_t error_code,
std::vector<uint8_t> debug_data) {
const auto shared_ptr_this = weak_ptr_this.promote();
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
LOG(ERROR) << "Callback invoked on an invalid object";
return;
}
for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
if (!callback->onDebugErrorAlert(error_code, debug_data)
.isOk()) {
LOG(ERROR) << "Failed to invoke onDebugErrorAlert callback";
}
}
};
legacy_status = legacy_hal_.lock()->registerErrorAlertCallbackHandler(
getWlan0IfaceName(), on_alert_callback);
} else {
legacy_status = legacy_hal_.lock()->deregisterErrorAlertCallbackHandler(
getWlan0IfaceName());
}
return createWifiStatusFromLegacyError(legacy_status);
}
WifiStatus WifiChip::selectTxPowerScenarioInternal(
V1_1::IWifiChip::TxPowerScenario scenario) {
auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
getWlan0IfaceName(),
hidl_struct_util::convertHidlTxPowerScenarioToLegacy(scenario));
return createWifiStatusFromLegacyError(legacy_status);
}
WifiStatus WifiChip::resetTxPowerScenarioInternal() {
auto legacy_status =
legacy_hal_.lock()->resetTxPowerScenario(getWlan0IfaceName());
return createWifiStatusFromLegacyError(legacy_status);
}
WifiStatus WifiChip::registerEventCallbackInternal_1_2(
const sp<IWifiChipEventCallback>& event_callback) {
if (!event_cb_handler_.addCallback(event_callback)) {
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
}
return createWifiStatus(WifiStatusCode::SUCCESS);
}
WifiStatus WifiChip::selectTxPowerScenarioInternal_1_2(TxPowerScenario scenario) {
auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
getWlan0IfaceName(),
hidl_struct_util::convertHidlTxPowerScenarioToLegacy_1_2(scenario));
return createWifiStatusFromLegacyError(legacy_status);
}
WifiStatus WifiChip::handleChipConfiguration(
/* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
ChipModeId mode_id) {
// If the chip is already configured in a different mode, stop
// the legacy HAL and then start it after firmware mode change.
if (isValidModeId(current_mode_id_)) {
LOG(INFO) << "Reconfiguring chip from mode " << current_mode_id_
<< " to mode " << mode_id;
invalidateAndRemoveAllIfaces();
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->stop(lock, []() {});
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to stop legacy HAL: "
<< legacyErrorToString(legacy_status);
return createWifiStatusFromLegacyError(legacy_status);
}
}
// Firmware mode change not needed for V2 devices.
bool success = true;
if (mode_id == kV1StaChipModeId) {
success = mode_controller_.lock()->changeFirmwareMode(IfaceType::STA);
} else if (mode_id == kV1ApChipModeId) {
success = mode_controller_.lock()->changeFirmwareMode(IfaceType::AP);
}
if (!success) {
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
}
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->start();
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to start legacy HAL: "
<< legacyErrorToString(legacy_status);
return createWifiStatusFromLegacyError(legacy_status);
}
// Every time the HAL is restarted, we need to register the
// radio mode change callback.
WifiStatus status = registerRadioModeChangeCallback();
if (status.code != WifiStatusCode::SUCCESS) {
// This probably is not a critical failure?
LOG(ERROR) << "Failed to register radio mode change callback";
}
return createWifiStatus(WifiStatusCode::SUCCESS);
}
WifiStatus WifiChip::registerDebugRingBufferCallback() {
if (debug_ring_buffer_cb_registered_) {
return createWifiStatus(WifiStatusCode::SUCCESS);
}
android::wp<WifiChip> weak_ptr_this(this);
const auto& on_ring_buffer_data_callback =
[weak_ptr_this](const std::string& name,
const std::vector<uint8_t>& data,
const legacy_hal::wifi_ring_buffer_status& status) {
const auto shared_ptr_this = weak_ptr_this.promote();
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
LOG(ERROR) << "Callback invoked on an invalid object";
return;
}
WifiDebugRingBufferStatus hidl_status;
if (!hidl_struct_util::convertLegacyDebugRingBufferStatusToHidl(
status, &hidl_status)) {
LOG(ERROR) << "Error converting ring buffer status";
return;
}
const auto& target = shared_ptr_this->ringbuffer_map_.find(name);
if (target != shared_ptr_this->ringbuffer_map_.end()) {
Ringbuffer& cur_buffer = target->second;
cur_buffer.append(data);
} else {
LOG(ERROR) << "Ringname " << name << " not found";
return;
}
};
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->registerRingBufferCallbackHandler(
getWlan0IfaceName(), on_ring_buffer_data_callback);
if (legacy_status == legacy_hal::WIFI_SUCCESS) {
debug_ring_buffer_cb_registered_ = true;
}
return createWifiStatusFromLegacyError(legacy_status);
}
WifiStatus WifiChip::registerRadioModeChangeCallback() {
android::wp<WifiChip> weak_ptr_this(this);
const auto& on_radio_mode_change_callback =
[weak_ptr_this](const std::vector<legacy_hal::WifiMacInfo>& mac_infos) {
const auto shared_ptr_this = weak_ptr_this.promote();
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
LOG(ERROR) << "Callback invoked on an invalid object";
return;
}
std::vector<IWifiChipEventCallback::RadioModeInfo>
hidl_radio_mode_infos;
if (!hidl_struct_util::convertLegacyWifiMacInfosToHidl(
mac_infos, &hidl_radio_mode_infos)) {
LOG(ERROR) << "Error converting wifi mac info";
return;
}
for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
if (!callback->onRadioModeChange(hidl_radio_mode_infos)
.isOk()) {
LOG(ERROR) << "Failed to invoke onRadioModeChange"
<< " callback on: " << toString(callback);
}
}
};
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->registerRadioModeChangeCallbackHandler(
getWlan0IfaceName(), on_radio_mode_change_callback);
return createWifiStatusFromLegacyError(legacy_status);
}
void WifiChip::populateModes() {
// The chip combination supported for current devices is fixed.
// They can be one of the following based on device features:
// a) 2 separate modes of operation with 1 interface combination each:
// Mode 1 (STA mode): Will support 1 STA and 1 P2P or NAN(optional)
// concurrent iface operations.
// Mode 2 (AP mode): Will support 1 AP iface operation.
//
// b) 1 mode of operation with 2 interface combinations
// (conditional on isDualInterfaceSupported()):
// Interface Combination 1: Will support 1 STA and 1 P2P or NAN(optional)
// concurrent iface operations.
// Interface Combination 2: Will support 1 STA and 1 AP concurrent
// iface operations.
// If Aware is enabled (conditional on isAwareSupported()), the iface
// combination will be modified to support either P2P or NAN in place of
// just P2P.
if (feature_flags_.lock()->isDualInterfaceSupported()) {
// V2 Iface combinations for Mode Id = 2.
const IWifiChip::ChipIfaceCombinationLimit
chip_iface_combination_limit_1 = {{IfaceType::STA}, 1};
const IWifiChip::ChipIfaceCombinationLimit
chip_iface_combination_limit_2 = {{IfaceType::AP}, 1};
IWifiChip::ChipIfaceCombinationLimit chip_iface_combination_limit_3;
if (feature_flags_.lock()->isAwareSupported()) {
chip_iface_combination_limit_3 = {{IfaceType::P2P, IfaceType::NAN},
1};
} else {
chip_iface_combination_limit_3 = {{IfaceType::P2P}, 1};
}
const IWifiChip::ChipIfaceCombination chip_iface_combination_1 = {
{chip_iface_combination_limit_1, chip_iface_combination_limit_2}};
const IWifiChip::ChipIfaceCombination chip_iface_combination_2 = {
{chip_iface_combination_limit_1, chip_iface_combination_limit_3}};
if (feature_flags_.lock()->isApDisabled()) {
const IWifiChip::ChipMode chip_mode = {
kV2ChipModeId,
{chip_iface_combination_2}};
modes_ = {chip_mode};
} else {
const IWifiChip::ChipMode chip_mode = {
kV2ChipModeId,
{chip_iface_combination_1, chip_iface_combination_2}};
modes_ = {chip_mode};
}
} else {
// V1 Iface combinations for Mode Id = 0. (STA Mode)
const IWifiChip::ChipIfaceCombinationLimit
sta_chip_iface_combination_limit_1 = {{IfaceType::STA}, 1};
IWifiChip::ChipIfaceCombinationLimit sta_chip_iface_combination_limit_2;
if (feature_flags_.lock()->isAwareSupported()) {
sta_chip_iface_combination_limit_2 = {
{IfaceType::P2P, IfaceType::NAN}, 1};
} else {
sta_chip_iface_combination_limit_2 = {{IfaceType::P2P}, 1};
}
const IWifiChip::ChipIfaceCombination sta_chip_iface_combination = {
{sta_chip_iface_combination_limit_1,
sta_chip_iface_combination_limit_2}};
const IWifiChip::ChipMode sta_chip_mode = {
kV1StaChipModeId, {sta_chip_iface_combination}};
// Iface combinations for Mode Id = 1. (AP Mode)
const IWifiChip::ChipIfaceCombinationLimit
ap_chip_iface_combination_limit = {{IfaceType::AP}, 1};
const IWifiChip::ChipIfaceCombination ap_chip_iface_combination = {
{ap_chip_iface_combination_limit}};
const IWifiChip::ChipMode ap_chip_mode = {kV1ApChipModeId,
{ap_chip_iface_combination}};
if (feature_flags_.lock()->isApDisabled()) {
modes_ = {sta_chip_mode};
} else {
modes_ = {sta_chip_mode, ap_chip_mode};
}
}
}
std::vector<IWifiChip::ChipIfaceCombination>
WifiChip::getCurrentModeIfaceCombinations() {
if (!isValidModeId(current_mode_id_)) {
LOG(ERROR) << "Chip not configured in a mode yet";
return {};
}
for (const auto& mode : modes_) {
if (mode.id == current_mode_id_) {
return mode.availableCombinations;
}
}
CHECK(0) << "Expected to find iface combinations for current mode!";
return {};
}
// Returns a map indexed by IfaceType with the number of ifaces currently
// created of the corresponding type.
std::map<IfaceType, size_t> WifiChip::getCurrentIfaceCombination() {
std::map<IfaceType, size_t> iface_counts;
iface_counts[IfaceType::AP] = ap_ifaces_.size();
iface_counts[IfaceType::NAN] = nan_ifaces_.size();
iface_counts[IfaceType::P2P] = p2p_ifaces_.size();
iface_counts[IfaceType::STA] = sta_ifaces_.size();
return iface_counts;
}
// This expands the provided iface combinations to a more parseable
// form. Returns a vector of available combinations possible with the number
// of ifaces of each type in the combination.
// This method is a port of HalDeviceManager.expandIfaceCombos() from framework.
std::vector<std::map<IfaceType, size_t>> WifiChip::expandIfaceCombinations(
const IWifiChip::ChipIfaceCombination& combination) {
uint32_t num_expanded_combos = 1;
for (const auto& limit : combination.limits) {
for (uint32_t i = 0; i < limit.maxIfaces; i++) {
num_expanded_combos *= limit.types.size();
}
}
// Allocate the vector of expanded combos and reset all iface counts to 0
// in each combo.
std::vector<std::map<IfaceType, size_t>> expanded_combos;
expanded_combos.resize(num_expanded_combos);
for (auto& expanded_combo : expanded_combos) {
for (const auto type :
{IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
expanded_combo[type] = 0;
}
}
uint32_t span = num_expanded_combos;
for (const auto& limit : combination.limits) {
for (uint32_t i = 0; i < limit.maxIfaces; i++) {
span /= limit.types.size();
for (uint32_t k = 0; k < num_expanded_combos; ++k) {
const auto iface_type =
limit.types[(k / span) % limit.types.size()];
expanded_combos[k][iface_type]++;
}
}
}
return expanded_combos;
}
bool WifiChip::canExpandedIfaceCombinationSupportIfaceOfType(
const std::map<IfaceType, size_t>& combo, IfaceType requested_type) {
const auto current_combo = getCurrentIfaceCombination();
// Check if we have space for 1 more iface of |type| in this combo
for (const auto type :
{IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
size_t num_ifaces_needed = current_combo.at(type);
if (type == requested_type) {
num_ifaces_needed++;
}
size_t num_ifaces_allowed = combo.at(type);
if (num_ifaces_needed > num_ifaces_allowed) {
return false;
}
}
return true;
}
// This method does the following:
// a) Enumerate all possible iface combos by expanding the current
// ChipIfaceCombination.
// b) Check if the requested iface type can be added to the current mode.
bool WifiChip::canCurrentModeSupportIfaceOfType(IfaceType type) {
if (!isValidModeId(current_mode_id_)) {
LOG(ERROR) << "Chip not configured in a mode yet";
return false;
}
const auto combinations = getCurrentModeIfaceCombinations();
for (const auto& combination : combinations) {
const auto expanded_combos = expandIfaceCombinations(combination);
for (const auto& expanded_combo : expanded_combos) {
if (canExpandedIfaceCombinationSupportIfaceOfType(expanded_combo,
type)) {
return true;
}
}
}
return false;
}
bool WifiChip::isValidModeId(ChipModeId mode_id) {
for (const auto& mode : modes_) {
if (mode.id == mode_id) {
return true;
}
}
return false;
}
// Return "wlan0", if "wlan0" is not already in use, else return "wlan1".
// This is based on the assumption that we'll have a max of 2 concurrent
// AP/STA ifaces.
std::string WifiChip::allocateApOrStaIfaceName() {
auto ap_iface = findUsingName(ap_ifaces_, getWlan0IfaceName());
auto sta_iface = findUsingName(sta_ifaces_, getWlan0IfaceName());
if (!ap_iface.get() && !sta_iface.get()) {
return getWlan0IfaceName();
}
ap_iface = findUsingName(ap_ifaces_, getWlan1IfaceName());
sta_iface = findUsingName(sta_ifaces_, getWlan1IfaceName());
if (!ap_iface.get() && !sta_iface.get()) {
return getWlan1IfaceName();
}
// This should never happen. We screwed up somewhere if it did.
CHECK(0) << "wlan0 and wlan1 in use already!";
return {};
}
bool WifiChip::writeRingbufferFilesInternal() {
if (!removeOldFilesInternal()) {
LOG(ERROR) << "Error occurred while deleting old tombstone files";
return false;
}
// write ringbuffers to file
for (const auto& item : ringbuffer_map_) {
const Ringbuffer& cur_buffer = item.second;
if (cur_buffer.getData().empty()) {
continue;
}
const std::string file_path_raw =
kTombstoneFolderPath + item.first + "XXXXXXXXXX";
const int dump_fd = mkstemp(makeCharVec(file_path_raw).data());
if (dump_fd == -1) {
LOG(ERROR) << "create file failed: " << strerror(errno);
return false;
}
unique_fd file_auto_closer(dump_fd);
for (const auto& cur_block : cur_buffer.getData()) {
if (write(dump_fd, cur_block.data(),
sizeof(cur_block[0]) * cur_block.size()) == -1) {
LOG(ERROR) << "Error writing to file " << strerror(errno);
}
}
}
return true;
}
} // namespace implementation
} // namespace V1_2
} // namespace wifi
} // namespace hardware
} // namespace android