blob: 66b17db95539ea37bd5178c18bf50e5fcb4bd067 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExtCamDevSsn@3.4"
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_CAMERA
#include <log/log.h>
#include <inttypes.h>
#include "ExternalCameraDeviceSession.h"
#include "android-base/macros.h"
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <linux/videodev2.h>
#include <sync/sync.h>
#define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs
#include <libyuv.h>
#include <jpeglib.h>
namespace android {
namespace hardware {
namespace camera {
namespace device {
namespace V3_4 {
namespace implementation {
namespace {
// Size of request/result metadata fast message queue. Change to 0 to always use hwbinder buffer.
static constexpr size_t kMetadataMsgQueueSize = 1 << 18 /* 256kB */;
const int kBadFramesAfterStreamOn = 1; // drop x frames after streamOn to get rid of some initial
// bad frames. TODO: develop a better bad frame detection
// method
constexpr int MAX_RETRY = 15; // Allow retry some ioctl failures a few times to account for some
// webcam showing temporarily ioctl failures.
constexpr int IOCTL_RETRY_SLEEP_US = 33000; // 33ms * MAX_RETRY = 0.5 seconds
// Constants for tryLock during dumpstate
static constexpr int kDumpLockRetries = 50;
static constexpr int kDumpLockSleep = 60000;
bool tryLock(Mutex& mutex)
{
bool locked = false;
for (int i = 0; i < kDumpLockRetries; ++i) {
if (mutex.tryLock() == NO_ERROR) {
locked = true;
break;
}
usleep(kDumpLockSleep);
}
return locked;
}
bool tryLock(std::mutex& mutex)
{
bool locked = false;
for (int i = 0; i < kDumpLockRetries; ++i) {
if (mutex.try_lock()) {
locked = true;
break;
}
usleep(kDumpLockSleep);
}
return locked;
}
buffer_handle_t sEmptyBuffer = nullptr;
} // Anonymous namespace
// Static instances
const int ExternalCameraDeviceSession::kMaxProcessedStream;
const int ExternalCameraDeviceSession::kMaxStallStream;
HandleImporter ExternalCameraDeviceSession::sHandleImporter;
ExternalCameraDeviceSession::ExternalCameraDeviceSession(
const sp<ICameraDeviceCallback>& callback,
const ExternalCameraConfig& cfg,
const std::vector<SupportedV4L2Format>& sortedFormats,
const CroppingType& croppingType,
const common::V1_0::helper::CameraMetadata& chars,
const std::string& cameraId,
unique_fd v4l2Fd) :
mCallback(callback),
mCfg(cfg),
mCameraCharacteristics(chars),
mSupportedFormats(sortedFormats),
mCroppingType(croppingType),
mCameraId(cameraId),
mV4l2Fd(std::move(v4l2Fd)),
mMaxThumbResolution(getMaxThumbResolution()),
mMaxJpegResolution(getMaxJpegResolution()) {}
bool ExternalCameraDeviceSession::initialize() {
if (mV4l2Fd.get() < 0) {
ALOGE("%s: invalid v4l2 device fd %d!", __FUNCTION__, mV4l2Fd.get());
return true;
}
struct v4l2_capability capability;
int ret = ioctl(mV4l2Fd.get(), VIDIOC_QUERYCAP, &capability);
std::string make, model;
if (ret < 0) {
ALOGW("%s v4l2 QUERYCAP failed", __FUNCTION__);
make = "Generic UVC webcam";
model = "Generic UVC webcam";
} else {
// capability.card is UTF-8 encoded
char card[32];
int j = 0;
for (int i = 0; i < 32; i++) {
if (capability.card[i] < 128) {
card[j++] = capability.card[i];
}
if (capability.card[i] == '\0') {
break;
}
}
if (j == 0 || card[j - 1] != '\0') {
make = "Generic UVC webcam";
model = "Generic UVC webcam";
} else {
make = card;
model = card;
}
}
initOutputThread();
if (mOutputThread == nullptr) {
ALOGE("%s: init OutputThread failed!", __FUNCTION__);
return true;
}
mOutputThread->setExifMakeModel(make, model);
status_t status = initDefaultRequests();
if (status != OK) {
ALOGE("%s: init default requests failed!", __FUNCTION__);
return true;
}
mRequestMetadataQueue = std::make_unique<RequestMetadataQueue>(
kMetadataMsgQueueSize, false /* non blocking */);
if (!mRequestMetadataQueue->isValid()) {
ALOGE("%s: invalid request fmq", __FUNCTION__);
return true;
}
mResultMetadataQueue = std::make_shared<RequestMetadataQueue>(
kMetadataMsgQueueSize, false /* non blocking */);
if (!mResultMetadataQueue->isValid()) {
ALOGE("%s: invalid result fmq", __FUNCTION__);
return true;
}
// TODO: check is PRIORITY_DISPLAY enough?
mOutputThread->run("ExtCamOut", PRIORITY_DISPLAY);
return false;
}
bool ExternalCameraDeviceSession::isInitFailed() {
Mutex::Autolock _l(mLock);
if (!mInitialized) {
mInitFail = initialize();
mInitialized = true;
}
return mInitFail;
}
void ExternalCameraDeviceSession::initOutputThread() {
mOutputThread = new OutputThread(this, mCroppingType);
}
void ExternalCameraDeviceSession::closeOutputThread() {
closeOutputThreadImpl();
}
void ExternalCameraDeviceSession::closeOutputThreadImpl() {
if (mOutputThread) {
mOutputThread->flush();
mOutputThread->requestExit();
mOutputThread->join();
mOutputThread.clear();
}
}
Status ExternalCameraDeviceSession::initStatus() const {
Mutex::Autolock _l(mLock);
Status status = Status::OK;
if (mInitFail || mClosed) {
ALOGI("%s: sesssion initFailed %d closed %d", __FUNCTION__, mInitFail, mClosed);
status = Status::INTERNAL_ERROR;
}
return status;
}
ExternalCameraDeviceSession::~ExternalCameraDeviceSession() {
if (!isClosed()) {
ALOGE("ExternalCameraDeviceSession deleted before close!");
close(/*callerIsDtor*/true);
}
}
void ExternalCameraDeviceSession::dumpState(const native_handle_t* handle) {
if (handle->numFds != 1 || handle->numInts != 0) {
ALOGE("%s: handle must contain 1 FD and 0 integers! Got %d FDs and %d ints",
__FUNCTION__, handle->numFds, handle->numInts);
return;
}
int fd = handle->data[0];
bool intfLocked = tryLock(mInterfaceLock);
if (!intfLocked) {
dprintf(fd, "!! ExternalCameraDeviceSession interface may be deadlocked !!\n");
}
if (isClosed()) {
dprintf(fd, "External camera %s is closed\n", mCameraId.c_str());
return;
}
bool streaming = false;
size_t v4L2BufferCount = 0;
SupportedV4L2Format streamingFmt;
{
bool sessionLocked = tryLock(mLock);
if (!sessionLocked) {
dprintf(fd, "!! ExternalCameraDeviceSession mLock may be deadlocked !!\n");
}
streaming = mV4l2Streaming;
streamingFmt = mV4l2StreamingFmt;
v4L2BufferCount = mV4L2BufferCount;
if (sessionLocked) {
mLock.unlock();
}
}
std::unordered_set<uint32_t> inflightFrames;
{
bool iffLocked = tryLock(mInflightFramesLock);
if (!iffLocked) {
dprintf(fd,
"!! ExternalCameraDeviceSession mInflightFramesLock may be deadlocked !!\n");
}
inflightFrames = mInflightFrames;
if (iffLocked) {
mInflightFramesLock.unlock();
}
}
dprintf(fd, "External camera %s V4L2 FD %d, cropping type %s, %s\n",
mCameraId.c_str(), mV4l2Fd.get(),
(mCroppingType == VERTICAL) ? "vertical" : "horizontal",
streaming ? "streaming" : "not streaming");
if (streaming) {
// TODO: dump fps later
dprintf(fd, "Current V4L2 format %c%c%c%c %dx%d @ %ffps\n",
streamingFmt.fourcc & 0xFF,
(streamingFmt.fourcc >> 8) & 0xFF,
(streamingFmt.fourcc >> 16) & 0xFF,
(streamingFmt.fourcc >> 24) & 0xFF,
streamingFmt.width, streamingFmt.height,
mV4l2StreamingFps);
size_t numDequeuedV4l2Buffers = 0;
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
numDequeuedV4l2Buffers = mNumDequeuedV4l2Buffers;
}
dprintf(fd, "V4L2 buffer queue size %zu, dequeued %zu\n",
v4L2BufferCount, numDequeuedV4l2Buffers);
}
dprintf(fd, "In-flight frames (not sorted):");
for (const auto& frameNumber : inflightFrames) {
dprintf(fd, "%d, ", frameNumber);
}
dprintf(fd, "\n");
mOutputThread->dump(fd);
dprintf(fd, "\n");
if (intfLocked) {
mInterfaceLock.unlock();
}
return;
}
Return<void> ExternalCameraDeviceSession::constructDefaultRequestSettings(
V3_2::RequestTemplate type,
V3_2::ICameraDeviceSession::constructDefaultRequestSettings_cb _hidl_cb) {
V3_2::CameraMetadata outMetadata;
Status status = constructDefaultRequestSettingsRaw(
static_cast<RequestTemplate>(type), &outMetadata);
_hidl_cb(status, outMetadata);
return Void();
}
Status ExternalCameraDeviceSession::constructDefaultRequestSettingsRaw(RequestTemplate type,
V3_2::CameraMetadata *outMetadata) {
CameraMetadata emptyMd;
Status status = initStatus();
if (status != Status::OK) {
return status;
}
switch (type) {
case RequestTemplate::PREVIEW:
case RequestTemplate::STILL_CAPTURE:
case RequestTemplate::VIDEO_RECORD:
case RequestTemplate::VIDEO_SNAPSHOT: {
*outMetadata = mDefaultRequests[type];
break;
}
case RequestTemplate::MANUAL:
case RequestTemplate::ZERO_SHUTTER_LAG:
// Don't support MANUAL, ZSL templates
status = Status::ILLEGAL_ARGUMENT;
break;
default:
ALOGE("%s: unknown request template type %d", __FUNCTION__, static_cast<int>(type));
status = Status::ILLEGAL_ARGUMENT;
break;
}
return status;
}
Return<void> ExternalCameraDeviceSession::configureStreams(
const V3_2::StreamConfiguration& streams,
ICameraDeviceSession::configureStreams_cb _hidl_cb) {
V3_2::HalStreamConfiguration outStreams;
V3_3::HalStreamConfiguration outStreams_v33;
Mutex::Autolock _il(mInterfaceLock);
Status status = configureStreams(streams, &outStreams_v33);
size_t size = outStreams_v33.streams.size();
outStreams.streams.resize(size);
for (size_t i = 0; i < size; i++) {
outStreams.streams[i] = outStreams_v33.streams[i].v3_2;
}
_hidl_cb(status, outStreams);
return Void();
}
Return<void> ExternalCameraDeviceSession::configureStreams_3_3(
const V3_2::StreamConfiguration& streams,
ICameraDeviceSession::configureStreams_3_3_cb _hidl_cb) {
V3_3::HalStreamConfiguration outStreams;
Mutex::Autolock _il(mInterfaceLock);
Status status = configureStreams(streams, &outStreams);
_hidl_cb(status, outStreams);
return Void();
}
Return<void> ExternalCameraDeviceSession::configureStreams_3_4(
const V3_4::StreamConfiguration& requestedConfiguration,
ICameraDeviceSession::configureStreams_3_4_cb _hidl_cb) {
V3_2::StreamConfiguration config_v32;
V3_3::HalStreamConfiguration outStreams_v33;
V3_4::HalStreamConfiguration outStreams;
Mutex::Autolock _il(mInterfaceLock);
config_v32.operationMode = requestedConfiguration.operationMode;
config_v32.streams.resize(requestedConfiguration.streams.size());
uint32_t blobBufferSize = 0;
int numStallStream = 0;
for (size_t i = 0; i < config_v32.streams.size(); i++) {
config_v32.streams[i] = requestedConfiguration.streams[i].v3_2;
if (config_v32.streams[i].format == PixelFormat::BLOB) {
blobBufferSize = requestedConfiguration.streams[i].bufferSize;
numStallStream++;
}
}
// Fail early if there are multiple BLOB streams
if (numStallStream > kMaxStallStream) {
ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__,
kMaxStallStream, numStallStream);
_hidl_cb(Status::ILLEGAL_ARGUMENT, outStreams);
return Void();
}
Status status = configureStreams(config_v32, &outStreams_v33, blobBufferSize);
outStreams.streams.resize(outStreams_v33.streams.size());
for (size_t i = 0; i < outStreams.streams.size(); i++) {
outStreams.streams[i].v3_3 = outStreams_v33.streams[i];
}
_hidl_cb(status, outStreams);
return Void();
}
Return<void> ExternalCameraDeviceSession::getCaptureRequestMetadataQueue(
ICameraDeviceSession::getCaptureRequestMetadataQueue_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
_hidl_cb(*mRequestMetadataQueue->getDesc());
return Void();
}
Return<void> ExternalCameraDeviceSession::getCaptureResultMetadataQueue(
ICameraDeviceSession::getCaptureResultMetadataQueue_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
_hidl_cb(*mResultMetadataQueue->getDesc());
return Void();
}
Return<void> ExternalCameraDeviceSession::processCaptureRequest(
const hidl_vec<CaptureRequest>& requests,
const hidl_vec<BufferCache>& cachesToRemove,
ICameraDeviceSession::processCaptureRequest_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
updateBufferCaches(cachesToRemove);
uint32_t numRequestProcessed = 0;
Status s = Status::OK;
for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
s = processOneCaptureRequest(requests[i]);
if (s != Status::OK) {
break;
}
}
_hidl_cb(s, numRequestProcessed);
return Void();
}
Return<void> ExternalCameraDeviceSession::processCaptureRequest_3_4(
const hidl_vec<V3_4::CaptureRequest>& requests,
const hidl_vec<V3_2::BufferCache>& cachesToRemove,
ICameraDeviceSession::processCaptureRequest_3_4_cb _hidl_cb) {
Mutex::Autolock _il(mInterfaceLock);
updateBufferCaches(cachesToRemove);
uint32_t numRequestProcessed = 0;
Status s = Status::OK;
for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
s = processOneCaptureRequest(requests[i].v3_2);
if (s != Status::OK) {
break;
}
}
_hidl_cb(s, numRequestProcessed);
return Void();
}
Return<Status> ExternalCameraDeviceSession::flush() {
ATRACE_CALL();
Mutex::Autolock _il(mInterfaceLock);
Status status = initStatus();
if (status != Status::OK) {
return status;
}
mOutputThread->flush();
return Status::OK;
}
Return<void> ExternalCameraDeviceSession::close(bool callerIsDtor) {
Mutex::Autolock _il(mInterfaceLock);
bool closed = isClosed();
if (!closed) {
if (callerIsDtor) {
closeOutputThreadImpl();
} else {
closeOutputThread();
}
Mutex::Autolock _l(mLock);
// free all buffers
{
Mutex::Autolock _l(mCbsLock);
for(auto pair : mStreamMap) {
cleanupBuffersLocked(/*Stream ID*/pair.first);
}
}
v4l2StreamOffLocked();
ALOGV("%s: closing V4L2 camera FD %d", __FUNCTION__, mV4l2Fd.get());
mV4l2Fd.reset();
mClosed = true;
}
return Void();
}
Status ExternalCameraDeviceSession::importRequestLocked(
const CaptureRequest& request,
hidl_vec<buffer_handle_t*>& allBufPtrs,
hidl_vec<int>& allFences) {
return importRequestLockedImpl(request, allBufPtrs, allFences);
}
Status ExternalCameraDeviceSession::importBuffer(int32_t streamId,
uint64_t bufId, buffer_handle_t buf,
/*out*/buffer_handle_t** outBufPtr,
bool allowEmptyBuf) {
Mutex::Autolock _l(mCbsLock);
return importBufferLocked(streamId, bufId, buf, outBufPtr, allowEmptyBuf);
}
Status ExternalCameraDeviceSession::importBufferLocked(int32_t streamId,
uint64_t bufId, buffer_handle_t buf,
/*out*/buffer_handle_t** outBufPtr,
bool allowEmptyBuf) {
if (buf == nullptr && bufId == BUFFER_ID_NO_BUFFER) {
if (allowEmptyBuf) {
*outBufPtr = &sEmptyBuffer;
return Status::OK;
} else {
ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
return Status::ILLEGAL_ARGUMENT;
}
}
CirculatingBuffers& cbs = mCirculatingBuffers[streamId];
if (cbs.count(bufId) == 0) {
if (buf == nullptr) {
ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
return Status::ILLEGAL_ARGUMENT;
}
// Register a newly seen buffer
buffer_handle_t importedBuf = buf;
sHandleImporter.importBuffer(importedBuf);
if (importedBuf == nullptr) {
ALOGE("%s: output buffer for stream %d is invalid!", __FUNCTION__, streamId);
return Status::INTERNAL_ERROR;
} else {
cbs[bufId] = importedBuf;
}
}
*outBufPtr = &cbs[bufId];
return Status::OK;
}
Status ExternalCameraDeviceSession::importRequestLockedImpl(
const CaptureRequest& request,
hidl_vec<buffer_handle_t*>& allBufPtrs,
hidl_vec<int>& allFences,
bool allowEmptyBuf) {
size_t numOutputBufs = request.outputBuffers.size();
size_t numBufs = numOutputBufs;
// Validate all I/O buffers
hidl_vec<buffer_handle_t> allBufs;
hidl_vec<uint64_t> allBufIds;
allBufs.resize(numBufs);
allBufIds.resize(numBufs);
allBufPtrs.resize(numBufs);
allFences.resize(numBufs);
std::vector<int32_t> streamIds(numBufs);
for (size_t i = 0; i < numOutputBufs; i++) {
allBufs[i] = request.outputBuffers[i].buffer.getNativeHandle();
allBufIds[i] = request.outputBuffers[i].bufferId;
allBufPtrs[i] = &allBufs[i];
streamIds[i] = request.outputBuffers[i].streamId;
}
{
Mutex::Autolock _l(mCbsLock);
for (size_t i = 0; i < numBufs; i++) {
Status st = importBufferLocked(
streamIds[i], allBufIds[i], allBufs[i], &allBufPtrs[i],
allowEmptyBuf);
if (st != Status::OK) {
// Detailed error logs printed in importBuffer
return st;
}
}
}
// All buffers are imported. Now validate output buffer acquire fences
for (size_t i = 0; i < numOutputBufs; i++) {
if (!sHandleImporter.importFence(
request.outputBuffers[i].acquireFence, allFences[i])) {
ALOGE("%s: output buffer %zu acquire fence is invalid", __FUNCTION__, i);
cleanupInflightFences(allFences, i);
return Status::INTERNAL_ERROR;
}
}
return Status::OK;
}
void ExternalCameraDeviceSession::cleanupInflightFences(
hidl_vec<int>& allFences, size_t numFences) {
for (size_t j = 0; j < numFences; j++) {
sHandleImporter.closeFence(allFences[j]);
}
}
int ExternalCameraDeviceSession::waitForV4L2BufferReturnLocked(std::unique_lock<std::mutex>& lk) {
ATRACE_CALL();
std::chrono::seconds timeout = std::chrono::seconds(kBufferWaitTimeoutSec);
mLock.unlock();
auto st = mV4L2BufferReturned.wait_for(lk, timeout);
// Here we introduce a order where mV4l2BufferLock is acquired before mLock, while
// the normal lock acquisition order is reversed. This is fine because in most of
// cases we are protected by mInterfaceLock. The only thread that can cause deadlock
// is the OutputThread, where we do need to make sure we don't acquire mLock then
// mV4l2BufferLock
mLock.lock();
if (st == std::cv_status::timeout) {
ALOGE("%s: wait for V4L2 buffer return timeout!", __FUNCTION__);
return -1;
}
return 0;
}
Status ExternalCameraDeviceSession::processOneCaptureRequest(const CaptureRequest& request) {
ATRACE_CALL();
Status status = initStatus();
if (status != Status::OK) {
return status;
}
if (request.inputBuffer.streamId != -1) {
ALOGE("%s: external camera does not support reprocessing!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
Mutex::Autolock _l(mLock);
if (!mV4l2Streaming) {
ALOGE("%s: cannot process request in streamOff state!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
const camera_metadata_t *rawSettings = nullptr;
bool converted = true;
CameraMetadata settingsFmq; // settings from FMQ
if (request.fmqSettingsSize > 0) {
// non-blocking read; client must write metadata before calling
// processOneCaptureRequest
settingsFmq.resize(request.fmqSettingsSize);
bool read = mRequestMetadataQueue->read(settingsFmq.data(), request.fmqSettingsSize);
if (read) {
converted = V3_2::implementation::convertFromHidl(settingsFmq, &rawSettings);
} else {
ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__);
converted = false;
}
} else {
converted = V3_2::implementation::convertFromHidl(request.settings, &rawSettings);
}
if (converted && rawSettings != nullptr) {
mLatestReqSetting = rawSettings;
}
if (!converted) {
ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
if (mFirstRequest && rawSettings == nullptr) {
ALOGE("%s: capture request settings must not be null for first request!",
__FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
hidl_vec<buffer_handle_t*> allBufPtrs;
hidl_vec<int> allFences;
size_t numOutputBufs = request.outputBuffers.size();
if (numOutputBufs == 0) {
ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_entry fpsRange = mLatestReqSetting.find(ANDROID_CONTROL_AE_TARGET_FPS_RANGE);
if (fpsRange.count == 2) {
double requestFpsMax = fpsRange.data.i32[1];
double closestFps = 0.0;
double fpsError = 1000.0;
bool fpsSupported = false;
for (const auto& fr : mV4l2StreamingFmt.frameRates) {
double f = fr.getDouble();
if (std::fabs(requestFpsMax - f) < 1.0) {
fpsSupported = true;
break;
}
if (std::fabs(requestFpsMax - f) < fpsError) {
fpsError = std::fabs(requestFpsMax - f);
closestFps = f;
}
}
if (!fpsSupported) {
/* This can happen in a few scenarios:
* 1. The application is sending a FPS range not supported by the configured outputs.
* 2. The application is sending a valid FPS range for all cofigured outputs, but
* the selected V4L2 size can only run at slower speed. This should be very rare
* though: for this to happen a sensor needs to support at least 3 different aspect
* ratio outputs, and when (at least) two outputs are both not the main aspect ratio
* of the webcam, a third size that's larger might be picked and runs into this
* issue.
*/
ALOGW("%s: cannot reach fps %d! Will do %f instead",
__FUNCTION__, fpsRange.data.i32[1], closestFps);
requestFpsMax = closestFps;
}
if (requestFpsMax != mV4l2StreamingFps) {
{
std::unique_lock<std::mutex> lk(mV4l2BufferLock);
while (mNumDequeuedV4l2Buffers != 0) {
// Wait until pipeline is idle before reconfigure stream
int waitRet = waitForV4L2BufferReturnLocked(lk);
if (waitRet != 0) {
ALOGE("%s: wait for pipeline idle failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
}
configureV4l2StreamLocked(mV4l2StreamingFmt, requestFpsMax);
}
}
status = importRequestLocked(request, allBufPtrs, allFences);
if (status != Status::OK) {
return status;
}
nsecs_t shutterTs = 0;
sp<V4L2Frame> frameIn = dequeueV4l2FrameLocked(&shutterTs);
if ( frameIn == nullptr) {
ALOGE("%s: V4L2 deque frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
std::shared_ptr<HalRequest> halReq = std::make_shared<HalRequest>();
halReq->frameNumber = request.frameNumber;
halReq->setting = mLatestReqSetting;
halReq->frameIn = frameIn;
halReq->shutterTs = shutterTs;
halReq->buffers.resize(numOutputBufs);
for (size_t i = 0; i < numOutputBufs; i++) {
HalStreamBuffer& halBuf = halReq->buffers[i];
int streamId = halBuf.streamId = request.outputBuffers[i].streamId;
halBuf.bufferId = request.outputBuffers[i].bufferId;
const Stream& stream = mStreamMap[streamId];
halBuf.width = stream.width;
halBuf.height = stream.height;
halBuf.format = stream.format;
halBuf.usage = stream.usage;
halBuf.bufPtr = allBufPtrs[i];
halBuf.acquireFence = allFences[i];
halBuf.fenceTimeout = false;
}
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
mInflightFrames.insert(halReq->frameNumber);
}
// Send request to OutputThread for the rest of processing
mOutputThread->submitRequest(halReq);
mFirstRequest = false;
return Status::OK;
}
void ExternalCameraDeviceSession::notifyShutter(uint32_t frameNumber, nsecs_t shutterTs) {
NotifyMsg msg;
msg.type = MsgType::SHUTTER;
msg.msg.shutter.frameNumber = frameNumber;
msg.msg.shutter.timestamp = shutterTs;
mCallback->notify({msg});
}
void ExternalCameraDeviceSession::notifyError(
uint32_t frameNumber, int32_t streamId, ErrorCode ec) {
NotifyMsg msg;
msg.type = MsgType::ERROR;
msg.msg.error.frameNumber = frameNumber;
msg.msg.error.errorStreamId = streamId;
msg.msg.error.errorCode = ec;
mCallback->notify({msg});
}
//TODO: refactor with processCaptureResult
Status ExternalCameraDeviceSession::processCaptureRequestError(
const std::shared_ptr<HalRequest>& req) {
ATRACE_CALL();
// Return V4L2 buffer to V4L2 buffer queue
enqueueV4l2Frame(req->frameIn);
// NotifyShutter
notifyShutter(req->frameNumber, req->shutterTs);
notifyError(/*frameNum*/req->frameNumber, /*stream*/-1, ErrorCode::ERROR_REQUEST);
// Fill output buffers
hidl_vec<CaptureResult> results;
results.resize(1);
CaptureResult& result = results[0];
result.frameNumber = req->frameNumber;
result.partialResult = 1;
result.inputBuffer.streamId = -1;
result.outputBuffers.resize(req->buffers.size());
for (size_t i = 0; i < req->buffers.size(); i++) {
result.outputBuffers[i].streamId = req->buffers[i].streamId;
result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
result.outputBuffers[i].status = BufferStatus::ERROR;
if (req->buffers[i].acquireFence >= 0) {
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
handle->data[0] = req->buffers[i].acquireFence;
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
}
}
// update inflight records
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
mInflightFrames.erase(req->frameNumber);
}
// Callback into framework
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
freeReleaseFences(results);
return Status::OK;
}
Status ExternalCameraDeviceSession::processCaptureResult(std::shared_ptr<HalRequest>& req) {
ATRACE_CALL();
// Return V4L2 buffer to V4L2 buffer queue
enqueueV4l2Frame(req->frameIn);
// NotifyShutter
notifyShutter(req->frameNumber, req->shutterTs);
// Fill output buffers
hidl_vec<CaptureResult> results;
results.resize(1);
CaptureResult& result = results[0];
result.frameNumber = req->frameNumber;
result.partialResult = 1;
result.inputBuffer.streamId = -1;
result.outputBuffers.resize(req->buffers.size());
for (size_t i = 0; i < req->buffers.size(); i++) {
result.outputBuffers[i].streamId = req->buffers[i].streamId;
result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
if (req->buffers[i].fenceTimeout) {
result.outputBuffers[i].status = BufferStatus::ERROR;
if (req->buffers[i].acquireFence > 0) {
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
handle->data[0] = req->buffers[i].acquireFence;
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
}
notifyError(req->frameNumber, req->buffers[i].streamId, ErrorCode::ERROR_BUFFER);
} else {
result.outputBuffers[i].status = BufferStatus::OK;
// TODO: refactor
if (req->buffers[i].acquireFence > 0) {
native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
handle->data[0] = req->buffers[i].acquireFence;
result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
}
}
}
// Fill capture result metadata
fillCaptureResult(req->setting, req->shutterTs);
const camera_metadata_t *rawResult = req->setting.getAndLock();
V3_2::implementation::convertToHidl(rawResult, &result.result);
req->setting.unlock(rawResult);
// update inflight records
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
mInflightFrames.erase(req->frameNumber);
}
// Callback into framework
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
freeReleaseFences(results);
return Status::OK;
}
void ExternalCameraDeviceSession::invokeProcessCaptureResultCallback(
hidl_vec<CaptureResult> &results, bool tryWriteFmq) {
if (mProcessCaptureResultLock.tryLock() != OK) {
const nsecs_t NS_TO_SECOND = 1000000000;
ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__);
if (mProcessCaptureResultLock.timedLock(/* 1s */NS_TO_SECOND) != OK) {
ALOGE("%s: cannot acquire lock in 1s, cannot proceed",
__FUNCTION__);
return;
}
}
if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) {
for (CaptureResult &result : results) {
if (result.result.size() > 0) {
if (mResultMetadataQueue->write(result.result.data(), result.result.size())) {
result.fmqResultSize = result.result.size();
result.result.resize(0);
} else {
ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
result.fmqResultSize = 0;
}
} else {
result.fmqResultSize = 0;
}
}
}
auto status = mCallback->processCaptureResult(results);
if (!status.isOk()) {
ALOGE("%s: processCaptureResult ERROR : %s", __FUNCTION__,
status.description().c_str());
}
mProcessCaptureResultLock.unlock();
}
void ExternalCameraDeviceSession::freeReleaseFences(hidl_vec<CaptureResult>& results) {
for (auto& result : results) {
if (result.inputBuffer.releaseFence.getNativeHandle() != nullptr) {
native_handle_t* handle = const_cast<native_handle_t*>(
result.inputBuffer.releaseFence.getNativeHandle());
native_handle_close(handle);
native_handle_delete(handle);
}
for (auto& buf : result.outputBuffers) {
if (buf.releaseFence.getNativeHandle() != nullptr) {
native_handle_t* handle = const_cast<native_handle_t*>(
buf.releaseFence.getNativeHandle());
native_handle_close(handle);
native_handle_delete(handle);
}
}
}
return;
}
ExternalCameraDeviceSession::OutputThread::OutputThread(
wp<ExternalCameraDeviceSession> parent,
CroppingType ct) : mParent(parent), mCroppingType(ct) {}
ExternalCameraDeviceSession::OutputThread::~OutputThread() {}
void ExternalCameraDeviceSession::OutputThread::setExifMakeModel(
const std::string& make, const std::string& model) {
mExifMake = make;
mExifModel = model;
}
uint32_t ExternalCameraDeviceSession::OutputThread::getFourCcFromLayout(
const YCbCrLayout& layout) {
intptr_t cb = reinterpret_cast<intptr_t>(layout.cb);
intptr_t cr = reinterpret_cast<intptr_t>(layout.cr);
if (std::abs(cb - cr) == 1 && layout.chromaStep == 2) {
// Interleaved format
if (layout.cb > layout.cr) {
return V4L2_PIX_FMT_NV21;
} else {
return V4L2_PIX_FMT_NV12;
}
} else if (layout.chromaStep == 1) {
// Planar format
if (layout.cb > layout.cr) {
return V4L2_PIX_FMT_YVU420; // YV12
} else {
return V4L2_PIX_FMT_YUV420; // YU12
}
} else {
return FLEX_YUV_GENERIC;
}
}
int ExternalCameraDeviceSession::OutputThread::getCropRect(
CroppingType ct, const Size& inSize, const Size& outSize, IMapper::Rect* out) {
if (out == nullptr) {
ALOGE("%s: out is null", __FUNCTION__);
return -1;
}
uint32_t inW = inSize.width;
uint32_t inH = inSize.height;
uint32_t outW = outSize.width;
uint32_t outH = outSize.height;
// Handle special case where aspect ratio is close to input but scaled
// dimension is slightly larger than input
float arIn = ASPECT_RATIO(inSize);
float arOut = ASPECT_RATIO(outSize);
if (isAspectRatioClose(arIn, arOut)) {
out->left = 0;
out->top = 0;
out->width = inW;
out->height = inH;
return 0;
}
if (ct == VERTICAL) {
uint64_t scaledOutH = static_cast<uint64_t>(outH) * inW / outW;
if (scaledOutH > inH) {
ALOGE("%s: Output size %dx%d cannot be vertically cropped from input size %dx%d",
__FUNCTION__, outW, outH, inW, inH);
return -1;
}
scaledOutH = scaledOutH & ~0x1; // make it multiple of 2
out->left = 0;
out->top = ((inH - scaledOutH) / 2) & ~0x1;
out->width = inW;
out->height = static_cast<int32_t>(scaledOutH);
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledH %d",
__FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutH));
} else {
uint64_t scaledOutW = static_cast<uint64_t>(outW) * inH / outH;
if (scaledOutW > inW) {
ALOGE("%s: Output size %dx%d cannot be horizontally cropped from input size %dx%d",
__FUNCTION__, outW, outH, inW, inH);
return -1;
}
scaledOutW = scaledOutW & ~0x1; // make it multiple of 2
out->left = ((inW - scaledOutW) / 2) & ~0x1;
out->top = 0;
out->width = static_cast<int32_t>(scaledOutW);
out->height = inH;
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledW %d",
__FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutW));
}
return 0;
}
int ExternalCameraDeviceSession::OutputThread::cropAndScaleLocked(
sp<AllocatedFrame>& in, const Size& outSz, YCbCrLayout* out) {
Size inSz = {in->mWidth, in->mHeight};
int ret;
if (inSz == outSz) {
ret = in->getLayout(out);
if (ret != 0) {
ALOGE("%s: failed to get input image layout", __FUNCTION__);
return ret;
}
return ret;
}
// Cropping to output aspect ratio
IMapper::Rect inputCrop;
ret = getCropRect(mCroppingType, inSz, outSz, &inputCrop);
if (ret != 0) {
ALOGE("%s: failed to compute crop rect for output size %dx%d",
__FUNCTION__, outSz.width, outSz.height);
return ret;
}
YCbCrLayout croppedLayout;
ret = in->getCroppedLayout(inputCrop, &croppedLayout);
if (ret != 0) {
ALOGE("%s: failed to crop input image %dx%d to output size %dx%d",
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
return ret;
}
if ((mCroppingType == VERTICAL && inSz.width == outSz.width) ||
(mCroppingType == HORIZONTAL && inSz.height == outSz.height)) {
// No scale is needed
*out = croppedLayout;
return 0;
}
auto it = mScaledYu12Frames.find(outSz);
sp<AllocatedFrame> scaledYu12Buf;
if (it != mScaledYu12Frames.end()) {
scaledYu12Buf = it->second;
} else {
it = mIntermediateBuffers.find(outSz);
if (it == mIntermediateBuffers.end()) {
ALOGE("%s: failed to find intermediate buffer size %dx%d",
__FUNCTION__, outSz.width, outSz.height);
return -1;
}
scaledYu12Buf = it->second;
}
// Scale
YCbCrLayout outLayout;
ret = scaledYu12Buf->getLayout(&outLayout);
if (ret != 0) {
ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
return ret;
}
ret = libyuv::I420Scale(
static_cast<uint8_t*>(croppedLayout.y),
croppedLayout.yStride,
static_cast<uint8_t*>(croppedLayout.cb),
croppedLayout.cStride,
static_cast<uint8_t*>(croppedLayout.cr),
croppedLayout.cStride,
inputCrop.width,
inputCrop.height,
static_cast<uint8_t*>(outLayout.y),
outLayout.yStride,
static_cast<uint8_t*>(outLayout.cb),
outLayout.cStride,
static_cast<uint8_t*>(outLayout.cr),
outLayout.cStride,
outSz.width,
outSz.height,
// TODO: b/72261744 see if we can use better filter without losing too much perf
libyuv::FilterMode::kFilterNone);
if (ret != 0) {
ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d",
__FUNCTION__, inputCrop.width, inputCrop.height,
outSz.width, outSz.height, ret);
return ret;
}
*out = outLayout;
mScaledYu12Frames.insert({outSz, scaledYu12Buf});
return 0;
}
int ExternalCameraDeviceSession::OutputThread::cropAndScaleThumbLocked(
sp<AllocatedFrame>& in, const Size &outSz, YCbCrLayout* out) {
Size inSz {in->mWidth, in->mHeight};
if ((outSz.width * outSz.height) >
(mYu12ThumbFrame->mWidth * mYu12ThumbFrame->mHeight)) {
ALOGE("%s: Requested thumbnail size too big (%d,%d) > (%d,%d)",
__FUNCTION__, outSz.width, outSz.height,
mYu12ThumbFrame->mWidth, mYu12ThumbFrame->mHeight);
return -1;
}
int ret;
/* This will crop-and-zoom the input YUV frame to the thumbnail size
* Based on the following logic:
* 1) Square pixels come in, square pixels come out, therefore single
* scale factor is computed to either make input bigger or smaller
* depending on if we are upscaling or downscaling
* 2) That single scale factor would either make height too tall or width
* too wide so we need to crop the input either horizontally or vertically
* but not both
*/
/* Convert the input and output dimensions into floats for ease of math */
float fWin = static_cast<float>(inSz.width);
float fHin = static_cast<float>(inSz.height);
float fWout = static_cast<float>(outSz.width);
float fHout = static_cast<float>(outSz.height);
/* Compute the one scale factor from (1) above, it will be the smaller of
* the two possibilities. */
float scaleFactor = std::min( fHin / fHout, fWin / fWout );
/* Since we are crop-and-zooming (as opposed to letter/pillar boxing) we can
* simply multiply the output by our scaleFactor to get the cropped input
* size. Note that at least one of {fWcrop, fHcrop} is going to wind up
* being {fWin, fHin} respectively because fHout or fWout cancels out the
* scaleFactor calculation above.
*
* Specifically:
* if ( fHin / fHout ) < ( fWin / fWout ) we crop the sides off
* input, in which case
* scaleFactor = fHin / fHout
* fWcrop = fHin / fHout * fWout
* fHcrop = fHin
*
* Note that fWcrop <= fWin ( because ( fHin / fHout ) * fWout < fWin, which
* is just the inequality above with both sides multiplied by fWout
*
* on the other hand if ( fWin / fWout ) < ( fHin / fHout) we crop the top
* and the bottom off of input, and
* scaleFactor = fWin / fWout
* fWcrop = fWin
* fHCrop = fWin / fWout * fHout
*/
float fWcrop = scaleFactor * fWout;
float fHcrop = scaleFactor * fHout;
/* Convert to integer and truncate to an even number */
Size cropSz = { 2*static_cast<uint32_t>(fWcrop/2.0f),
2*static_cast<uint32_t>(fHcrop/2.0f) };
/* Convert to a centered rectange with even top/left */
IMapper::Rect inputCrop {
2*static_cast<int32_t>((inSz.width - cropSz.width)/4),
2*static_cast<int32_t>((inSz.height - cropSz.height)/4),
static_cast<int32_t>(cropSz.width),
static_cast<int32_t>(cropSz.height) };
if ((inputCrop.top < 0) ||
(inputCrop.top >= static_cast<int32_t>(inSz.height)) ||
(inputCrop.left < 0) ||
(inputCrop.left >= static_cast<int32_t>(inSz.width)) ||
(inputCrop.width <= 0) ||
(inputCrop.width + inputCrop.left > static_cast<int32_t>(inSz.width)) ||
(inputCrop.height <= 0) ||
(inputCrop.height + inputCrop.top > static_cast<int32_t>(inSz.height)))
{
ALOGE("%s: came up with really wrong crop rectangle",__FUNCTION__);
ALOGE("%s: input layout %dx%d to for output size %dx%d",
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
ALOGE("%s: computed input crop +%d,+%d %dx%d",
__FUNCTION__, inputCrop.left, inputCrop.top,
inputCrop.width, inputCrop.height);
return -1;
}
YCbCrLayout inputLayout;
ret = in->getCroppedLayout(inputCrop, &inputLayout);
if (ret != 0) {
ALOGE("%s: failed to crop input layout %dx%d to for output size %dx%d",
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
ALOGE("%s: computed input crop +%d,+%d %dx%d",
__FUNCTION__, inputCrop.left, inputCrop.top,
inputCrop.width, inputCrop.height);
return ret;
}
ALOGV("%s: crop input layout %dx%d to for output size %dx%d",
__FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
ALOGV("%s: computed input crop +%d,+%d %dx%d",
__FUNCTION__, inputCrop.left, inputCrop.top,
inputCrop.width, inputCrop.height);
// Scale
YCbCrLayout outFullLayout;
ret = mYu12ThumbFrame->getLayout(&outFullLayout);
if (ret != 0) {
ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
return ret;
}
ret = libyuv::I420Scale(
static_cast<uint8_t*>(inputLayout.y),
inputLayout.yStride,
static_cast<uint8_t*>(inputLayout.cb),
inputLayout.cStride,
static_cast<uint8_t*>(inputLayout.cr),
inputLayout.cStride,
inputCrop.width,
inputCrop.height,
static_cast<uint8_t*>(outFullLayout.y),
outFullLayout.yStride,
static_cast<uint8_t*>(outFullLayout.cb),
outFullLayout.cStride,
static_cast<uint8_t*>(outFullLayout.cr),
outFullLayout.cStride,
outSz.width,
outSz.height,
libyuv::FilterMode::kFilterNone);
if (ret != 0) {
ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d",
__FUNCTION__, inputCrop.width, inputCrop.height,
outSz.width, outSz.height, ret);
return ret;
}
*out = outFullLayout;
return 0;
}
int ExternalCameraDeviceSession::OutputThread::formatConvertLocked(
const YCbCrLayout& in, const YCbCrLayout& out, Size sz, uint32_t format) {
int ret = 0;
switch (format) {
case V4L2_PIX_FMT_NV21:
ret = libyuv::I420ToNV21(
static_cast<uint8_t*>(in.y),
in.yStride,
static_cast<uint8_t*>(in.cb),
in.cStride,
static_cast<uint8_t*>(in.cr),
in.cStride,
static_cast<uint8_t*>(out.y),
out.yStride,
static_cast<uint8_t*>(out.cr),
out.cStride,
sz.width,
sz.height);
if (ret != 0) {
ALOGE("%s: convert to NV21 buffer failed! ret %d",
__FUNCTION__, ret);
return ret;
}
break;
case V4L2_PIX_FMT_NV12:
ret = libyuv::I420ToNV12(
static_cast<uint8_t*>(in.y),
in.yStride,
static_cast<uint8_t*>(in.cb),
in.cStride,
static_cast<uint8_t*>(in.cr),
in.cStride,
static_cast<uint8_t*>(out.y),
out.yStride,
static_cast<uint8_t*>(out.cb),
out.cStride,
sz.width,
sz.height);
if (ret != 0) {
ALOGE("%s: convert to NV12 buffer failed! ret %d",
__FUNCTION__, ret);
return ret;
}
break;
case V4L2_PIX_FMT_YVU420: // YV12
case V4L2_PIX_FMT_YUV420: // YU12
// TODO: maybe we can speed up here by somehow save this copy?
ret = libyuv::I420Copy(
static_cast<uint8_t*>(in.y),
in.yStride,
static_cast<uint8_t*>(in.cb),
in.cStride,
static_cast<uint8_t*>(in.cr),
in.cStride,
static_cast<uint8_t*>(out.y),
out.yStride,
static_cast<uint8_t*>(out.cb),
out.cStride,
static_cast<uint8_t*>(out.cr),
out.cStride,
sz.width,
sz.height);
if (ret != 0) {
ALOGE("%s: copy to YV12 or YU12 buffer failed! ret %d",
__FUNCTION__, ret);
return ret;
}
break;
case FLEX_YUV_GENERIC:
// TODO: b/72261744 write to arbitrary flexible YUV layout. Slow.
ALOGE("%s: unsupported flexible yuv layout"
" y %p cb %p cr %p y_str %d c_str %d c_step %d",
__FUNCTION__, out.y, out.cb, out.cr,
out.yStride, out.cStride, out.chromaStep);
return -1;
default:
ALOGE("%s: unknown YUV format 0x%x!", __FUNCTION__, format);
return -1;
}
return 0;
}
int ExternalCameraDeviceSession::OutputThread::encodeJpegYU12(
const Size & inSz, const YCbCrLayout& inLayout,
int jpegQuality, const void *app1Buffer, size_t app1Size,
void *out, const size_t maxOutSize, size_t &actualCodeSize)
{
/* libjpeg is a C library so we use C-style "inheritance" by
* putting libjpeg's jpeg_destination_mgr first in our custom
* struct. This allows us to cast jpeg_destination_mgr* to
* CustomJpegDestMgr* when we get it passed to us in a callback */
struct CustomJpegDestMgr {
struct jpeg_destination_mgr mgr;
JOCTET *mBuffer;
size_t mBufferSize;
size_t mEncodedSize;
bool mSuccess;
} dmgr;
jpeg_compress_struct cinfo = {};
jpeg_error_mgr jerr;
/* Initialize error handling with standard callbacks, but
* then override output_message (to print to ALOG) and
* error_exit to set a flag and print a message instead
* of killing the whole process */
cinfo.err = jpeg_std_error(&jerr);
cinfo.err->output_message = [](j_common_ptr cinfo) {
char buffer[JMSG_LENGTH_MAX];
/* Create the message */
(*cinfo->err->format_message)(cinfo, buffer);
ALOGE("libjpeg error: %s", buffer);
};
cinfo.err->error_exit = [](j_common_ptr cinfo) {
(*cinfo->err->output_message)(cinfo);
if(cinfo->client_data) {
auto & dmgr =
*reinterpret_cast<CustomJpegDestMgr*>(cinfo->client_data);
dmgr.mSuccess = false;
}
};
/* Now that we initialized some callbacks, let's create our compressor */
jpeg_create_compress(&cinfo);
/* Initialize our destination manager */
dmgr.mBuffer = static_cast<JOCTET*>(out);
dmgr.mBufferSize = maxOutSize;
dmgr.mEncodedSize = 0;
dmgr.mSuccess = true;
cinfo.client_data = static_cast<void*>(&dmgr);
/* These lambdas become C-style function pointers and as per C++11 spec
* may not capture anything */
dmgr.mgr.init_destination = [](j_compress_ptr cinfo) {
auto & dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
dmgr.mgr.next_output_byte = dmgr.mBuffer;
dmgr.mgr.free_in_buffer = dmgr.mBufferSize;
ALOGV("%s:%d jpeg start: %p [%zu]",
__FUNCTION__, __LINE__, dmgr.mBuffer, dmgr.mBufferSize);
};
dmgr.mgr.empty_output_buffer = [](j_compress_ptr cinfo __unused) {
ALOGV("%s:%d Out of buffer", __FUNCTION__, __LINE__);
return 0;
};
dmgr.mgr.term_destination = [](j_compress_ptr cinfo) {
auto & dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
dmgr.mEncodedSize = dmgr.mBufferSize - dmgr.mgr.free_in_buffer;
ALOGV("%s:%d Done with jpeg: %zu", __FUNCTION__, __LINE__, dmgr.mEncodedSize);
};
cinfo.dest = reinterpret_cast<struct jpeg_destination_mgr*>(&dmgr);
/* We are going to be using JPEG in raw data mode, so we are passing
* straight subsampled planar YCbCr and it will not touch our pixel
* data or do any scaling or anything */
cinfo.image_width = inSz.width;
cinfo.image_height = inSz.height;
cinfo.input_components = 3;
cinfo.in_color_space = JCS_YCbCr;
/* Initialize defaults and then override what we want */
jpeg_set_defaults(&cinfo);
jpeg_set_quality(&cinfo, jpegQuality, 1);
jpeg_set_colorspace(&cinfo, JCS_YCbCr);
cinfo.raw_data_in = 1;
cinfo.dct_method = JDCT_IFAST;
/* Configure sampling factors. The sampling factor is JPEG subsampling 420
* because the source format is YUV420. Note that libjpeg sampling factors
* are... a little weird. Sampling of Y=2,U=1,V=1 means there is 1 U and
* 1 V value for each 2 Y values */
cinfo.comp_info[0].h_samp_factor = 2;
cinfo.comp_info[0].v_samp_factor = 2;
cinfo.comp_info[1].h_samp_factor = 1;
cinfo.comp_info[1].v_samp_factor = 1;
cinfo.comp_info[2].h_samp_factor = 1;
cinfo.comp_info[2].v_samp_factor = 1;
/* Let's not hardcode YUV420 in 6 places... 5 was enough */
int maxVSampFactor = std::max( {
cinfo.comp_info[0].v_samp_factor,
cinfo.comp_info[1].v_samp_factor,
cinfo.comp_info[2].v_samp_factor
});
int cVSubSampling = cinfo.comp_info[0].v_samp_factor /
cinfo.comp_info[1].v_samp_factor;
/* Start the compressor */
jpeg_start_compress(&cinfo, TRUE);
/* Compute our macroblock height, so we can pad our input to be vertically
* macroblock aligned.
* TODO: Does it need to be horizontally MCU aligned too? */
size_t mcuV = DCTSIZE*maxVSampFactor;
size_t paddedHeight = mcuV * ((inSz.height + mcuV - 1) / mcuV);
/* libjpeg uses arrays of row pointers, which makes it really easy to pad
* data vertically (unfortunately doesn't help horizontally) */
std::vector<JSAMPROW> yLines (paddedHeight);
std::vector<JSAMPROW> cbLines(paddedHeight/cVSubSampling);
std::vector<JSAMPROW> crLines(paddedHeight/cVSubSampling);
uint8_t *py = static_cast<uint8_t*>(inLayout.y);
uint8_t *pcr = static_cast<uint8_t*>(inLayout.cr);
uint8_t *pcb = static_cast<uint8_t*>(inLayout.cb);
for(uint32_t i = 0; i < paddedHeight; i++)
{
/* Once we are in the padding territory we still point to the last line
* effectively replicating it several times ~ CLAMP_TO_EDGE */
int li = std::min(i, inSz.height - 1);
yLines[i] = static_cast<JSAMPROW>(py + li * inLayout.yStride);
if(i < paddedHeight / cVSubSampling)
{
crLines[i] = static_cast<JSAMPROW>(pcr + li * inLayout.cStride);
cbLines[i] = static_cast<JSAMPROW>(pcb + li * inLayout.cStride);
}
}
/* If APP1 data was passed in, use it */
if(app1Buffer && app1Size)
{
jpeg_write_marker(&cinfo, JPEG_APP0 + 1,
static_cast<const JOCTET*>(app1Buffer), app1Size);
}
/* While we still have padded height left to go, keep giving it one
* macroblock at a time. */
while (cinfo.next_scanline < cinfo.image_height) {
const uint32_t batchSize = DCTSIZE * maxVSampFactor;
const uint32_t nl = cinfo.next_scanline;
JSAMPARRAY planes[3]{ &yLines[nl],
&cbLines[nl/cVSubSampling],
&crLines[nl/cVSubSampling] };
uint32_t done = jpeg_write_raw_data(&cinfo, planes, batchSize);
if (done != batchSize) {
ALOGE("%s: compressed %u lines, expected %u (total %u/%u)",
__FUNCTION__, done, batchSize, cinfo.next_scanline,
cinfo.image_height);
return -1;
}
}
/* This will flush everything */
jpeg_finish_compress(&cinfo);
/* Grab the actual code size and set it */
actualCodeSize = dmgr.mEncodedSize;
return 0;
}
/*
* TODO: There needs to be a mechanism to discover allocated buffer size
* in the HAL.
*
* This is very fragile because it is duplicated computation from:
* frameworks/av/services/camera/libcameraservice/device3/Camera3Device.cpp
*
*/
/* This assumes mSupportedFormats have all been declared as supporting
* HAL_PIXEL_FORMAT_BLOB to the framework */
Size ExternalCameraDeviceSession::getMaxJpegResolution() const {
Size ret { 0, 0 };
for(auto & fmt : mSupportedFormats) {
if(fmt.width * fmt.height > ret.width * ret.height) {
ret = Size { fmt.width, fmt.height };
}
}
return ret;
}
Size ExternalCameraDeviceSession::getMaxThumbResolution() const {
Size thumbSize { 0, 0 };
camera_metadata_ro_entry entry =
mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
for(uint32_t i = 0; i < entry.count; i += 2) {
Size sz { static_cast<uint32_t>(entry.data.i32[i]),
static_cast<uint32_t>(entry.data.i32[i+1]) };
if(sz.width * sz.height > thumbSize.width * thumbSize.height) {
thumbSize = sz;
}
}
if (thumbSize.width * thumbSize.height == 0) {
ALOGW("%s: non-zero thumbnail size not available", __FUNCTION__);
}
return thumbSize;
}
ssize_t ExternalCameraDeviceSession::getJpegBufferSize(
uint32_t width, uint32_t height) const {
// Constant from camera3.h
const ssize_t kMinJpegBufferSize = 256 * 1024 + sizeof(CameraBlob);
// Get max jpeg size (area-wise).
if (mMaxJpegResolution.width == 0) {
ALOGE("%s: Do not have a single supported JPEG stream",
__FUNCTION__);
return BAD_VALUE;
}
// Get max jpeg buffer size
ssize_t maxJpegBufferSize = 0;
camera_metadata_ro_entry jpegBufMaxSize =
mCameraCharacteristics.find(ANDROID_JPEG_MAX_SIZE);
if (jpegBufMaxSize.count == 0) {
ALOGE("%s: Can't find maximum JPEG size in static metadata!",
__FUNCTION__);
return BAD_VALUE;
}
maxJpegBufferSize = jpegBufMaxSize.data.i32[0];
if (maxJpegBufferSize <= kMinJpegBufferSize) {
ALOGE("%s: ANDROID_JPEG_MAX_SIZE (%zd) <= kMinJpegBufferSize (%zd)",
__FUNCTION__, maxJpegBufferSize, kMinJpegBufferSize);
return BAD_VALUE;
}
// Calculate final jpeg buffer size for the given resolution.
float scaleFactor = ((float) (width * height)) /
(mMaxJpegResolution.width * mMaxJpegResolution.height);
ssize_t jpegBufferSize = scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) +
kMinJpegBufferSize;
if (jpegBufferSize > maxJpegBufferSize) {
jpegBufferSize = maxJpegBufferSize;
}
return jpegBufferSize;
}
int ExternalCameraDeviceSession::OutputThread::createJpegLocked(
HalStreamBuffer &halBuf,
const std::shared_ptr<HalRequest>& req)
{
ATRACE_CALL();
int ret;
auto lfail = [&](auto... args) {
ALOGE(args...);
return 1;
};
auto parent = mParent.promote();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return 1;
}
ALOGV("%s: HAL buffer sid: %d bid: %" PRIu64 " w: %u h: %u",
__FUNCTION__, halBuf.streamId, static_cast<uint64_t>(halBuf.bufferId),
halBuf.width, halBuf.height);
ALOGV("%s: HAL buffer fmt: %x usage: %" PRIx64 " ptr: %p",
__FUNCTION__, halBuf.format, static_cast<uint64_t>(halBuf.usage),
halBuf.bufPtr);
ALOGV("%s: YV12 buffer %d x %d",
__FUNCTION__,
mYu12Frame->mWidth, mYu12Frame->mHeight);
int jpegQuality, thumbQuality;
Size thumbSize;
bool outputThumbnail = true;
if (req->setting.exists(ANDROID_JPEG_QUALITY)) {
camera_metadata_entry entry =
req->setting.find(ANDROID_JPEG_QUALITY);
jpegQuality = entry.data.u8[0];
} else {
return lfail("%s: ANDROID_JPEG_QUALITY not set",__FUNCTION__);
}
if (req->setting.exists(ANDROID_JPEG_THUMBNAIL_QUALITY)) {
camera_metadata_entry entry =
req->setting.find(ANDROID_JPEG_THUMBNAIL_QUALITY);
thumbQuality = entry.data.u8[0];
} else {
return lfail(
"%s: ANDROID_JPEG_THUMBNAIL_QUALITY not set",
__FUNCTION__);
}
if (req->setting.exists(ANDROID_JPEG_THUMBNAIL_SIZE)) {
camera_metadata_entry entry =
req->setting.find(ANDROID_JPEG_THUMBNAIL_SIZE);
thumbSize = Size { static_cast<uint32_t>(entry.data.i32[0]),
static_cast<uint32_t>(entry.data.i32[1])
};
if (thumbSize.width == 0 && thumbSize.height == 0) {
outputThumbnail = false;
}
} else {
return lfail(
"%s: ANDROID_JPEG_THUMBNAIL_SIZE not set", __FUNCTION__);
}
/* Cropped and scaled YU12 buffer for main and thumbnail */
YCbCrLayout yu12Main;
Size jpegSize { halBuf.width, halBuf.height };
/* Compute temporary buffer sizes accounting for the following:
* thumbnail can't exceed APP1 size of 64K
* main image needs to hold APP1, headers, and at most a poorly
* compressed image */
const ssize_t maxThumbCodeSize = 64 * 1024;
const ssize_t maxJpegCodeSize = mBlobBufferSize == 0 ?
parent->getJpegBufferSize(jpegSize.width, jpegSize.height) :
mBlobBufferSize;
/* Check that getJpegBufferSize did not return an error */
if (maxJpegCodeSize < 0) {
return lfail(
"%s: getJpegBufferSize returned %zd",__FUNCTION__,maxJpegCodeSize);
}
/* Hold actual thumbnail and main image code sizes */
size_t thumbCodeSize = 0, jpegCodeSize = 0;
/* Temporary thumbnail code buffer */
std::vector<uint8_t> thumbCode(outputThumbnail ? maxThumbCodeSize : 0);
YCbCrLayout yu12Thumb;
if (outputThumbnail) {
ret = cropAndScaleThumbLocked(mYu12Frame, thumbSize, &yu12Thumb);
if (ret != 0) {
return lfail(
"%s: crop and scale thumbnail failed!", __FUNCTION__);
}
}
/* Scale and crop main jpeg */
ret = cropAndScaleLocked(mYu12Frame, jpegSize, &yu12Main);
if (ret != 0) {
return lfail("%s: crop and scale main failed!", __FUNCTION__);
}
/* Encode the thumbnail image */
if (outputThumbnail) {
ret = encodeJpegYU12(thumbSize, yu12Thumb,
thumbQuality, 0, 0,
&thumbCode[0], maxThumbCodeSize, thumbCodeSize);
if (ret != 0) {
return lfail("%s: thumbnail encodeJpegYU12 failed with %d",__FUNCTION__, ret);
}
}
/* Combine camera characteristics with request settings to form EXIF
* metadata */
common::V1_0::helper::CameraMetadata meta(parent->mCameraCharacteristics);
meta.append(req->setting);
/* Generate EXIF object */
std::unique_ptr<ExifUtils> utils(ExifUtils::create());
/* Make sure it's initialized */
utils->initialize();
utils->setFromMetadata(meta, jpegSize.width, jpegSize.height);
utils->setMake(mExifMake);
utils->setModel(mExifModel);
ret = utils->generateApp1(outputThumbnail ? &thumbCode[0] : 0, thumbCodeSize);
if (!ret) {
return lfail("%s: generating APP1 failed", __FUNCTION__);
}
/* Get internal buffer */
size_t exifDataSize = utils->getApp1Length();
const uint8_t* exifData = utils->getApp1Buffer();
/* Lock the HAL jpeg code buffer */
void *bufPtr = sHandleImporter.lock(
*(halBuf.bufPtr), halBuf.usage, maxJpegCodeSize);
if (!bufPtr) {
return lfail("%s: could not lock %zu bytes", __FUNCTION__, maxJpegCodeSize);
}
/* Encode the main jpeg image */
ret = encodeJpegYU12(jpegSize, yu12Main,
jpegQuality, exifData, exifDataSize,
bufPtr, maxJpegCodeSize, jpegCodeSize);
/* TODO: Not sure this belongs here, maybe better to pass jpegCodeSize out
* and do this when returning buffer to parent */
CameraBlob blob { CameraBlobId::JPEG, static_cast<uint32_t>(jpegCodeSize) };
void *blobDst =
reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(bufPtr) +
maxJpegCodeSize -
sizeof(CameraBlob));
memcpy(blobDst, &blob, sizeof(CameraBlob));
/* Unlock the HAL jpeg code buffer */
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
if (relFence > 0) {
halBuf.acquireFence = relFence;
}
/* Check if our JPEG actually succeeded */
if (ret != 0) {
return lfail(
"%s: encodeJpegYU12 failed with %d",__FUNCTION__, ret);
}
ALOGV("%s: encoded JPEG (ret:%d) with Q:%d max size: %zu",
__FUNCTION__, ret, jpegQuality, maxJpegCodeSize);
return 0;
}
bool ExternalCameraDeviceSession::OutputThread::threadLoop() {
std::shared_ptr<HalRequest> req;
auto parent = mParent.promote();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return false;
}
// TODO: maybe we need to setup a sensor thread to dq/enq v4l frames
// regularly to prevent v4l buffer queue filled with stale buffers
// when app doesn't program a preveiw request
waitForNextRequest(&req);
if (req == nullptr) {
// No new request, wait again
return true;
}
auto onDeviceError = [&](auto... args) {
ALOGE(args...);
parent->notifyError(
req->frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
signalRequestDone();
return false;
};
if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG) {
return onDeviceError("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__,
req->frameIn->mFourcc & 0xFF,
(req->frameIn->mFourcc >> 8) & 0xFF,
(req->frameIn->mFourcc >> 16) & 0xFF,
(req->frameIn->mFourcc >> 24) & 0xFF);
}
int res = requestBufferStart(req->buffers);
if (res != 0) {
ALOGE("%s: send BufferRequest failed! res %d", __FUNCTION__, res);
return onDeviceError("%s: failed to send buffer request!", __FUNCTION__);
}
std::unique_lock<std::mutex> lk(mBufferLock);
// Convert input V4L2 frame to YU12 of the same size
// TODO: see if we can save some computation by converting to YV12 here
uint8_t* inData;
size_t inDataSize;
if (req->frameIn->map(&inData, &inDataSize) != 0) {
lk.unlock();
return onDeviceError("%s: V4L2 buffer map failed", __FUNCTION__);
}
// TODO: in some special case maybe we can decode jpg directly to gralloc output?
ATRACE_BEGIN("MJPGtoI420");
res = libyuv::MJPGToI420(
inData, inDataSize,
static_cast<uint8_t*>(mYu12FrameLayout.y),
mYu12FrameLayout.yStride,
static_cast<uint8_t*>(mYu12FrameLayout.cb),
mYu12FrameLayout.cStride,
static_cast<uint8_t*>(mYu12FrameLayout.cr),
mYu12FrameLayout.cStride,
mYu12Frame->mWidth, mYu12Frame->mHeight,
mYu12Frame->mWidth, mYu12Frame->mHeight);
ATRACE_END();
if (res != 0) {
// For some webcam, the first few V4L2 frames might be malformed...
ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
lk.unlock();
Status st = parent->processCaptureRequestError(req);
if (st != Status::OK) {
return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
}
signalRequestDone();
return true;
}
ATRACE_BEGIN("Wait for BufferRequest done");
res = waitForBufferRequestDone(&req->buffers);
ATRACE_END();
if (res != 0) {
ALOGE("%s: wait for BufferRequest done failed! res %d", __FUNCTION__, res);
lk.unlock();
return onDeviceError("%s: failed to process buffer request error!", __FUNCTION__);
}
ALOGV("%s processing new request", __FUNCTION__);
const int kSyncWaitTimeoutMs = 500;
for (auto& halBuf : req->buffers) {
if (*(halBuf.bufPtr) == nullptr) {
ALOGW("%s: buffer for stream %d missing", __FUNCTION__, halBuf.streamId);
halBuf.fenceTimeout = true;
} else if (halBuf.acquireFence != -1) {
int ret = sync_wait(halBuf.acquireFence, kSyncWaitTimeoutMs);
if (ret) {
halBuf.fenceTimeout = true;
} else {
::close(halBuf.acquireFence);
halBuf.acquireFence = -1;
}
}
if (halBuf.fenceTimeout) {
continue;
}
// Gralloc lockYCbCr the buffer
switch (halBuf.format) {
case PixelFormat::BLOB: {
int ret = createJpegLocked(halBuf, req);
if(ret != 0) {
lk.unlock();
return onDeviceError("%s: createJpegLocked failed with %d",
__FUNCTION__, ret);
}
} break;
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12: {
IMapper::Rect outRect {0, 0,
static_cast<int32_t>(halBuf.width),
static_cast<int32_t>(halBuf.height)};
YCbCrLayout outLayout = sHandleImporter.lockYCbCr(
*(halBuf.bufPtr), halBuf.usage, outRect);
ALOGV("%s: outLayout y %p cb %p cr %p y_str %d c_str %d c_step %d",
__FUNCTION__, outLayout.y, outLayout.cb, outLayout.cr,
outLayout.yStride, outLayout.cStride, outLayout.chromaStep);
// Convert to output buffer size/format
uint32_t outputFourcc = getFourCcFromLayout(outLayout);
ALOGV("%s: converting to format %c%c%c%c", __FUNCTION__,
outputFourcc & 0xFF,
(outputFourcc >> 8) & 0xFF,
(outputFourcc >> 16) & 0xFF,
(outputFourcc >> 24) & 0xFF);
YCbCrLayout cropAndScaled;
ATRACE_BEGIN("cropAndScaleLocked");
int ret = cropAndScaleLocked(
mYu12Frame,
Size { halBuf.width, halBuf.height },
&cropAndScaled);
ATRACE_END();
if (ret != 0) {
lk.unlock();
return onDeviceError("%s: crop and scale failed!", __FUNCTION__);
}
Size sz {halBuf.width, halBuf.height};
ATRACE_BEGIN("formatConvertLocked");
ret = formatConvertLocked(cropAndScaled, outLayout, sz, outputFourcc);
ATRACE_END();
if (ret != 0) {
lk.unlock();
return onDeviceError("%s: format coversion failed!", __FUNCTION__);
}
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
if (relFence > 0) {
halBuf.acquireFence = relFence;
}
} break;
default:
lk.unlock();
return onDeviceError("%s: unknown output format %x", __FUNCTION__, halBuf.format);
}
} // for each buffer
mScaledYu12Frames.clear();
// Don't hold the lock while calling back to parent
lk.unlock();
Status st = parent->processCaptureResult(req);
if (st != Status::OK) {
return onDeviceError("%s: failed to process capture result!", __FUNCTION__);
}
signalRequestDone();
return true;
}
Status ExternalCameraDeviceSession::OutputThread::allocateIntermediateBuffers(
const Size& v4lSize, const Size& thumbSize,
const hidl_vec<Stream>& streams,
uint32_t blobBufferSize) {
std::lock_guard<std::mutex> lk(mBufferLock);
if (mScaledYu12Frames.size() != 0) {
ALOGE("%s: intermediate buffer pool has %zu inflight buffers! (expect 0)",
__FUNCTION__, mScaledYu12Frames.size());
return Status::INTERNAL_ERROR;
}
// Allocating intermediate YU12 frame
if (mYu12Frame == nullptr || mYu12Frame->mWidth != v4lSize.width ||
mYu12Frame->mHeight != v4lSize.height) {
mYu12Frame.clear();
mYu12Frame = new AllocatedFrame(v4lSize.width, v4lSize.height);
int ret = mYu12Frame->allocate(&mYu12FrameLayout);
if (ret != 0) {
ALOGE("%s: allocating YU12 frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
// Allocating intermediate YU12 thumbnail frame
if (mYu12ThumbFrame == nullptr ||
mYu12ThumbFrame->mWidth != thumbSize.width ||
mYu12ThumbFrame->mHeight != thumbSize.height) {
mYu12ThumbFrame.clear();
mYu12ThumbFrame = new AllocatedFrame(thumbSize.width, thumbSize.height);
int ret = mYu12ThumbFrame->allocate(&mYu12ThumbFrameLayout);
if (ret != 0) {
ALOGE("%s: allocating YU12 thumb frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
// Allocating scaled buffers
for (const auto& stream : streams) {
Size sz = {stream.width, stream.height};
if (sz == v4lSize) {
continue; // Don't need an intermediate buffer same size as v4lBuffer
}
if (mIntermediateBuffers.count(sz) == 0) {
// Create new intermediate buffer
sp<AllocatedFrame> buf = new AllocatedFrame(stream.width, stream.height);
int ret = buf->allocate();
if (ret != 0) {
ALOGE("%s: allocating intermediate YU12 frame %dx%d failed!",
__FUNCTION__, stream.width, stream.height);
return Status::INTERNAL_ERROR;
}
mIntermediateBuffers[sz] = buf;
}
}
// Remove unconfigured buffers
auto it = mIntermediateBuffers.begin();
while (it != mIntermediateBuffers.end()) {
bool configured = false;
auto sz = it->first;
for (const auto& stream : streams) {
if (stream.width == sz.width && stream.height == sz.height) {
configured = true;
break;
}
}
if (configured) {
it++;
} else {
it = mIntermediateBuffers.erase(it);
}
}
mBlobBufferSize = blobBufferSize;
return Status::OK;
}
Status ExternalCameraDeviceSession::OutputThread::submitRequest(
const std::shared_ptr<HalRequest>& req) {
std::unique_lock<std::mutex> lk(mRequestListLock);
mRequestList.push_back(req);
lk.unlock();
mRequestCond.notify_one();
return Status::OK;
}
void ExternalCameraDeviceSession::OutputThread::flush() {
ATRACE_CALL();
auto parent = mParent.promote();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return;
}
std::unique_lock<std::mutex> lk(mRequestListLock);
std::list<std::shared_ptr<HalRequest>> reqs = std::move(mRequestList);
mRequestList.clear();
if (mProcessingRequest) {
std::chrono::seconds timeout = std::chrono::seconds(kFlushWaitTimeoutSec);
auto st = mRequestDoneCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__);
}
}
ALOGV("%s: flusing inflight requests", __FUNCTION__);
lk.unlock();
for (const auto& req : reqs) {
parent->processCaptureRequestError(req);
}
}
void ExternalCameraDeviceSession::OutputThread::waitForNextRequest(
std::shared_ptr<HalRequest>* out) {
ATRACE_CALL();
if (out == nullptr) {
ALOGE("%s: out is null", __FUNCTION__);
return;
}
std::unique_lock<std::mutex> lk(mRequestListLock);
int waitTimes = 0;
while (mRequestList.empty()) {
if (exitPending()) {
return;
}
std::chrono::milliseconds timeout = std::chrono::milliseconds(kReqWaitTimeoutMs);
auto st = mRequestCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
waitTimes++;
if (waitTimes == kReqWaitTimesMax) {
// no new request, return
return;
}
}
}
*out = mRequestList.front();
mRequestList.pop_front();
mProcessingRequest = true;
mProcessingFrameNumer = (*out)->frameNumber;
}
void ExternalCameraDeviceSession::OutputThread::signalRequestDone() {
std::unique_lock<std::mutex> lk(mRequestListLock);
mProcessingRequest = false;
mProcessingFrameNumer = 0;
lk.unlock();
mRequestDoneCond.notify_one();
}
void ExternalCameraDeviceSession::OutputThread::dump(int fd) {
std::lock_guard<std::mutex> lk(mRequestListLock);
if (mProcessingRequest) {
dprintf(fd, "OutputThread processing frame %d\n", mProcessingFrameNumer);
} else {
dprintf(fd, "OutputThread not processing any frames\n");
}
dprintf(fd, "OutputThread request list contains frame: ");
for (const auto& req : mRequestList) {
dprintf(fd, "%d, ", req->frameNumber);
}
dprintf(fd, "\n");
}
void ExternalCameraDeviceSession::cleanupBuffersLocked(int id) {
for (auto& pair : mCirculatingBuffers.at(id)) {
sHandleImporter.freeBuffer(pair.second);
}
mCirculatingBuffers[id].clear();
mCirculatingBuffers.erase(id);
}
void ExternalCameraDeviceSession::updateBufferCaches(const hidl_vec<BufferCache>& cachesToRemove) {
Mutex::Autolock _l(mCbsLock);
for (auto& cache : cachesToRemove) {
auto cbsIt = mCirculatingBuffers.find(cache.streamId);
if (cbsIt == mCirculatingBuffers.end()) {
// The stream could have been removed
continue;
}
CirculatingBuffers& cbs = cbsIt->second;
auto it = cbs.find(cache.bufferId);
if (it != cbs.end()) {
sHandleImporter.freeBuffer(it->second);
cbs.erase(it);
} else {
ALOGE("%s: stream %d buffer %" PRIu64 " is not cached",
__FUNCTION__, cache.streamId, cache.bufferId);
}
}
}
bool ExternalCameraDeviceSession::isSupported(const Stream& stream,
const std::vector<SupportedV4L2Format>& supportedFormats) {
int32_t ds = static_cast<int32_t>(stream.dataSpace);
PixelFormat fmt = stream.format;
uint32_t width = stream.width;
uint32_t height = stream.height;
// TODO: check usage flags
if (stream.streamType != StreamType::OUTPUT) {
ALOGE("%s: does not support non-output stream type", __FUNCTION__);
return false;
}
if (stream.rotation != StreamRotation::ROTATION_0) {
ALOGE("%s: does not support stream rotation", __FUNCTION__);
return false;
}
if (ds & Dataspace::DEPTH) {
ALOGI("%s: does not support depth output", __FUNCTION__);
return false;
}
switch (fmt) {
case PixelFormat::BLOB:
if (ds != static_cast<int32_t>(Dataspace::V0_JFIF)) {
ALOGI("%s: BLOB format does not support dataSpace %x", __FUNCTION__, ds);
return false;
}
break;
case PixelFormat::IMPLEMENTATION_DEFINED:
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12:
// TODO: check what dataspace we can support here.
// intentional no-ops.
break;
default:
ALOGI("%s: does not support format %x", __FUNCTION__, fmt);
return false;
}
// Assume we can convert any V4L2 format to any of supported output format for now, i.e,
// ignoring v4l2Fmt.fourcc for now. Might need more subtle check if we support more v4l format
// in the futrue.
for (const auto& v4l2Fmt : supportedFormats) {
if (width == v4l2Fmt.width && height == v4l2Fmt.height) {
return true;
}
}
ALOGI("%s: resolution %dx%d is not supported", __FUNCTION__, width, height);
return false;
}
int ExternalCameraDeviceSession::v4l2StreamOffLocked() {
if (!mV4l2Streaming) {
return OK;
}
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
if (mNumDequeuedV4l2Buffers != 0) {
ALOGE("%s: there are %zu inflight V4L buffers",
__FUNCTION__, mNumDequeuedV4l2Buffers);
return -1;
}
}
mV4L2BufferCount = 0;
// VIDIOC_STREAMOFF
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMOFF, &capture_type)) < 0) {
ALOGE("%s: STREAMOFF failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
// VIDIOC_REQBUFS: clear buffers
v4l2_requestbuffers req_buffers{};
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req_buffers.memory = V4L2_MEMORY_MMAP;
req_buffers.count = 0;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
ALOGE("%s: REQBUFS failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
mV4l2Streaming = false;
return OK;
}
int ExternalCameraDeviceSession::setV4l2FpsLocked(double fps) {
// VIDIOC_G_PARM/VIDIOC_S_PARM: set fps
v4l2_streamparm streamparm = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE };
// The following line checks that the driver knows about framerate get/set.
int ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_G_PARM, &streamparm));
if (ret != 0) {
if (errno == -EINVAL) {
ALOGW("%s: device does not support VIDIOC_G_PARM", __FUNCTION__);
}
return -errno;
}
// Now check if the device is able to accept a capture framerate set.
if (!(streamparm.parm.capture.capability & V4L2_CAP_TIMEPERFRAME)) {
ALOGW("%s: device does not support V4L2_CAP_TIMEPERFRAME", __FUNCTION__);
return -EINVAL;
}
// fps is float, approximate by a fraction.
const int kFrameRatePrecision = 10000;
streamparm.parm.capture.timeperframe.numerator = kFrameRatePrecision;
streamparm.parm.capture.timeperframe.denominator =
(fps * kFrameRatePrecision);
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_PARM, &streamparm)) < 0) {
ALOGE("%s: failed to set framerate to %f: %s", __FUNCTION__, fps, strerror(errno));
return -1;
}
double retFps = streamparm.parm.capture.timeperframe.denominator /
static_cast<double>(streamparm.parm.capture.timeperframe.numerator);
if (std::fabs(fps - retFps) > 1.0) {
ALOGE("%s: expect fps %f, got %f instead", __FUNCTION__, fps, retFps);
return -1;
}
mV4l2StreamingFps = fps;
return 0;
}
int ExternalCameraDeviceSession::configureV4l2StreamLocked(
const SupportedV4L2Format& v4l2Fmt, double requestFps) {
ATRACE_CALL();
int ret = v4l2StreamOffLocked();
if (ret != OK) {
ALOGE("%s: stop v4l2 streaming failed: ret %d", __FUNCTION__, ret);
return ret;
}
// VIDIOC_S_FMT w/h/fmt
v4l2_format fmt;
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = v4l2Fmt.width;
fmt.fmt.pix.height = v4l2Fmt.height;
fmt.fmt.pix.pixelformat = v4l2Fmt.fourcc;
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
if (ret < 0) {
int numAttempt = 0;
while (ret < 0) {
ALOGW("%s: VIDIOC_S_FMT failed, wait 33ms and try again", __FUNCTION__);
usleep(IOCTL_RETRY_SLEEP_US); // sleep and try again
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
if (numAttempt == MAX_RETRY) {
break;
}
numAttempt++;
}
if (ret < 0) {
ALOGE("%s: S_FMT ioctl failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
}
if (v4l2Fmt.width != fmt.fmt.pix.width || v4l2Fmt.height != fmt.fmt.pix.height ||
v4l2Fmt.fourcc != fmt.fmt.pix.pixelformat) {
ALOGE("%s: S_FMT expect %c%c%c%c %dx%d, got %c%c%c%c %dx%d instead!", __FUNCTION__,
v4l2Fmt.fourcc & 0xFF,
(v4l2Fmt.fourcc >> 8) & 0xFF,
(v4l2Fmt.fourcc >> 16) & 0xFF,
(v4l2Fmt.fourcc >> 24) & 0xFF,
v4l2Fmt.width, v4l2Fmt.height,
fmt.fmt.pix.pixelformat & 0xFF,
(fmt.fmt.pix.pixelformat >> 8) & 0xFF,
(fmt.fmt.pix.pixelformat >> 16) & 0xFF,
(fmt.fmt.pix.pixelformat >> 24) & 0xFF,
fmt.fmt.pix.width, fmt.fmt.pix.height);
return -EINVAL;
}
uint32_t bufferSize = fmt.fmt.pix.sizeimage;
ALOGI("%s: V4L2 buffer size is %d", __FUNCTION__, bufferSize);
uint32_t expectedMaxBufferSize = kMaxBytesPerPixel * fmt.fmt.pix.width * fmt.fmt.pix.height;
if ((bufferSize == 0) || (bufferSize > expectedMaxBufferSize)) {
ALOGE("%s: V4L2 buffer size: %u looks invalid. Expected maximum size: %u", __FUNCTION__,
bufferSize, expectedMaxBufferSize);
return -EINVAL;
}
mMaxV4L2BufferSize = bufferSize;
const double kDefaultFps = 30.0;
double fps = 1000.0;
if (requestFps != 0.0) {
fps = requestFps;
} else {
double maxFps = -1.0;
// Try to pick the slowest fps that is at least 30
for (const auto& fr : v4l2Fmt.frameRates) {
double f = fr.getDouble();
if (maxFps < f) {
maxFps = f;
}
if (f >= kDefaultFps && f < fps) {
fps = f;
}
}
if (fps == 1000.0) {
fps = maxFps;
}
}
int fpsRet = setV4l2FpsLocked(fps);
if (fpsRet != 0 && fpsRet != -EINVAL) {
ALOGE("%s: set fps failed: %s", __FUNCTION__, strerror(fpsRet));
return fpsRet;
}
uint32_t v4lBufferCount = (fps >= kDefaultFps) ?
mCfg.numVideoBuffers : mCfg.numStillBuffers;
// VIDIOC_REQBUFS: create buffers
v4l2_requestbuffers req_buffers{};
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req_buffers.memory = V4L2_MEMORY_MMAP;
req_buffers.count = v4lBufferCount;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
ALOGE("%s: VIDIOC_REQBUFS failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
// Driver can indeed return more buffer if it needs more to operate
if (req_buffers.count < v4lBufferCount) {
ALOGE("%s: VIDIOC_REQBUFS expected %d buffers, got %d instead",
__FUNCTION__, v4lBufferCount, req_buffers.count);
return NO_MEMORY;
}
// VIDIOC_QUERYBUF: get buffer offset in the V4L2 fd
// VIDIOC_QBUF: send buffer to driver
mV4L2BufferCount = req_buffers.count;
for (uint32_t i = 0; i < req_buffers.count; i++) {
v4l2_buffer buffer = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.index = i,
.memory = V4L2_MEMORY_MMAP};
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QUERYBUF, &buffer)) < 0) {
ALOGE("%s: QUERYBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
return -errno;
}
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
return -errno;
}
}
// VIDIOC_STREAMON: start streaming
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
if (ret < 0) {
int numAttempt = 0;
while (ret < 0) {
ALOGW("%s: VIDIOC_STREAMON failed, wait 33ms and try again", __FUNCTION__);
usleep(IOCTL_RETRY_SLEEP_US); // sleep 100 ms and try again
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
if (numAttempt == MAX_RETRY) {
break;
}
numAttempt++;
}
if (ret < 0) {
ALOGE("%s: VIDIOC_STREAMON ioctl failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
}
// Swallow first few frames after streamOn to account for bad frames from some devices
for (int i = 0; i < kBadFramesAfterStreamOn; i++) {
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
return -errno;
}
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, buffer.index, strerror(errno));
return -errno;
}
}
ALOGI("%s: start V4L2 streaming %dx%d@%ffps",
__FUNCTION__, v4l2Fmt.width, v4l2Fmt.height, fps);
mV4l2StreamingFmt = v4l2Fmt;
mV4l2Streaming = true;
return OK;
}
sp<V4L2Frame> ExternalCameraDeviceSession::dequeueV4l2FrameLocked(/*out*/nsecs_t* shutterTs) {
ATRACE_CALL();
sp<V4L2Frame> ret = nullptr;
if (shutterTs == nullptr) {
ALOGE("%s: shutterTs must not be null!", __FUNCTION__);
return ret;
}
{
std::unique_lock<std::mutex> lk(mV4l2BufferLock);
if (mNumDequeuedV4l2Buffers == mV4L2BufferCount) {
int waitRet = waitForV4L2BufferReturnLocked(lk);
if (waitRet != 0) {
return ret;
}
}
}
ATRACE_BEGIN("VIDIOC_DQBUF");
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
return ret;
}
ATRACE_END();
if (buffer.index >= mV4L2BufferCount) {
ALOGE("%s: Invalid buffer id: %d", __FUNCTION__, buffer.index);
return ret;
}
if (buffer.flags & V4L2_BUF_FLAG_ERROR) {
ALOGE("%s: v4l2 buf error! buf flag 0x%x", __FUNCTION__, buffer.flags);
// TODO: try to dequeue again
}
if (buffer.bytesused > mMaxV4L2BufferSize) {
ALOGE("%s: v4l2 buffer bytes used: %u maximum %u", __FUNCTION__, buffer.bytesused,
mMaxV4L2BufferSize);
return ret;
}
if (buffer.flags & V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC) {
// Ideally we should also check for V4L2_BUF_FLAG_TSTAMP_SRC_SOE, but
// even V4L2_BUF_FLAG_TSTAMP_SRC_EOF is better than capture a timestamp now
*shutterTs = static_cast<nsecs_t>(buffer.timestamp.tv_sec)*1000000000LL +
buffer.timestamp.tv_usec * 1000LL;
} else {
*shutterTs = systemTime(SYSTEM_TIME_MONOTONIC);
}
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
mNumDequeuedV4l2Buffers++;
}
return new V4L2Frame(
mV4l2StreamingFmt.width, mV4l2StreamingFmt.height, mV4l2StreamingFmt.fourcc,
buffer.index, mV4l2Fd.get(), buffer.bytesused, buffer.m.offset);
}
void ExternalCameraDeviceSession::enqueueV4l2Frame(const sp<V4L2Frame>& frame) {
ATRACE_CALL();
frame->unmap();
ATRACE_BEGIN("VIDIOC_QBUF");
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = frame->mBufferIndex;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__,
frame->mBufferIndex, strerror(errno));
return;
}
ATRACE_END();
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
mNumDequeuedV4l2Buffers--;
}
mV4L2BufferReturned.notify_one();
}
Status ExternalCameraDeviceSession::isStreamCombinationSupported(
const V3_2::StreamConfiguration& config,
const std::vector<SupportedV4L2Format>& supportedFormats) {
if (config.operationMode != StreamConfigurationMode::NORMAL_MODE) {
ALOGE("%s: unsupported operation mode: %d", __FUNCTION__, config.operationMode);
return Status::ILLEGAL_ARGUMENT;
}
if (config.streams.size() == 0) {
ALOGE("%s: cannot configure zero stream", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
int numProcessedStream = 0;
int numStallStream = 0;
for (const auto& stream : config.streams) {
// Check if the format/width/height combo is supported
if (!isSupported(stream, supportedFormats)) {
return Status::ILLEGAL_ARGUMENT;
}
if (stream.format == PixelFormat::BLOB) {
numStallStream++;
} else {
numProcessedStream++;
}
}
if (numProcessedStream > kMaxProcessedStream) {
ALOGE("%s: too many processed streams (expect <= %d, got %d)", __FUNCTION__,
kMaxProcessedStream, numProcessedStream);
return Status::ILLEGAL_ARGUMENT;
}
if (numStallStream > kMaxStallStream) {
ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__,
kMaxStallStream, numStallStream);
return Status::ILLEGAL_ARGUMENT;
}
return Status::OK;
}
Status ExternalCameraDeviceSession::configureStreams(
const V3_2::StreamConfiguration& config,
V3_3::HalStreamConfiguration* out,
uint32_t blobBufferSize) {
ATRACE_CALL();
Status status = isStreamCombinationSupported(config, mSupportedFormats);
if (status != Status::OK) {
return status;
}
status = initStatus();
if (status != Status::OK) {
return status;
}
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
if (!mInflightFrames.empty()) {
ALOGE("%s: trying to configureStreams while there are still %zu inflight frames!",
__FUNCTION__, mInflightFrames.size());
return Status::INTERNAL_ERROR;
}
}
Mutex::Autolock _l(mLock);
{
Mutex::Autolock _l(mCbsLock);
// Add new streams
for (const auto& stream : config.streams) {
if (mStreamMap.count(stream.id) == 0) {
mStreamMap[stream.id] = stream;
mCirculatingBuffers.emplace(stream.id, CirculatingBuffers{});
}
}
// Cleanup removed streams
for(auto it = mStreamMap.begin(); it != mStreamMap.end();) {
int id = it->first;
bool found = false;
for (const auto& stream : config.streams) {
if (id == stream.id) {
found = true;
break;
}
}
if (!found) {
// Unmap all buffers of deleted stream
cleanupBuffersLocked(id);
it = mStreamMap.erase(it);
} else {
++it;
}
}
}
// Now select a V4L2 format to produce all output streams
float desiredAr = (mCroppingType == VERTICAL) ? kMaxAspectRatio : kMinAspectRatio;
uint32_t maxDim = 0;
for (const auto& stream : config.streams) {
float aspectRatio = ASPECT_RATIO(stream);
ALOGI("%s: request stream %dx%d", __FUNCTION__, stream.width, stream.height);
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
desiredAr = aspectRatio;
}
// The dimension that's not cropped
uint32_t dim = (mCroppingType == VERTICAL) ? stream.width : stream.height;
if (dim > maxDim) {
maxDim = dim;
}
}
// Find the smallest format that matches the desired aspect ratio and is wide/high enough
SupportedV4L2Format v4l2Fmt {.width = 0, .height = 0};
for (const auto& fmt : mSupportedFormats) {
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
if (dim >= maxDim) {
float aspectRatio = ASPECT_RATIO(fmt);
if (isAspectRatioClose(aspectRatio, desiredAr)) {
v4l2Fmt = fmt;
// since mSupportedFormats is sorted by width then height, the first matching fmt
// will be the smallest one with matching aspect ratio
break;
}
}
}
if (v4l2Fmt.width == 0) {
// Cannot find exact good aspect ratio candidate, try to find a close one
for (const auto& fmt : mSupportedFormats) {
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
if (dim >= maxDim) {
float aspectRatio = ASPECT_RATIO(fmt);
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
v4l2Fmt = fmt;
break;
}
}
}
}
if (v4l2Fmt.width == 0) {
ALOGE("%s: unable to find a resolution matching (%s at least %d, aspect ratio %f)"
, __FUNCTION__, (mCroppingType == VERTICAL) ? "width" : "height",
maxDim, desiredAr);
return Status::ILLEGAL_ARGUMENT;
}
if (configureV4l2StreamLocked(v4l2Fmt) != 0) {
ALOGE("V4L configuration failed!, format:%c%c%c%c, w %d, h %d",
v4l2Fmt.fourcc & 0xFF,
(v4l2Fmt.fourcc >> 8) & 0xFF,
(v4l2Fmt.fourcc >> 16) & 0xFF,
(v4l2Fmt.fourcc >> 24) & 0xFF,
v4l2Fmt.width, v4l2Fmt.height);
return Status::INTERNAL_ERROR;
}
Size v4lSize = {v4l2Fmt.width, v4l2Fmt.height};
Size thumbSize { 0, 0 };
camera_metadata_ro_entry entry =
mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
for(uint32_t i = 0; i < entry.count; i += 2) {
Size sz { static_cast<uint32_t>(entry.data.i32[i]),
static_cast<uint32_t>(entry.data.i32[i+1]) };
if(sz.width * sz.height > thumbSize.width * thumbSize.height) {
thumbSize = sz;
}
}
if (thumbSize.width * thumbSize.height == 0) {
ALOGE("%s: non-zero thumbnail size not available", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
status = mOutputThread->allocateIntermediateBuffers(v4lSize,
mMaxThumbResolution, config.streams, blobBufferSize);
if (status != Status::OK) {
ALOGE("%s: allocating intermediate buffers failed!", __FUNCTION__);
return status;
}
out->streams.resize(config.streams.size());
for (size_t i = 0; i < config.streams.size(); i++) {
out->streams[i].overrideDataSpace = config.streams[i].dataSpace;
out->streams[i].v3_2.id = config.streams[i].id;
// TODO: double check should we add those CAMERA flags
mStreamMap[config.streams[i].id].usage =
out->streams[i].v3_2.producerUsage = config.streams[i].usage |
BufferUsage::CPU_WRITE_OFTEN |
BufferUsage::CAMERA_OUTPUT;
out->streams[i].v3_2.consumerUsage = 0;
out->streams[i].v3_2.maxBuffers = mV4L2BufferCount;
switch (config.streams[i].format) {
case PixelFormat::BLOB:
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12: // Used by SurfaceTexture
// No override
out->streams[i].v3_2.overrideFormat = config.streams[i].format;
break;
case PixelFormat::IMPLEMENTATION_DEFINED:
// Override based on VIDEO or not
out->streams[i].v3_2.overrideFormat =
(config.streams[i].usage & BufferUsage::VIDEO_ENCODER) ?
PixelFormat::YCBCR_420_888 : PixelFormat::YV12;
// Save overridden formt in mStreamMap
mStreamMap[config.streams[i].id].format = out->streams[i].v3_2.overrideFormat;
break;
default:
ALOGE("%s: unsupported format 0x%x", __FUNCTION__, config.streams[i].format);
return Status::ILLEGAL_ARGUMENT;
}
}
mFirstRequest = true;
return Status::OK;
}
bool ExternalCameraDeviceSession::isClosed() {
Mutex::Autolock _l(mLock);
return mClosed;
}
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define UPDATE(md, tag, data, size) \
do { \
if ((md).update((tag), (data), (size))) { \
ALOGE("Update " #tag " failed!"); \
return BAD_VALUE; \
} \
} while (0)
status_t ExternalCameraDeviceSession::initDefaultRequests() {
::android::hardware::camera::common::V1_0::helper::CameraMetadata md;
const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
UPDATE(md, ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
const int32_t exposureCompensation = 0;
UPDATE(md, ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &exposureCompensation, 1);
const uint8_t videoStabilizationMode = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
UPDATE(md, ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &videoStabilizationMode, 1);
const uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
UPDATE(md, ANDROID_CONTROL_AE_MODE, &aeMode, 1);
const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
UPDATE(md, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
const uint8_t afMode = ANDROID_CONTROL_AF_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AF_MODE, &afMode, 1);
const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
UPDATE(md, ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED;
UPDATE(md, ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
UPDATE(md, ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
UPDATE(md, ANDROID_FLASH_MODE, &flashMode, 1);
const int32_t thumbnailSize[] = {240, 180};
UPDATE(md, ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
const uint8_t jpegQuality = 90;
UPDATE(md, ANDROID_JPEG_QUALITY, &jpegQuality, 1);
UPDATE(md, ANDROID_JPEG_THUMBNAIL_QUALITY, &jpegQuality, 1);
const int32_t jpegOrientation = 0;
UPDATE(md, ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
const uint8_t oisMode = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
UPDATE(md, ANDROID_LENS_OPTICAL_STABILIZATION_MODE, &oisMode, 1);
const uint8_t nrMode = ANDROID_NOISE_REDUCTION_MODE_OFF;
UPDATE(md, ANDROID_NOISE_REDUCTION_MODE, &nrMode, 1);
const int32_t testPatternModes = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
UPDATE(md, ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternModes, 1);
const uint8_t fdMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_FACE_DETECT_MODE, &fdMode, 1);
const uint8_t hotpixelMode = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotpixelMode, 1);
bool support30Fps = false;
int32_t maxFps = std::numeric_limits<int32_t>::min();
for (const auto& supportedFormat : mSupportedFormats) {
for (const auto& fr : supportedFormat.frameRates) {
int32_t framerateInt = static_cast<int32_t>(fr.getDouble());
if (maxFps < framerateInt) {
maxFps = framerateInt;
}
if (framerateInt == 30) {
support30Fps = true;
break;
}
}
if (support30Fps) {
break;
}
}
int32_t defaultFramerate = support30Fps ? 30 : maxFps;
int32_t defaultFpsRange[] = {defaultFramerate / 2, defaultFramerate};
UPDATE(md, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, defaultFpsRange, ARRAY_SIZE(defaultFpsRange));
uint8_t antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AE_ANTIBANDING_MODE, &antibandingMode, 1);
const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_MODE, &controlMode, 1);
auto requestTemplates = hidl_enum_range<RequestTemplate>();
for (RequestTemplate type : requestTemplates) {
::android::hardware::camera::common::V1_0::helper::CameraMetadata mdCopy = md;
uint8_t intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
switch (type) {
case RequestTemplate::PREVIEW:
intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case RequestTemplate::STILL_CAPTURE:
intent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case RequestTemplate::VIDEO_RECORD:
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case RequestTemplate::VIDEO_SNAPSHOT:
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
default:
ALOGV("%s: unsupported RequestTemplate type %d", __FUNCTION__, type);
continue;
}
UPDATE(mdCopy, ANDROID_CONTROL_CAPTURE_INTENT, &intent, 1);
camera_metadata_t* rawMd = mdCopy.release();
CameraMetadata hidlMd;
hidlMd.setToExternal(
(uint8_t*) rawMd, get_camera_metadata_size(rawMd));
mDefaultRequests[type] = hidlMd;
free_camera_metadata(rawMd);
}
return OK;
}
status_t ExternalCameraDeviceSession::fillCaptureResult(
common::V1_0::helper::CameraMetadata &md, nsecs_t timestamp) {
// android.control
// For USB camera, we don't know the AE state. Set the state to converged to
// indicate the frame should be good to use. Then apps don't have to wait the
// AE state.
const uint8_t aeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
UPDATE(md, ANDROID_CONTROL_AE_STATE, &aeState, 1);
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
UPDATE(md, ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
bool afTrigger = false;
{
std::lock_guard<std::mutex> lk(mAfTriggerLock);
afTrigger = mAfTrigger;
if (md.exists(ANDROID_CONTROL_AF_TRIGGER)) {
camera_metadata_entry entry = md.find(ANDROID_CONTROL_AF_TRIGGER);
if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_START) {
mAfTrigger = afTrigger = true;
} else if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_CANCEL) {
mAfTrigger = afTrigger = false;
}
}
}
// For USB camera, the USB camera handles everything and we don't have control
// over AF. We only simply fake the AF metadata based on the request
// received here.
uint8_t afState;
if (afTrigger) {
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
} else {
afState = ANDROID_CONTROL_AF_STATE_INACTIVE;
}
UPDATE(md, ANDROID_CONTROL_AF_STATE, &afState, 1);
// Set AWB state to converged to indicate the frame should be good to use.
const uint8_t awbState = ANDROID_CONTROL_AWB_STATE_CONVERGED;
UPDATE(md, ANDROID_CONTROL_AWB_STATE, &awbState, 1);
const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
UPDATE(md, ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
camera_metadata_ro_entry active_array_size =
mCameraCharacteristics.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
if (active_array_size.count == 0) {
ALOGE("%s: cannot find active array size!", __FUNCTION__);
return -EINVAL;
}
const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE;
UPDATE(md, ANDROID_FLASH_STATE, &flashState, 1);
// This means pipeline latency of X frame intervals. The maximum number is 4.
const uint8_t requestPipelineMaxDepth = 4;
UPDATE(md, ANDROID_REQUEST_PIPELINE_DEPTH, &requestPipelineMaxDepth, 1);
// android.scaler
const int32_t crop_region[] = {
active_array_size.data.i32[0], active_array_size.data.i32[1],
active_array_size.data.i32[2], active_array_size.data.i32[3],
};
UPDATE(md, ANDROID_SCALER_CROP_REGION, crop_region, ARRAY_SIZE(crop_region));
// android.sensor
UPDATE(md, ANDROID_SENSOR_TIMESTAMP, &timestamp, 1);
// android.statistics
const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);
const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
UPDATE(md, ANDROID_STATISTICS_SCENE_FLICKER, &sceneFlicker, 1);
return OK;
}
#undef ARRAY_SIZE
#undef UPDATE
} // namespace implementation
} // namespace V3_4
} // namespace device
} // namespace camera
} // namespace hardware
} // namespace android