blob: 88d42340e020dc1c481f555ec8fdd905b6fb29a7 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "bluetooth_hidl_hal_test"
#include <android-base/logging.h>
#include <android/hardware/bluetooth/1.0/IBluetoothHci.h>
#include <android/hardware/bluetooth/1.0/IBluetoothHciCallbacks.h>
#include <android/hardware/bluetooth/1.0/types.h>
#include <hardware/bluetooth.h>
#include <utils/Log.h>
#include <VtsHalHidlTargetCallbackBase.h>
#include <VtsHalHidlTargetTestBase.h>
#include <VtsHalHidlTargetTestEnvBase.h>
#include <queue>
using ::android::sp;
using ::android::hardware::hidl_death_recipient;
using ::android::hardware::hidl_vec;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::bluetooth::V1_0::IBluetoothHci;
using ::android::hardware::bluetooth::V1_0::IBluetoothHciCallbacks;
using ::android::hardware::bluetooth::V1_0::Status;
#define HCI_MINIMUM_HCI_VERSION 5 // Bluetooth Core Specification 3.0 + HS
#define HCI_MINIMUM_LMP_VERSION 5 // Bluetooth Core Specification 3.0 + HS
#define NUM_HCI_COMMANDS_BANDWIDTH 1000
#define NUM_SCO_PACKETS_BANDWIDTH 1000
#define NUM_ACL_PACKETS_BANDWIDTH 1000
#define WAIT_FOR_INIT_TIMEOUT std::chrono::milliseconds(2000)
#define WAIT_FOR_HCI_EVENT_TIMEOUT std::chrono::milliseconds(2000)
#define WAIT_FOR_SCO_DATA_TIMEOUT std::chrono::milliseconds(1000)
#define WAIT_FOR_ACL_DATA_TIMEOUT std::chrono::milliseconds(1000)
#define COMMAND_HCI_SHOULD_BE_UNKNOWN \
{ 0xff, 0x3B, 0x08, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }
#define COMMAND_HCI_READ_LOCAL_VERSION_INFORMATION \
{ 0x01, 0x10, 0x00 }
#define COMMAND_HCI_READ_BUFFER_SIZE \
{ 0x05, 0x10, 0x00 }
#define COMMAND_HCI_WRITE_LOOPBACK_MODE_LOCAL \
{ 0x02, 0x18, 0x01, 0x01 }
#define COMMAND_HCI_RESET \
{ 0x03, 0x0c, 0x00 }
#define COMMAND_HCI_WRITE_LOCAL_NAME \
{ 0x13, 0x0c, 0xf8 }
#define HCI_STATUS_SUCCESS 0x00
#define HCI_STATUS_UNKNOWN_HCI_COMMAND 0x01
#define EVENT_CONNECTION_COMPLETE 0x03
#define EVENT_COMMAND_COMPLETE 0x0e
#define EVENT_COMMAND_STATUS 0x0f
#define EVENT_NUMBER_OF_COMPLETED_PACKETS 0x13
#define EVENT_LOOPBACK_COMMAND 0x19
#define EVENT_CODE_BYTE 0
#define EVENT_LENGTH_BYTE 1
#define EVENT_FIRST_PAYLOAD_BYTE 2
#define EVENT_COMMAND_STATUS_STATUS_BYTE 2
#define EVENT_COMMAND_STATUS_ALLOWED_PACKETS_BYTE 3
#define EVENT_COMMAND_STATUS_OPCODE_LSBYTE 4 // Bytes 4 and 5
#define EVENT_COMMAND_COMPLETE_ALLOWED_PACKETS_BYTE 2
#define EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE 3 // Bytes 3 and 4
#define EVENT_COMMAND_COMPLETE_STATUS_BYTE 5
#define EVENT_COMMAND_COMPLETE_FIRST_PARAM_BYTE 6
#define EVENT_LOCAL_HCI_VERSION_BYTE EVENT_COMMAND_COMPLETE_FIRST_PARAM_BYTE
#define EVENT_LOCAL_LMP_VERSION_BYTE EVENT_LOCAL_HCI_VERSION_BYTE + 3
#define EVENT_CONNECTION_COMPLETE_PARAM_LENGTH 11
#define EVENT_CONNECTION_COMPLETE_TYPE 11
#define EVENT_CONNECTION_COMPLETE_TYPE_SCO 0
#define EVENT_CONNECTION_COMPLETE_TYPE_ACL 1
#define EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE 3
#define EVENT_COMMAND_STATUS_LENGTH 4
#define EVENT_NUMBER_OF_COMPLETED_PACKETS_NUM_HANDLES 2
#define ACL_BROADCAST_FLAG_OFFSET 6
#define ACL_BROADCAST_FLAG_POINT_TO_POINT 0x0
#define ACL_BROADCAST_POINT_TO_POINT \
(ACL_BROADCAST_FLAG_POINT_TO_POINT << ACL_BROADCAST_FLAG_OFFSET)
#define ACL_PACKET_BOUNDARY_FLAG_OFFSET 4
#define ACL_PACKET_BOUNDARY_FLAG_FIRST_AUTO_FLUSHABLE 0x2
#define ACL_PACKET_BOUNDARY_FIRST_AUTO_FLUSHABLE \
(ACL_PACKET_BOUNDARY_FLAG_FIRST_AUTO_FLUSHABLE \
<< ACL_PACKET_BOUNDARY_FLAG_OFFSET)
constexpr char kCallbackNameAclEventReceived[] = "aclDataReceived";
constexpr char kCallbackNameHciEventReceived[] = "hciEventReceived";
constexpr char kCallbackNameInitializationComplete[] = "initializationComplete";
constexpr char kCallbackNameScoEventReceived[] = "scoDataReceived";
class ThroughputLogger {
public:
ThroughputLogger(std::string task)
: task_(task), start_time_(std::chrono::steady_clock::now()) {}
~ThroughputLogger() {
if (total_bytes_ == 0) return;
std::chrono::duration<double> duration =
std::chrono::steady_clock::now() - start_time_;
double s = duration.count();
if (s == 0) return;
double rate_kb = (static_cast<double>(total_bytes_) / s) / 1024;
ALOGD("%s %.1f KB/s (%zu bytes in %.3fs)", task_.c_str(), rate_kb,
total_bytes_, s);
}
void setTotalBytes(size_t total_bytes) { total_bytes_ = total_bytes; }
private:
size_t total_bytes_;
std::string task_;
std::chrono::steady_clock::time_point start_time_;
};
// Test environment for Bluetooth HIDL HAL.
class BluetoothHidlEnvironment : public ::testing::VtsHalHidlTargetTestEnvBase {
public:
// get the test environment singleton
static BluetoothHidlEnvironment* Instance() {
static BluetoothHidlEnvironment* instance = new BluetoothHidlEnvironment;
return instance;
}
virtual void registerTestServices() override {
registerTestService<IBluetoothHci>();
}
private:
BluetoothHidlEnvironment() {}
};
// The main test class for Bluetooth HIDL HAL.
class BluetoothHidlTest : public ::testing::VtsHalHidlTargetTestBase {
public:
virtual void SetUp() override {
// currently test passthrough mode only
bluetooth =
::testing::VtsHalHidlTargetTestBase::getService<IBluetoothHci>();
ASSERT_NE(bluetooth, nullptr);
ALOGI("%s: getService() for bluetooth is %s", __func__,
bluetooth->isRemote() ? "remote" : "local");
bluetooth_hci_death_recipient = new BluetoothHciDeathRecipient();
ASSERT_NE(bluetooth_hci_death_recipient, nullptr);
ASSERT_TRUE(
bluetooth->linkToDeath(bluetooth_hci_death_recipient, 0).isOk());
bluetooth_cb = new BluetoothHciCallbacks(*this);
ASSERT_NE(bluetooth_cb, nullptr);
max_acl_data_packet_length = 0;
max_sco_data_packet_length = 0;
max_acl_data_packets = 0;
max_sco_data_packets = 0;
initialized = false;
event_cb_count = 0;
acl_cb_count = 0;
sco_cb_count = 0;
ASSERT_FALSE(initialized);
// Should not be checked in production code
ASSERT_TRUE(bluetooth->initialize(bluetooth_cb).isOk());
bluetooth_cb->SetWaitTimeout(kCallbackNameInitializationComplete,
WAIT_FOR_INIT_TIMEOUT);
bluetooth_cb->SetWaitTimeout(kCallbackNameHciEventReceived,
WAIT_FOR_HCI_EVENT_TIMEOUT);
bluetooth_cb->SetWaitTimeout(kCallbackNameAclEventReceived,
WAIT_FOR_ACL_DATA_TIMEOUT);
bluetooth_cb->SetWaitTimeout(kCallbackNameScoEventReceived,
WAIT_FOR_SCO_DATA_TIMEOUT);
EXPECT_TRUE(
bluetooth_cb->WaitForCallback(kCallbackNameInitializationComplete)
.no_timeout);
ASSERT_TRUE(initialized);
}
virtual void TearDown() override {
// Should not be checked in production code
ASSERT_TRUE(bluetooth->close().isOk());
handle_no_ops();
EXPECT_EQ(static_cast<size_t>(0), event_queue.size());
EXPECT_EQ(static_cast<size_t>(0), sco_queue.size());
EXPECT_EQ(static_cast<size_t>(0), acl_queue.size());
}
void setBufferSizes();
// Functions called from within tests in loopback mode
void sendAndCheckHCI(int num_packets);
void sendAndCheckSCO(int num_packets, size_t size, uint16_t handle);
void sendAndCheckACL(int num_packets, size_t size, uint16_t handle);
// Helper functions to try to get a handle on verbosity
void enterLoopbackMode(std::vector<uint16_t>& sco_handles,
std::vector<uint16_t>& acl_handles);
void handle_no_ops();
void wait_for_event(bool timeout_is_error);
void wait_for_command_complete_event(hidl_vec<uint8_t> cmd);
int wait_for_completed_packets_event(uint16_t handle);
class BluetoothHciDeathRecipient : public hidl_death_recipient {
public:
virtual void serviceDied(
uint64_t /*cookie*/,
const android::wp<::android::hidl::base::V1_0::IBase>& /*who*/) {
FAIL();
}
};
// A simple test implementation of BluetoothHciCallbacks.
class BluetoothHciCallbacks
: public ::testing::VtsHalHidlTargetCallbackBase<BluetoothHidlTest>,
public IBluetoothHciCallbacks {
BluetoothHidlTest& parent_;
public:
BluetoothHciCallbacks(BluetoothHidlTest& parent) : parent_(parent){};
virtual ~BluetoothHciCallbacks() = default;
Return<void> initializationComplete(Status status) override {
parent_.initialized = (status == Status::SUCCESS);
NotifyFromCallback(kCallbackNameInitializationComplete);
ALOGV("%s (status = %d)", __func__, static_cast<int>(status));
return Void();
};
Return<void> hciEventReceived(
const ::android::hardware::hidl_vec<uint8_t>& event) override {
parent_.event_cb_count++;
parent_.event_queue.push(event);
NotifyFromCallback(kCallbackNameHciEventReceived);
ALOGV("Event received (length = %d)", static_cast<int>(event.size()));
return Void();
};
Return<void> aclDataReceived(
const ::android::hardware::hidl_vec<uint8_t>& data) override {
parent_.acl_cb_count++;
parent_.acl_queue.push(data);
NotifyFromCallback(kCallbackNameAclEventReceived);
return Void();
};
Return<void> scoDataReceived(
const ::android::hardware::hidl_vec<uint8_t>& data) override {
parent_.sco_cb_count++;
parent_.sco_queue.push(data);
NotifyFromCallback(kCallbackNameScoEventReceived);
return Void();
};
};
sp<IBluetoothHci> bluetooth;
sp<BluetoothHciCallbacks> bluetooth_cb;
sp<BluetoothHciDeathRecipient> bluetooth_hci_death_recipient;
std::queue<hidl_vec<uint8_t>> event_queue;
std::queue<hidl_vec<uint8_t>> acl_queue;
std::queue<hidl_vec<uint8_t>> sco_queue;
bool initialized;
int event_cb_count;
int sco_cb_count;
int acl_cb_count;
int max_acl_data_packet_length;
int max_sco_data_packet_length;
int max_acl_data_packets;
int max_sco_data_packets;
};
// Discard NO-OPs from the event queue.
void BluetoothHidlTest::handle_no_ops() {
while (event_queue.size() > 0) {
hidl_vec<uint8_t> event = event_queue.front();
EXPECT_GE(event.size(),
static_cast<size_t>(EVENT_COMMAND_COMPLETE_STATUS_BYTE));
bool event_is_no_op =
(event[EVENT_CODE_BYTE] == EVENT_COMMAND_COMPLETE) &&
(event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE] == 0x00) &&
(event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1] == 0x00);
event_is_no_op |= (event[EVENT_CODE_BYTE] == EVENT_COMMAND_STATUS) &&
(event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE] == 0x00) &&
(event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE + 1] == 0x00);
if (event_is_no_op) {
event_queue.pop();
} else {
return;
}
}
}
// Receive an event, discarding NO-OPs.
void BluetoothHidlTest::wait_for_event(bool timeout_is_error = true) {
hidl_vec<uint8_t> event;
do {
bool no_timeout =
bluetooth_cb->WaitForCallback(kCallbackNameHciEventReceived).no_timeout;
EXPECT_TRUE(no_timeout || !timeout_is_error);
if (no_timeout && timeout_is_error) {
EXPECT_LT(static_cast<size_t>(0), event_queue.size());
}
if (event_queue.size() == 0) {
// WaitForCallback timed out.
return;
}
handle_no_ops();
} while (event_queue.size() == 0);
}
// Wait until a COMMAND_COMPLETE is received.
void BluetoothHidlTest::wait_for_command_complete_event(hidl_vec<uint8_t> cmd) {
wait_for_event();
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_COMMAND_COMPLETE_STATUS_BYTE));
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
}
// Send the command to read the controller's buffer sizes.
void BluetoothHidlTest::setBufferSizes() {
hidl_vec<uint8_t> cmd = COMMAND_HCI_READ_BUFFER_SIZE;
bluetooth->sendHciCommand(cmd);
wait_for_event();
if (event_queue.size() == 0) return;
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
max_acl_data_packet_length =
event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 1] +
(event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 2] << 8);
max_sco_data_packet_length = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 3];
max_acl_data_packets = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 4] +
(event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 5] << 8);
max_sco_data_packets = event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 6] +
(event[EVENT_COMMAND_COMPLETE_STATUS_BYTE + 7] << 8);
ALOGD("%s: ACL max %d num %d SCO max %d num %d", __func__,
static_cast<int>(max_acl_data_packet_length),
static_cast<int>(max_acl_data_packets),
static_cast<int>(max_sco_data_packet_length),
static_cast<int>(max_sco_data_packets));
}
// Send an HCI command (in Loopback mode) and check the response.
void BluetoothHidlTest::sendAndCheckHCI(int num_packets) {
ThroughputLogger logger = {__func__};
int command_size = 0;
for (int n = 0; n < num_packets; n++) {
// Send an HCI packet
std::vector<uint8_t> write_name = COMMAND_HCI_WRITE_LOCAL_NAME;
// With a name
char new_name[] = "John Jacob Jingleheimer Schmidt ___________________0";
size_t new_name_length = strlen(new_name);
for (size_t i = 0; i < new_name_length; i++)
write_name.push_back(static_cast<uint8_t>(new_name[i]));
// And the packet number
size_t i = new_name_length - 1;
for (int digits = n; digits > 0; digits = digits / 10, i--)
write_name[i] = static_cast<uint8_t>('0' + digits % 10);
// And padding
for (size_t i = 0; i < 248 - new_name_length; i++)
write_name.push_back(static_cast<uint8_t>(0));
hidl_vec<uint8_t> cmd = write_name;
bluetooth->sendHciCommand(cmd);
// Check the loopback of the HCI packet
wait_for_event();
if (event_queue.size() == 0) return;
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
size_t compare_length =
(cmd.size() > static_cast<size_t>(0xff) ? static_cast<size_t>(0xff)
: cmd.size());
EXPECT_GT(event.size(), compare_length + EVENT_FIRST_PAYLOAD_BYTE - 1);
EXPECT_EQ(EVENT_LOOPBACK_COMMAND, event[EVENT_CODE_BYTE]);
EXPECT_EQ(compare_length, event[EVENT_LENGTH_BYTE]);
// Don't compare past the end of the event.
if (compare_length + EVENT_FIRST_PAYLOAD_BYTE > event.size()) {
compare_length = event.size() - EVENT_FIRST_PAYLOAD_BYTE;
ALOGE("Only comparing %d bytes", static_cast<int>(compare_length));
}
if (n == num_packets - 1) {
command_size = cmd.size();
}
for (size_t i = 0; i < compare_length; i++)
EXPECT_EQ(cmd[i], event[EVENT_FIRST_PAYLOAD_BYTE + i]);
}
logger.setTotalBytes(command_size * num_packets * 2);
}
// Send a SCO data packet (in Loopback mode) and check the response.
void BluetoothHidlTest::sendAndCheckSCO(int num_packets, size_t size,
uint16_t handle) {
ThroughputLogger logger = {__func__};
for (int n = 0; n < num_packets; n++) {
// Send a SCO packet
hidl_vec<uint8_t> sco_packet;
std::vector<uint8_t> sco_vector;
sco_vector.push_back(static_cast<uint8_t>(handle & 0xff));
sco_vector.push_back(static_cast<uint8_t>((handle & 0x0f00) >> 8));
sco_vector.push_back(static_cast<uint8_t>(size & 0xff));
sco_vector.push_back(static_cast<uint8_t>((size & 0xff00) >> 8));
for (size_t i = 0; i < size; i++) {
sco_vector.push_back(static_cast<uint8_t>(i + n));
}
sco_packet = sco_vector;
bluetooth->sendScoData(sco_vector);
// Check the loopback of the SCO packet
EXPECT_TRUE(bluetooth_cb->WaitForCallback(kCallbackNameScoEventReceived)
.no_timeout);
hidl_vec<uint8_t> sco_loopback = sco_queue.front();
sco_queue.pop();
EXPECT_EQ(sco_packet.size(), sco_loopback.size());
size_t successful_bytes = 0;
for (size_t i = 0; i < sco_packet.size(); i++) {
if (sco_packet[i] == sco_loopback[i]) {
successful_bytes = i;
} else {
ALOGE("Miscompare at %d (expected %x, got %x)", static_cast<int>(i),
sco_packet[i], sco_loopback[i]);
ALOGE("At %d (expected %x, got %x)", static_cast<int>(i + 1),
sco_packet[i + 1], sco_loopback[i + 1]);
break;
}
}
EXPECT_EQ(sco_packet.size(), successful_bytes + 1);
}
logger.setTotalBytes(num_packets * size * 2);
}
// Send an ACL data packet (in Loopback mode) and check the response.
void BluetoothHidlTest::sendAndCheckACL(int num_packets, size_t size,
uint16_t handle) {
ThroughputLogger logger = {__func__};
for (int n = 0; n < num_packets; n++) {
// Send an ACL packet
hidl_vec<uint8_t> acl_packet;
std::vector<uint8_t> acl_vector;
acl_vector.push_back(static_cast<uint8_t>(handle & 0xff));
acl_vector.push_back(static_cast<uint8_t>((handle & 0x0f00) >> 8) |
ACL_BROADCAST_POINT_TO_POINT |
ACL_PACKET_BOUNDARY_FIRST_AUTO_FLUSHABLE);
acl_vector.push_back(static_cast<uint8_t>(size & 0xff));
acl_vector.push_back(static_cast<uint8_t>((size & 0xff00) >> 8));
for (size_t i = 0; i < size; i++) {
acl_vector.push_back(static_cast<uint8_t>(i + n));
}
acl_packet = acl_vector;
bluetooth->sendAclData(acl_vector);
// Check the loopback of the ACL packet
EXPECT_TRUE(bluetooth_cb->WaitForCallback(kCallbackNameAclEventReceived)
.no_timeout);
hidl_vec<uint8_t> acl_loopback = acl_queue.front();
acl_queue.pop();
EXPECT_EQ(acl_packet.size(), acl_loopback.size());
size_t successful_bytes = 0;
for (size_t i = 0; i < acl_packet.size(); i++) {
if (acl_packet[i] == acl_loopback[i]) {
successful_bytes = i;
} else {
ALOGE("Miscompare at %d (expected %x, got %x)", static_cast<int>(i),
acl_packet[i], acl_loopback[i]);
ALOGE("At %d (expected %x, got %x)", static_cast<int>(i + 1),
acl_packet[i + 1], acl_loopback[i + 1]);
break;
}
}
EXPECT_EQ(acl_packet.size(), successful_bytes + 1);
}
logger.setTotalBytes(num_packets * size * 2);
}
// Return the number of completed packets reported by the controller.
int BluetoothHidlTest::wait_for_completed_packets_event(uint16_t handle) {
int packets_processed = 0;
wait_for_event(false);
if (event_queue.size() == 0) {
ALOGW("%s: WaitForCallback timed out.", __func__);
return packets_processed;
}
while (event_queue.size() > 0) {
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_EQ(EVENT_NUMBER_OF_COMPLETED_PACKETS, event[EVENT_CODE_BYTE]);
EXPECT_EQ(1, event[EVENT_NUMBER_OF_COMPLETED_PACKETS_NUM_HANDLES]);
uint16_t event_handle = event[3] + (event[4] << 8);
EXPECT_EQ(handle, event_handle);
packets_processed += event[5] + (event[6] << 8);
}
return packets_processed;
}
// Send local loopback command and initialize SCO and ACL handles.
void BluetoothHidlTest::enterLoopbackMode(std::vector<uint16_t>& sco_handles,
std::vector<uint16_t>& acl_handles) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_WRITE_LOOPBACK_MODE_LOCAL;
bluetooth->sendHciCommand(cmd);
// Receive connection complete events with data channels
int connection_event_count = 0;
bool command_complete_received = false;
while (true) {
wait_for_event(false);
if (event_queue.size() == 0) {
// Fail if there was no event received or no connections completed.
EXPECT_TRUE(command_complete_received);
EXPECT_LT(0, connection_event_count);
return;
}
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_COMMAND_COMPLETE_STATUS_BYTE));
if (event[EVENT_CODE_BYTE] == EVENT_CONNECTION_COMPLETE) {
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_CONNECTION_COMPLETE_TYPE));
EXPECT_EQ(event[EVENT_LENGTH_BYTE],
EVENT_CONNECTION_COMPLETE_PARAM_LENGTH);
uint8_t connection_type = event[EVENT_CONNECTION_COMPLETE_TYPE];
EXPECT_TRUE(connection_type == EVENT_CONNECTION_COMPLETE_TYPE_SCO ||
connection_type == EVENT_CONNECTION_COMPLETE_TYPE_ACL);
// Save handles
uint16_t handle = event[EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE] |
event[EVENT_CONNECTION_COMPLETE_HANDLE_LSBYTE + 1] << 8;
if (connection_type == EVENT_CONNECTION_COMPLETE_TYPE_SCO)
sco_handles.push_back(handle);
else
acl_handles.push_back(handle);
ALOGD("Connect complete type = %d handle = %d",
event[EVENT_CONNECTION_COMPLETE_TYPE], handle);
connection_event_count++;
} else {
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
command_complete_received = true;
}
}
}
// Empty test: Initialize()/Close() are called in SetUp()/TearDown().
TEST_F(BluetoothHidlTest, InitializeAndClose) {}
// Send an HCI Reset with sendHciCommand and wait for a command complete event.
TEST_F(BluetoothHidlTest, HciReset) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_RESET;
bluetooth->sendHciCommand(cmd);
wait_for_command_complete_event(cmd);
}
// Read and check the HCI version of the controller.
TEST_F(BluetoothHidlTest, HciVersionTest) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_READ_LOCAL_VERSION_INFORMATION;
bluetooth->sendHciCommand(cmd);
wait_for_event();
if (event_queue.size() == 0) return;
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(), static_cast<size_t>(EVENT_LOCAL_LMP_VERSION_BYTE));
EXPECT_EQ(EVENT_COMMAND_COMPLETE, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_SUCCESS, event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
EXPECT_LE(HCI_MINIMUM_HCI_VERSION, event[EVENT_LOCAL_HCI_VERSION_BYTE]);
EXPECT_LE(HCI_MINIMUM_LMP_VERSION, event[EVENT_LOCAL_LMP_VERSION_BYTE]);
}
// Send an unknown HCI command and wait for the error message.
TEST_F(BluetoothHidlTest, HciUnknownCommand) {
hidl_vec<uint8_t> cmd = COMMAND_HCI_SHOULD_BE_UNKNOWN;
bluetooth->sendHciCommand(cmd);
wait_for_event();
if (event_queue.size() == 0) return;
hidl_vec<uint8_t> event = event_queue.front();
event_queue.pop();
EXPECT_GT(event.size(),
static_cast<size_t>(EVENT_COMMAND_COMPLETE_STATUS_BYTE));
if (event[EVENT_CODE_BYTE] == EVENT_COMMAND_COMPLETE) {
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_COMPLETE_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_UNKNOWN_HCI_COMMAND,
event[EVENT_COMMAND_COMPLETE_STATUS_BYTE]);
} else {
EXPECT_EQ(EVENT_COMMAND_STATUS, event[EVENT_CODE_BYTE]);
EXPECT_EQ(cmd[0], event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE]);
EXPECT_EQ(cmd[1], event[EVENT_COMMAND_STATUS_OPCODE_LSBYTE + 1]);
EXPECT_EQ(HCI_STATUS_UNKNOWN_HCI_COMMAND,
event[EVENT_COMMAND_STATUS_STATUS_BYTE]);
}
}
// Enter loopback mode, but don't send any packets.
TEST_F(BluetoothHidlTest, WriteLoopbackMode) {
std::vector<uint16_t> sco_connection_handles;
std::vector<uint16_t> acl_connection_handles;
enterLoopbackMode(sco_connection_handles, acl_connection_handles);
}
// Enter loopback mode and send single packets.
TEST_F(BluetoothHidlTest, LoopbackModeSinglePackets) {
setBufferSizes();
std::vector<uint16_t> sco_connection_handles;
std::vector<uint16_t> acl_connection_handles;
enterLoopbackMode(sco_connection_handles, acl_connection_handles);
sendAndCheckHCI(1);
// This should work, but breaks on some current platforms. Figure out how to
// grandfather older devices but test new ones.
if (0 && sco_connection_handles.size() > 0) {
EXPECT_LT(0, max_sco_data_packet_length);
sendAndCheckSCO(1, max_sco_data_packet_length, sco_connection_handles[0]);
int sco_packets_sent = 1;
int completed_packets =
wait_for_completed_packets_event(sco_connection_handles[0]);
if (sco_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
sco_packets_sent, completed_packets);
}
}
if (acl_connection_handles.size() > 0) {
EXPECT_LT(0, max_acl_data_packet_length);
sendAndCheckACL(1, max_acl_data_packet_length, acl_connection_handles[0]);
int acl_packets_sent = 1;
int completed_packets =
wait_for_completed_packets_event(acl_connection_handles[0]);
if (acl_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
acl_packets_sent, completed_packets);
}
}
}
// Enter loopback mode and send packets for bandwidth measurements.
TEST_F(BluetoothHidlTest, LoopbackModeBandwidth) {
setBufferSizes();
std::vector<uint16_t> sco_connection_handles;
std::vector<uint16_t> acl_connection_handles;
enterLoopbackMode(sco_connection_handles, acl_connection_handles);
sendAndCheckHCI(NUM_HCI_COMMANDS_BANDWIDTH);
// This should work, but breaks on some current platforms. Figure out how to
// grandfather older devices but test new ones.
if (0 && sco_connection_handles.size() > 0) {
EXPECT_LT(0, max_sco_data_packet_length);
sendAndCheckSCO(NUM_SCO_PACKETS_BANDWIDTH, max_sco_data_packet_length,
sco_connection_handles[0]);
int sco_packets_sent = NUM_SCO_PACKETS_BANDWIDTH;
int completed_packets =
wait_for_completed_packets_event(sco_connection_handles[0]);
if (sco_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
sco_packets_sent, completed_packets);
}
}
if (acl_connection_handles.size() > 0) {
EXPECT_LT(0, max_acl_data_packet_length);
sendAndCheckACL(NUM_ACL_PACKETS_BANDWIDTH, max_acl_data_packet_length,
acl_connection_handles[0]);
int acl_packets_sent = NUM_ACL_PACKETS_BANDWIDTH;
int completed_packets =
wait_for_completed_packets_event(acl_connection_handles[0]);
if (acl_packets_sent != completed_packets) {
ALOGW("%s: packets_sent (%d) != completed_packets (%d)", __func__,
acl_packets_sent, completed_packets);
}
}
}
int main(int argc, char** argv) {
::testing::AddGlobalTestEnvironment(BluetoothHidlEnvironment::Instance());
::testing::InitGoogleTest(&argc, argv);
BluetoothHidlEnvironment::Instance()->init(&argc, argv);
int status = RUN_ALL_TESTS();
ALOGI("Test result = %d", status);
return status;
}