blob: d4571d906f3dda87818d4ea49b44a48e39da1c58 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "thermal_stats_helper.h"
#include <android-base/logging.h>
#include <android/binder_manager.h>
#include <algorithm>
#include <numeric>
#include <string_view>
namespace aidl {
namespace android {
namespace hardware {
namespace thermal {
namespace implementation {
constexpr std::string_view kCustomThresholdSetSuffix("-TH-");
constexpr std::string_view kCompressedThresholdSuffix("-CMBN-TH");
using aidl::android::frameworks::stats::VendorAtom;
namespace PixelAtoms = ::android::hardware::google::pixel::PixelAtoms;
namespace {
static std::shared_ptr<IStats> stats_client = nullptr;
std::shared_ptr<IStats> getStatsService() {
static std::once_flag statsServiceFlag;
std::call_once(statsServiceFlag, []() {
const std::string instance = std::string() + IStats::descriptor + "/default";
bool isStatsDeclared = AServiceManager_isDeclared(instance.c_str());
if (!isStatsDeclared) {
LOG(ERROR) << "Stats service is not registered.";
return;
}
stats_client = IStats::fromBinder(
ndk::SpAIBinder(AServiceManager_waitForService(instance.c_str())));
});
return stats_client;
}
bool isRecordByDefaultThreshold(const std::variant<bool, std::unordered_set<std::string>>
&record_by_default_threshold_all_or_name_set_,
std::string_view name) {
if (std::holds_alternative<bool>(record_by_default_threshold_all_or_name_set_)) {
return std::get<bool>(record_by_default_threshold_all_or_name_set_);
}
return std::get<std::unordered_set<std::string>>(record_by_default_threshold_all_or_name_set_)
.count(name.data());
}
template <typename T>
int calculateThresholdBucket(const std::vector<T> &thresholds, T value) {
if (thresholds.empty()) {
LOG(VERBOSE) << "No threshold present, so bucket is " << value << " as int.";
return static_cast<int>(value);
}
auto threshold_idx = std::upper_bound(thresholds.begin(), thresholds.end(), value);
int bucket = (threshold_idx - thresholds.begin());
LOG(VERBOSE) << "For value: " << value << " bucket is: " << bucket;
return bucket;
}
void resetCurrentTempStatus(CurrTempStatus *curr_temp_status, float new_temp) {
curr_temp_status->temp = new_temp;
curr_temp_status->start_time = boot_clock::now();
curr_temp_status->repeat_count = 1;
}
} // namespace
bool ThermalStatsHelper::initializeStats(
const Json::Value &config,
const std::unordered_map<std::string, SensorInfo> &sensor_info_map_,
const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map_) {
StatsInfo<float> sensor_stats_info;
AbnormalStatsInfo abnormal_stats_info;
if (!ParseSensorStatsConfig(config, sensor_info_map_, &sensor_stats_info,
&abnormal_stats_info)) {
LOG(ERROR) << "Failed to parse sensor stats config";
return false;
}
StatsInfo<int> cooling_device_request_info;
if (!ParseCoolingDeviceStatsConfig(config, cooling_device_info_map_,
&cooling_device_request_info)) {
LOG(ERROR) << "Failed to parse cooling device stats config";
return false;
}
if (!initializeSensorTempStats(sensor_stats_info, sensor_info_map_)) {
LOG(ERROR) << "Failed to initialize sensor temp stats";
return false;
}
if (!initializeSensorCdevRequestStats(cooling_device_request_info, sensor_info_map_,
cooling_device_info_map_)) {
LOG(ERROR) << "Failed to initialize sensor cooling device request stats";
return false;
}
if (!initializeSensorAbnormalityStats(abnormal_stats_info, sensor_info_map_)) {
LOG(ERROR) << "Failed to initialize sensor abnormal stats";
return false;
}
last_total_stats_report_time = boot_clock::now();
abnormal_stats_reported_per_update_interval = 0;
LOG(INFO) << "Thermal Stats Initialized Successfully";
return true;
}
bool ThermalStatsHelper::initializeSensorCdevRequestStats(
const StatsInfo<int> &request_stats_info,
const std::unordered_map<std::string, SensorInfo> &sensor_info_map_,
const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map_) {
std::unique_lock<std::shared_mutex> _lock(sensor_cdev_request_stats_map_mutex_);
for (const auto &[sensor, sensor_info] : sensor_info_map_) {
for (const auto &binded_cdev_info_pair :
sensor_info.throttling_info->binded_cdev_info_map) {
const auto &cdev = binded_cdev_info_pair.first;
const auto &max_state =
cooling_device_info_map_.at(binded_cdev_info_pair.first).max_state;
// Record by all state
if (isRecordByDefaultThreshold(
request_stats_info.record_by_default_threshold_all_or_name_set_, cdev)) {
// if the number of states is greater / equal(as state starts from 0) than
// residency_buckets in atom combine the initial states
if (max_state >= kMaxStatsResidencyCount) {
// buckets = [max_state -kMaxStatsResidencyCount + 1, ...max_state]
// idx = [1, .. max_state - (max_state - kMaxStatsResidencyCount + 1) + 1]
// idx = [1, .. kMaxStatsResidencyCount]
const auto starting_state = max_state - kMaxStatsResidencyCount + 1;
std::vector<int> thresholds(kMaxStatsResidencyCount);
std::iota(thresholds.begin(), thresholds.end(), starting_state);
const auto logging_name = cdev + kCompressedThresholdSuffix.data();
ThresholdList<int> threshold_list(logging_name, thresholds);
sensor_cdev_request_stats_map_[sensor][cdev]
.stats_by_custom_threshold.emplace_back(threshold_list);
} else {
// buckets = [0, 1, 2, 3, ...max_state]
const auto default_threshold_time_in_state_size = max_state + 1;
sensor_cdev_request_stats_map_[sensor][cdev].stats_by_default_threshold =
StatsRecord(default_threshold_time_in_state_size);
}
LOG(INFO) << "Sensor Cdev user vote stats on basis of all state initialized for ["
<< sensor << "-" << cdev << "]";
}
// Record by custom threshold
if (request_stats_info.record_by_threshold.count(cdev)) {
for (const auto &threshold_list : request_stats_info.record_by_threshold.at(cdev)) {
// check last threshold value(which is >= number of buckets as numbers in
// threshold are strictly increasing from 0) is less than max_state
if (threshold_list.thresholds.back() >= max_state) {
LOG(ERROR) << "For sensor " << sensor << " bindedCdev: " << cdev
<< "Invalid bindedCdev stats threshold: "
<< threshold_list.thresholds.back() << " >= " << max_state;
sensor_cdev_request_stats_map_.clear();
return false;
}
sensor_cdev_request_stats_map_[sensor][cdev]
.stats_by_custom_threshold.emplace_back(threshold_list);
LOG(INFO)
<< "Sensor Cdev user vote stats on basis of threshold initialized for ["
<< sensor << "-" << cdev << "]";
}
}
}
}
return true;
}
bool ThermalStatsHelper::initializeSensorTempStats(
const StatsInfo<float> &sensor_stats_info,
const std::unordered_map<std::string, SensorInfo> &sensor_info_map_) {
std::unique_lock<std::shared_mutex> _lock(sensor_stats_mutex_);
auto &temp_stats_map_ = sensor_stats.temp_stats_map_;
const int severity_time_in_state_size = kThrottlingSeverityCount;
for (const auto &[sensor, sensor_info] : sensor_info_map_) {
// Record by severity
if (sensor_info.is_watch &&
isRecordByDefaultThreshold(
sensor_stats_info.record_by_default_threshold_all_or_name_set_, sensor)) {
// number of buckets = number of severity
temp_stats_map_[sensor].stats_by_default_threshold =
StatsRecord(severity_time_in_state_size);
LOG(INFO) << "Sensor temp stats on basis of severity initialized for [" << sensor
<< "]";
}
// Record by custom threshold
if (sensor_stats_info.record_by_threshold.count(sensor)) {
for (const auto &threshold_list : sensor_stats_info.record_by_threshold.at(sensor)) {
temp_stats_map_[sensor].stats_by_custom_threshold.emplace_back(threshold_list);
LOG(INFO) << "Sensor temp stats on basis of threshold initialized for [" << sensor
<< "]";
}
}
}
return true;
}
bool ThermalStatsHelper::initializeSensorAbnormalityStats(
const AbnormalStatsInfo &abnormal_stats_info,
const std::unordered_map<std::string, SensorInfo> &sensor_info_map_) {
std::unique_lock<std::shared_mutex> _lock(sensor_stats_mutex_);
auto &temp_range_info_map_ = sensor_stats.temp_range_info_map_;
for (const auto &sensors_temp_range_info : abnormal_stats_info.sensors_temp_range_infos) {
const auto &temp_range_info_ptr =
std::make_shared<TempRangeInfo>(sensors_temp_range_info.temp_range_info);
for (const auto &sensor : sensors_temp_range_info.sensors) {
temp_range_info_map_[sensor] = temp_range_info_ptr;
}
}
auto &temp_stuck_info_map_ = sensor_stats.temp_stuck_info_map_;
for (const auto &sensors_temp_stuck_info : abnormal_stats_info.sensors_temp_stuck_infos) {
const auto &temp_stuck_info_ptr =
std::make_shared<TempStuckInfo>(sensors_temp_stuck_info.temp_stuck_info);
for (const auto &sensor : sensors_temp_stuck_info.sensors) {
temp_stuck_info_map_[sensor] = temp_stuck_info_ptr;
}
}
const auto &default_temp_range_info_ptr =
abnormal_stats_info.default_temp_range_info
? std::make_shared<TempRangeInfo>(
abnormal_stats_info.default_temp_range_info.value())
: nullptr;
const auto &default_temp_stuck_info_ptr =
abnormal_stats_info.default_temp_stuck_info
? std::make_shared<TempStuckInfo>(
abnormal_stats_info.default_temp_stuck_info.value())
: nullptr;
for (const auto &sensor_info : sensor_info_map_) {
const auto &sensor = sensor_info.first;
if (default_temp_range_info_ptr && !temp_range_info_map_.count(sensor))
temp_range_info_map_[sensor] = default_temp_range_info_ptr;
if (default_temp_stuck_info_ptr && !temp_stuck_info_map_.count(sensor))
temp_stuck_info_map_[sensor] = default_temp_stuck_info_ptr;
}
for (const auto &sensor_temp_stuck_info : temp_stuck_info_map_) {
sensor_stats.curr_temp_status_map_[sensor_temp_stuck_info.first] = {
.temp = std::numeric_limits<float>::min(),
.start_time = boot_clock::time_point::min(),
.repeat_count = 0,
};
}
return true;
}
void ThermalStatsHelper::updateStatsRecord(StatsRecord *stats_record, int new_state) {
const auto now = boot_clock::now();
const auto cur_state_duration = std::chrono::duration_cast<std::chrono::milliseconds>(
now - stats_record->cur_state_start_time);
LOG(VERBOSE) << "Adding duration " << cur_state_duration.count()
<< " for cur_state: " << stats_record->cur_state << " with value: "
<< stats_record->time_in_state_ms[stats_record->cur_state].count();
// Update last record end time
stats_record->time_in_state_ms[stats_record->cur_state] += cur_state_duration;
stats_record->cur_state_start_time = now;
stats_record->cur_state = new_state;
}
void ThermalStatsHelper::updateSensorCdevRequestStats(std::string_view sensor,
std::string_view cdev, int new_value) {
std::unique_lock<std::shared_mutex> _lock(sensor_cdev_request_stats_map_mutex_);
if (!sensor_cdev_request_stats_map_.count(sensor.data()) ||
!sensor_cdev_request_stats_map_[sensor.data()].count(cdev.data())) {
return;
}
auto &request_stats = sensor_cdev_request_stats_map_[sensor.data()][cdev.data()];
for (auto &stats_by_threshold : request_stats.stats_by_custom_threshold) {
int value = calculateThresholdBucket(stats_by_threshold.thresholds, new_value);
if (value != stats_by_threshold.stats_record.cur_state) {
LOG(VERBOSE) << "Updating bindedCdev stats for sensor: " << sensor.data()
<< " , cooling_device: " << cdev.data() << " with new value: " << value;
updateStatsRecord(&stats_by_threshold.stats_record, value);
}
}
if (request_stats.stats_by_default_threshold.has_value()) {
auto &stats_record = request_stats.stats_by_default_threshold.value();
if (new_value != stats_record.cur_state) {
LOG(VERBOSE) << "Updating bindedCdev stats for sensor: " << sensor.data()
<< " , cooling_device: " << cdev.data()
<< " with new value: " << new_value;
updateStatsRecord(&stats_record, new_value);
}
}
}
void ThermalStatsHelper::updateSensorTempStatsByThreshold(std::string_view sensor,
float temperature) {
std::unique_lock<std::shared_mutex> _lock(sensor_stats_mutex_);
verifySensorAbnormality(sensor, temperature);
auto &temp_stats_map_ = sensor_stats.temp_stats_map_;
if (!temp_stats_map_.count(sensor.data())) {
return;
}
auto &sensor_temp_stats = temp_stats_map_[sensor.data()];
for (auto &stats_by_threshold : sensor_temp_stats.stats_by_custom_threshold) {
int value = calculateThresholdBucket(stats_by_threshold.thresholds, temperature);
if (value != stats_by_threshold.stats_record.cur_state) {
LOG(VERBOSE) << "Updating sensor stats for sensor: " << sensor.data()
<< " with value: " << value;
updateStatsRecord(&stats_by_threshold.stats_record, value);
}
}
if (temperature > sensor_temp_stats.max_temp) {
sensor_temp_stats.max_temp = temperature;
sensor_temp_stats.max_temp_timestamp = system_clock::now();
}
if (temperature < sensor_temp_stats.min_temp) {
sensor_temp_stats.min_temp = temperature;
sensor_temp_stats.min_temp_timestamp = system_clock::now();
}
}
void ThermalStatsHelper::updateSensorTempStatsBySeverity(std::string_view sensor,
const ThrottlingSeverity &severity) {
std::unique_lock<std::shared_mutex> _lock(sensor_stats_mutex_);
auto &temp_stats_map_ = sensor_stats.temp_stats_map_;
if (temp_stats_map_.count(sensor.data()) &&
temp_stats_map_[sensor.data()].stats_by_default_threshold.has_value()) {
auto &stats_record = temp_stats_map_[sensor.data()].stats_by_default_threshold.value();
int value = static_cast<int>(severity);
if (value != stats_record.cur_state) {
LOG(VERBOSE) << "Updating sensor stats for sensor: " << sensor.data()
<< " with value: " << value;
updateStatsRecord(&stats_record, value);
}
}
}
void ThermalStatsHelper::verifySensorAbnormality(std::string_view sensor, float temp) {
LOG(VERBOSE) << "Verify sensor abnormality for " << sensor << " with temp " << temp;
if (sensor_stats.temp_range_info_map_.count(sensor.data())) {
const auto &temp_range_info = sensor_stats.temp_range_info_map_[sensor.data()];
if (temp < temp_range_info->min_temp_threshold) {
LOG(ERROR) << "Outlier Temperature Detected, sensor: " << sensor.data()
<< " temp: " << temp << " < " << temp_range_info->min_temp_threshold;
reportThermalAbnormality(ThermalSensorAbnormalityDetected::EXTREME_LOW_TEMP, sensor,
std::round(temp));
} else if (temp > temp_range_info->max_temp_threshold) {
LOG(ERROR) << "Outlier Temperature Detected, sensor: " << sensor.data()
<< " temp: " << temp << " > " << temp_range_info->max_temp_threshold;
reportThermalAbnormality(ThermalSensorAbnormalityDetected::EXTREME_HIGH_TEMP, sensor,
std::round(temp));
}
}
if (sensor_stats.temp_stuck_info_map_.count(sensor.data())) {
const auto &temp_stuck_info = sensor_stats.temp_stuck_info_map_[sensor.data()];
auto &curr_temp_status = sensor_stats.curr_temp_status_map_[sensor.data()];
LOG(VERBOSE) << "Current Temp Status: temp=" << curr_temp_status.temp
<< " repeat_count=" << curr_temp_status.repeat_count
<< " start_time=" << curr_temp_status.start_time.time_since_epoch().count();
if (std::fabs(curr_temp_status.temp - temp) <= kPrecisionThreshold) {
curr_temp_status.repeat_count++;
if (temp_stuck_info->min_polling_count <= curr_temp_status.repeat_count) {
auto time_elapsed_ms = std::chrono::duration_cast<std::chrono::milliseconds>(
boot_clock::now() - curr_temp_status.start_time);
if (temp_stuck_info->min_stuck_duration <= time_elapsed_ms) {
LOG(ERROR) << "Stuck Temperature Detected, sensor: " << sensor.data()
<< " temp: " << temp << " repeated "
<< temp_stuck_info->min_polling_count << " times for "
<< time_elapsed_ms.count() << "ms";
if (reportThermalAbnormality(ThermalSensorAbnormalityDetected::SENSOR_STUCK,
sensor, std::round(temp))) {
// reset current status to verify for sensor stuck with start time as
// current polling
resetCurrentTempStatus(&curr_temp_status, temp);
}
}
}
} else {
resetCurrentTempStatus(&curr_temp_status, temp);
}
}
}
int ThermalStatsHelper::reportStats() {
const auto curTime = boot_clock::now();
const auto since_last_total_stats_update_ms =
std::chrono::duration_cast<std::chrono::milliseconds>(curTime -
last_total_stats_report_time);
LOG(VERBOSE) << "Duration from last total stats update is: "
<< since_last_total_stats_update_ms.count();
if (since_last_total_stats_update_ms < kUpdateIntervalMs) {
LOG(VERBOSE) << "Time elapsed since last update less than " << kUpdateIntervalMs.count();
return 0;
}
const std::shared_ptr<IStats> stats_client = getStatsService();
if (!stats_client) {
LOG(ERROR) << "Unable to get AIDL Stats service";
return -1;
}
int count_failed_reporting =
reportAllSensorTempStats(stats_client) + reportAllSensorCdevRequestStats(stats_client);
last_total_stats_report_time = curTime;
abnormal_stats_reported_per_update_interval = 0;
return count_failed_reporting;
}
int ThermalStatsHelper::reportAllSensorTempStats(const std::shared_ptr<IStats> &stats_client) {
int count_failed_reporting = 0;
std::unique_lock<std::shared_mutex> _lock(sensor_stats_mutex_);
for (auto &[sensor, temp_stats] : sensor_stats.temp_stats_map_) {
for (size_t threshold_set_idx = 0;
threshold_set_idx < temp_stats.stats_by_custom_threshold.size(); threshold_set_idx++) {
auto &stats_by_threshold = temp_stats.stats_by_custom_threshold[threshold_set_idx];
std::string sensor_name = stats_by_threshold.logging_name.value_or(
sensor + kCustomThresholdSetSuffix.data() + std::to_string(threshold_set_idx));
if (!reportSensorTempStats(stats_client, sensor_name, temp_stats,
&stats_by_threshold.stats_record)) {
count_failed_reporting++;
}
}
if (temp_stats.stats_by_default_threshold.has_value()) {
if (!reportSensorTempStats(stats_client, sensor, temp_stats,
&temp_stats.stats_by_default_threshold.value())) {
count_failed_reporting++;
}
}
// Reset temp stats after reporting
temp_stats.max_temp = std::numeric_limits<float>::min();
temp_stats.min_temp = std::numeric_limits<float>::max();
}
return count_failed_reporting;
}
bool ThermalStatsHelper::reportSensorTempStats(const std::shared_ptr<IStats> &stats_client,
std::string_view sensor,
const SensorTempStats &sensor_temp_stats,
StatsRecord *stats_record) {
LOG(VERBOSE) << "Reporting sensor stats for " << sensor;
// maintain a copy in case reporting fails
StatsRecord thermal_stats_before_reporting = *stats_record;
std::vector<VendorAtomValue> values(2);
values[0].set<VendorAtomValue::stringValue>(sensor);
std::vector<int64_t> time_in_state_ms = processStatsRecordForReporting(stats_record);
const auto since_last_update_ms = std::chrono::duration_cast<std::chrono::milliseconds>(
stats_record->cur_state_start_time - stats_record->last_stats_report_time);
values[1].set<VendorAtomValue::longValue>(since_last_update_ms.count());
VendorAtomValue tmp;
for (auto &time_in_state : time_in_state_ms) {
tmp.set<VendorAtomValue::longValue>(time_in_state);
values.push_back(tmp);
}
auto remaining_residency_buckets_count = kMaxStatsResidencyCount - time_in_state_ms.size();
if (remaining_residency_buckets_count > 0) {
tmp.set<VendorAtomValue::longValue>(0);
values.insert(values.end(), remaining_residency_buckets_count, tmp);
}
tmp.set<VendorAtomValue::floatValue>(sensor_temp_stats.max_temp);
values.push_back(tmp);
tmp.set<VendorAtomValue::longValue>(
system_clock::to_time_t(sensor_temp_stats.max_temp_timestamp));
values.push_back(tmp);
tmp.set<VendorAtomValue::floatValue>(sensor_temp_stats.min_temp);
values.push_back(tmp);
tmp.set<VendorAtomValue::longValue>(
system_clock::to_time_t(sensor_temp_stats.min_temp_timestamp));
values.push_back(tmp);
if (!reportAtom(stats_client, PixelAtoms::Atom::kVendorTempResidencyStats, std::move(values))) {
LOG(ERROR) << "Unable to report VendorTempResidencyStats to Stats service for "
"sensor: "
<< sensor;
*stats_record = restoreStatsRecordOnFailure(std::move(thermal_stats_before_reporting));
return false;
}
// Update last time of stats reporting
stats_record->last_stats_report_time = boot_clock::now();
return true;
}
int ThermalStatsHelper::reportAllSensorCdevRequestStats(
const std::shared_ptr<IStats> &stats_client) {
int count_failed_reporting = 0;
std::unique_lock<std::shared_mutex> _lock(sensor_cdev_request_stats_map_mutex_);
for (auto &[sensor, cdev_request_stats_map] : sensor_cdev_request_stats_map_) {
for (auto &[cdev, request_stats] : cdev_request_stats_map) {
for (size_t threshold_set_idx = 0;
threshold_set_idx < request_stats.stats_by_custom_threshold.size();
threshold_set_idx++) {
auto &stats_by_threshold =
request_stats.stats_by_custom_threshold[threshold_set_idx];
std::string cdev_name = stats_by_threshold.logging_name.value_or(
cdev + kCustomThresholdSetSuffix.data() +
std::to_string(threshold_set_idx));
if (!reportSensorCdevRequestStats(stats_client, sensor, cdev_name,
&stats_by_threshold.stats_record)) {
count_failed_reporting++;
}
}
if (request_stats.stats_by_default_threshold.has_value()) {
if (!reportSensorCdevRequestStats(
stats_client, sensor, cdev,
&request_stats.stats_by_default_threshold.value())) {
count_failed_reporting++;
}
}
}
}
return count_failed_reporting;
}
bool ThermalStatsHelper::reportSensorCdevRequestStats(const std::shared_ptr<IStats> &stats_client,
std::string_view sensor,
std::string_view cdev,
StatsRecord *stats_record) {
LOG(VERBOSE) << "Reporting bindedCdev stats for sensor: " << sensor
<< " cooling_device: " << cdev;
// maintain a copy in case reporting fails
StatsRecord thermal_stats_before_reporting = *stats_record;
std::vector<VendorAtomValue> values(3);
values[0].set<VendorAtomValue::stringValue>(sensor);
values[1].set<VendorAtomValue::stringValue>(cdev);
std::vector<int64_t> time_in_state_ms = processStatsRecordForReporting(stats_record);
const auto since_last_update_ms = std::chrono::duration_cast<std::chrono::milliseconds>(
stats_record->cur_state_start_time - stats_record->last_stats_report_time);
values[2].set<VendorAtomValue::longValue>(since_last_update_ms.count());
VendorAtomValue tmp;
for (auto &time_in_state : time_in_state_ms) {
tmp.set<VendorAtomValue::longValue>(time_in_state);
values.push_back(tmp);
}
if (!reportAtom(stats_client, PixelAtoms::Atom::kVendorSensorCoolingDeviceStats,
std::move(values))) {
LOG(ERROR) << "Unable to report VendorSensorCoolingDeviceStats to Stats "
"service for sensor: "
<< sensor << " cooling_device: " << cdev;
*stats_record = restoreStatsRecordOnFailure(std::move(thermal_stats_before_reporting));
return false;
}
// Update last time of stats reporting
stats_record->last_stats_report_time = boot_clock::now();
return true;
}
std::vector<int64_t> ThermalStatsHelper::processStatsRecordForReporting(StatsRecord *stats_record) {
// update the last unclosed entry and start new record with same state
updateStatsRecord(stats_record, stats_record->cur_state);
std::vector<std::chrono::milliseconds> &time_in_state_ms = stats_record->time_in_state_ms;
// convert std::chrono::milliseconds time_in_state to int64_t vector for reporting
std::vector<int64_t> stats_residency(time_in_state_ms.size());
std::transform(time_in_state_ms.begin(), time_in_state_ms.end(), stats_residency.begin(),
[](std::chrono::milliseconds time_ms) { return time_ms.count(); });
// clear previous stats
std::fill(time_in_state_ms.begin(), time_in_state_ms.end(), std::chrono::milliseconds::zero());
return stats_residency;
}
bool ThermalStatsHelper::reportThermalAbnormality(
const ThermalSensorAbnormalityDetected::AbnormalityType &type, std::string_view name,
std::optional<int> reading) {
const auto value_str = reading.has_value() ? std::to_string(reading.value()) : "undefined";
if (abnormal_stats_reported_per_update_interval >= kMaxAbnormalLoggingPerUpdateInterval) {
LOG(ERROR) << "Thermal abnormal atom logging rate limited for " << name.data()
<< " with value " << value_str;
return true;
}
const std::shared_ptr<IStats> stats_client = getStatsService();
if (!stats_client) {
LOG(ERROR) << "Unable to get AIDL Stats service";
return false;
}
std::vector<VendorAtomValue> values(3);
values[ThermalSensorAbnormalityDetected::kTypeFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::intValue>(type);
values[ThermalSensorAbnormalityDetected::kSensorFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::stringValue>(name);
if (reading.has_value()) {
values[ThermalSensorAbnormalityDetected::kTempFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::intValue>(reading.value());
}
if (!reportAtom(stats_client, PixelAtoms::Atom::kThermalSensorAbnormalityDetected,
std::move(values))) {
LOG(ERROR) << "Failed to log thermal abnormal atom for " << name.data() << " with value "
<< value_str;
return false;
}
LOG(INFO) << "Thermal abnormality reported for " << name.data() << " with value " << value_str;
abnormal_stats_reported_per_update_interval++;
return true;
}
bool ThermalStatsHelper::reportAtom(const std::shared_ptr<IStats> &stats_client,
const int32_t &atom_id, std::vector<VendorAtomValue> &&values) {
LOG(VERBOSE) << "Reporting thermal stats for atom_id " << atom_id;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "", .atomId = atom_id, .values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
return ret.isOk();
}
StatsRecord ThermalStatsHelper::restoreStatsRecordOnFailure(
StatsRecord &&stats_record_before_failure) {
stats_record_before_failure.report_fail_count += 1;
// If consecutive count of failure is high, reset stat to avoid overflow
if (stats_record_before_failure.report_fail_count >= kMaxStatsReportingFailCount) {
return StatsRecord(stats_record_before_failure.time_in_state_ms.size(),
stats_record_before_failure.cur_state);
} else {
return stats_record_before_failure;
}
}
std::unordered_map<std::string, SensorTempStats> ThermalStatsHelper::GetSensorTempStatsSnapshot() {
auto sensor_temp_stats_snapshot = sensor_stats.temp_stats_map_;
for (auto &sensor_temp_stats_pair : sensor_temp_stats_snapshot) {
for (auto &temp_stats : sensor_temp_stats_pair.second.stats_by_custom_threshold) {
// update the last unclosed entry and start new record with same state
updateStatsRecord(&temp_stats.stats_record, temp_stats.stats_record.cur_state);
}
if (sensor_temp_stats_pair.second.stats_by_default_threshold.has_value()) {
auto &stats_by_default_threshold =
sensor_temp_stats_pair.second.stats_by_default_threshold.value();
// update the last unclosed entry and start new record with same state
updateStatsRecord(&stats_by_default_threshold, stats_by_default_threshold.cur_state);
}
}
return sensor_temp_stats_snapshot;
}
std::unordered_map<std::string, std::unordered_map<std::string, ThermalStats<int>>>
ThermalStatsHelper::GetSensorCoolingDeviceRequestStatsSnapshot() {
auto sensor_cdev_request_stats_snapshot = sensor_cdev_request_stats_map_;
for (auto &sensor_cdev_request_stats_pair : sensor_cdev_request_stats_snapshot) {
for (auto &cdev_request_stats_pair : sensor_cdev_request_stats_pair.second) {
for (auto &request_stats : cdev_request_stats_pair.second.stats_by_custom_threshold) {
// update the last unclosed entry and start new record with same state
updateStatsRecord(&request_stats.stats_record,
request_stats.stats_record.cur_state);
}
if (cdev_request_stats_pair.second.stats_by_default_threshold.has_value()) {
auto &stats_by_default_threshold =
cdev_request_stats_pair.second.stats_by_default_threshold.value();
// update the last unclosed entry and start new record with same state
updateStatsRecord(&stats_by_default_threshold,
stats_by_default_threshold.cur_state);
}
}
}
return sensor_cdev_request_stats_snapshot;
}
} // namespace implementation
} // namespace thermal
} // namespace hardware
} // namespace android
} // namespace aidl