blob: 13bc705326a56b69d9d988e2f392f8330e77078b [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <pixelstats/StatsHelper.h>
#include <pixelstats/SysfsCollector.h>
#define LOG_TAG "pixelstats-vendor"
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <android/binder_manager.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <mntent.h>
#include <sys/timerfd.h>
#include <sys/vfs.h>
#include <cinttypes>
#include <string>
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#endif
namespace android {
namespace hardware {
namespace google {
namespace pixel {
using aidl::android::frameworks::stats::VendorAtom;
using aidl::android::frameworks::stats::VendorAtomValue;
using android::base::ReadFileToString;
using android::base::StartsWith;
using android::base::WriteStringToFile;
using android::hardware::google::pixel::PixelAtoms::BatteryCapacity;
using android::hardware::google::pixel::PixelAtoms::BlockStatsReported;
using android::hardware::google::pixel::PixelAtoms::BootStatsInfo;
using android::hardware::google::pixel::PixelAtoms::DisplayPanelErrorStats;
using android::hardware::google::pixel::PixelAtoms::F2fsAtomicWriteInfo;
using android::hardware::google::pixel::PixelAtoms::F2fsCompressionInfo;
using android::hardware::google::pixel::PixelAtoms::F2fsGcSegmentInfo;
using android::hardware::google::pixel::PixelAtoms::F2fsSmartIdleMaintEnabledStateChanged;
using android::hardware::google::pixel::PixelAtoms::F2fsStatsInfo;
using android::hardware::google::pixel::PixelAtoms::PartitionsUsedSpaceReported;
using android::hardware::google::pixel::PixelAtoms::PcieLinkStatsReported;
using android::hardware::google::pixel::PixelAtoms::StorageUfsHealth;
using android::hardware::google::pixel::PixelAtoms::StorageUfsResetCount;
using android::hardware::google::pixel::PixelAtoms::ThermalDfsStats;
using android::hardware::google::pixel::PixelAtoms::VendorAudioAdaptedInfoStatsReported;
using android::hardware::google::pixel::PixelAtoms::VendorAudioHardwareStatsReported;
using android::hardware::google::pixel::PixelAtoms::VendorAudioPcmStatsReported;
using android::hardware::google::pixel::PixelAtoms::VendorAudioPdmStatsReported;
using android::hardware::google::pixel::PixelAtoms::VendorAudioThirdPartyEffectStatsReported;
using android::hardware::google::pixel::PixelAtoms::VendorChargeCycles;
using android::hardware::google::pixel::PixelAtoms::VendorHardwareFailed;
using android::hardware::google::pixel::PixelAtoms::VendorLongIRQStatsReported;
using android::hardware::google::pixel::PixelAtoms::VendorResumeLatencyStats;
using android::hardware::google::pixel::PixelAtoms::VendorSlowIo;
using android::hardware::google::pixel::PixelAtoms::VendorSpeakerImpedance;
using android::hardware::google::pixel::PixelAtoms::VendorSpeakerStatsReported;
using android::hardware::google::pixel::PixelAtoms::VendorSpeechDspStat;
using android::hardware::google::pixel::PixelAtoms::VendorTempResidencyStats;
using android::hardware::google::pixel::PixelAtoms::ZramBdStat;
using android::hardware::google::pixel::PixelAtoms::ZramMmStat;
SysfsCollector::SysfsCollector(const struct SysfsPaths &sysfs_paths)
: kSlowioReadCntPath(sysfs_paths.SlowioReadCntPath),
kSlowioWriteCntPath(sysfs_paths.SlowioWriteCntPath),
kSlowioUnmapCntPath(sysfs_paths.SlowioUnmapCntPath),
kSlowioSyncCntPath(sysfs_paths.SlowioSyncCntPath),
kCycleCountBinsPath(sysfs_paths.CycleCountBinsPath),
kImpedancePath(sysfs_paths.ImpedancePath),
kCodecPath(sysfs_paths.CodecPath),
kCodec1Path(sysfs_paths.Codec1Path),
kSpeechDspPath(sysfs_paths.SpeechDspPath),
kBatteryCapacityCC(sysfs_paths.BatteryCapacityCC),
kBatteryCapacityVFSOC(sysfs_paths.BatteryCapacityVFSOC),
kUFSLifetimeA(sysfs_paths.UFSLifetimeA),
kUFSLifetimeB(sysfs_paths.UFSLifetimeB),
kUFSLifetimeC(sysfs_paths.UFSLifetimeC),
kF2fsStatsPath(sysfs_paths.F2fsStatsPath),
kZramMmStatPath("/sys/block/zram0/mm_stat"),
kZramBdStatPath("/sys/block/zram0/bd_stat"),
kEEPROMPath(sysfs_paths.EEPROMPath),
kBrownoutLogPath(sysfs_paths.BrownoutLogPath),
kBrownoutReasonProp(sysfs_paths.BrownoutReasonProp),
kPowerMitigationStatsPath(sysfs_paths.MitigationPath),
kPowerMitigationDurationPath(sysfs_paths.MitigationDurationPath),
kSpeakerTemperaturePath(sysfs_paths.SpeakerTemperaturePath),
kSpeakerExcursionPath(sysfs_paths.SpeakerExcursionPath),
kSpeakerHeartbeatPath(sysfs_paths.SpeakerHeartBeatPath),
kUFSErrStatsPath(sysfs_paths.UFSErrStatsPath),
kBlockStatsLength(sysfs_paths.BlockStatsLength),
kAmsRatePath(sysfs_paths.AmsRatePath),
kThermalStatsPaths(sysfs_paths.ThermalStatsPaths),
kCCARatePath(sysfs_paths.CCARatePath),
kTempResidencyAndResetPaths(sysfs_paths.TempResidencyAndResetPaths),
kLongIRQMetricsPath(sysfs_paths.LongIRQMetricsPath),
kResumeLatencyMetricsPath(sysfs_paths.ResumeLatencyMetricsPath),
kModemPcieLinkStatsPath(sysfs_paths.ModemPcieLinkStatsPath),
kWifiPcieLinkStatsPath(sysfs_paths.WifiPcieLinkStatsPath),
kDisplayStatsPaths(sysfs_paths.DisplayStatsPaths),
kPDMStatePath(sysfs_paths.PDMStatePath),
kWavesPath(sysfs_paths.WavesPath),
kAdaptedInfoCountPath(sysfs_paths.AdaptedInfoCountPath),
kAdaptedInfoDurationPath(sysfs_paths.AdaptedInfoDurationPath),
kPcmLatencyPath(sysfs_paths.PcmLatencyPath),
kPcmCountPath(sysfs_paths.PcmCountPath) {}
bool SysfsCollector::ReadFileToInt(const std::string &path, int *val) {
return ReadFileToInt(path.c_str(), val);
}
bool SysfsCollector::ReadFileToInt(const char *const path, int *val) {
std::string file_contents;
if (!ReadFileToString(path, &file_contents)) {
ALOGE("Unable to read %s - %s", path, strerror(errno));
return false;
} else if (StartsWith(file_contents, "0x")) {
if (sscanf(file_contents.c_str(), "0x%x", val) != 1) {
ALOGE("Unable to convert %s to hex - %s", path, strerror(errno));
return false;
}
} else if (sscanf(file_contents.c_str(), "%d", val) != 1) {
ALOGE("Unable to convert %s to int - %s", path, strerror(errno));
return false;
}
return true;
}
/**
* Read the contents of kCycleCountBinsPath and report them via IStats HAL.
* The contents are expected to be N buckets total, the nth of which indicates the
* number of times battery %-full has been increased with the n/N% full bucket.
*/
void SysfsCollector::logBatteryChargeCycles(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
int val;
if (kCycleCountBinsPath == nullptr || strlen(kCycleCountBinsPath) == 0) {
ALOGV("Battery charge cycle path not specified");
return;
}
if (!ReadFileToString(kCycleCountBinsPath, &file_contents)) {
ALOGE("Unable to read battery charge cycles %s - %s", kCycleCountBinsPath, strerror(errno));
return;
}
const int32_t kChargeCyclesBucketsCount =
VendorChargeCycles::kCycleBucket10FieldNumber - kVendorAtomOffset + 1;
std::vector<int32_t> charge_cycles;
std::stringstream stream(file_contents);
while (stream >> val) {
charge_cycles.push_back(val);
}
if (charge_cycles.size() > kChargeCyclesBucketsCount) {
ALOGW("Got excessive battery charge cycles count %" PRIu64,
static_cast<uint64_t>(charge_cycles.size()));
} else {
// Push 0 for buckets that do not exist.
for (int bucketIdx = charge_cycles.size(); bucketIdx < kChargeCyclesBucketsCount;
++bucketIdx) {
charge_cycles.push_back(0);
}
}
std::replace(file_contents.begin(), file_contents.end(), ' ', ',');
reportChargeCycles(stats_client, charge_cycles);
}
/**
* Read the contents of kEEPROMPath and report them.
*/
void SysfsCollector::logBatteryEEPROM(const std::shared_ptr<IStats> &stats_client) {
if (kEEPROMPath == nullptr || strlen(kEEPROMPath) == 0) {
ALOGV("Battery EEPROM path not specified");
return;
}
battery_EEPROM_reporter_.checkAndReport(stats_client, kEEPROMPath);
}
/**
* Log battery health stats
*/
void SysfsCollector::logBatteryHealth(const std::shared_ptr<IStats> &stats_client) {
battery_health_reporter_.checkAndReportStatus(stats_client);
}
/**
* Check the codec for failures over the past 24hr.
*/
void SysfsCollector::logCodecFailed(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (kCodecPath == nullptr || strlen(kCodecPath) == 0) {
ALOGV("Audio codec path not specified");
return;
}
if (!ReadFileToString(kCodecPath, &file_contents)) {
ALOGE("Unable to read codec state %s - %s", kCodecPath, strerror(errno));
return;
}
if (file_contents == "0") {
return;
} else {
VendorHardwareFailed failure;
failure.set_hardware_type(VendorHardwareFailed::HARDWARE_FAILED_CODEC);
failure.set_hardware_location(0);
failure.set_failure_code(VendorHardwareFailed::COMPLETE);
reportHardwareFailed(stats_client, failure);
}
}
/**
* Check the codec1 for failures over the past 24hr.
*/
void SysfsCollector::logCodec1Failed(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (kCodec1Path == nullptr || strlen(kCodec1Path) == 0) {
ALOGV("Audio codec1 path not specified");
return;
}
if (!ReadFileToString(kCodec1Path, &file_contents)) {
ALOGE("Unable to read codec1 state %s - %s", kCodec1Path, strerror(errno));
return;
}
if (file_contents == "0") {
return;
} else {
ALOGE("%s report hardware fail", kCodec1Path);
VendorHardwareFailed failure;
failure.set_hardware_type(VendorHardwareFailed::HARDWARE_FAILED_CODEC);
failure.set_hardware_location(1);
failure.set_failure_code(VendorHardwareFailed::COMPLETE);
reportHardwareFailed(stats_client, failure);
}
}
void SysfsCollector::reportSlowIoFromFile(const std::shared_ptr<IStats> &stats_client,
const char *path,
const VendorSlowIo::IoOperation &operation_s) {
std::string file_contents;
if (path == nullptr || strlen(path) == 0) {
ALOGV("slow_io path not specified");
return;
}
if (!ReadFileToString(path, &file_contents)) {
ALOGE("Unable to read slowio %s - %s", path, strerror(errno));
return;
} else {
int32_t slow_io_count = 0;
if (sscanf(file_contents.c_str(), "%d", &slow_io_count) != 1) {
ALOGE("Unable to parse %s from file %s to int.", file_contents.c_str(), path);
} else if (slow_io_count > 0) {
VendorSlowIo slow_io;
slow_io.set_operation(operation_s);
slow_io.set_count(slow_io_count);
reportSlowIo(stats_client, slow_io);
}
// Clear the stats
if (!android::base::WriteStringToFile("0", path, true)) {
ALOGE("Unable to clear SlowIO entry %s - %s", path, strerror(errno));
}
}
}
/**
* Check for slow IO operations.
*/
void SysfsCollector::logSlowIO(const std::shared_ptr<IStats> &stats_client) {
reportSlowIoFromFile(stats_client, kSlowioReadCntPath, VendorSlowIo::READ);
reportSlowIoFromFile(stats_client, kSlowioWriteCntPath, VendorSlowIo::WRITE);
reportSlowIoFromFile(stats_client, kSlowioUnmapCntPath, VendorSlowIo::UNMAP);
reportSlowIoFromFile(stats_client, kSlowioSyncCntPath, VendorSlowIo::SYNC);
}
/**
* Report the last-detected impedance of left & right speakers.
*/
void SysfsCollector::logSpeakerImpedance(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (kImpedancePath == nullptr || strlen(kImpedancePath) == 0) {
ALOGV("Audio impedance path not specified");
return;
}
if (!ReadFileToString(kImpedancePath, &file_contents)) {
ALOGE("Unable to read impedance path %s", kImpedancePath);
return;
}
float left, right;
if (sscanf(file_contents.c_str(), "%g,%g", &left, &right) != 2) {
ALOGE("Unable to parse speaker impedance %s", file_contents.c_str());
return;
}
VendorSpeakerImpedance left_obj;
left_obj.set_speaker_location(0);
left_obj.set_impedance(static_cast<int32_t>(left * 1000));
VendorSpeakerImpedance right_obj;
right_obj.set_speaker_location(1);
right_obj.set_impedance(static_cast<int32_t>(right * 1000));
reportSpeakerImpedance(stats_client, left_obj);
reportSpeakerImpedance(stats_client, right_obj);
}
/**
* Report the last-detected impedance, temperature and heartbeats of left & right speakers.
*/
void SysfsCollector::logSpeakerHealthStats(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents_impedance;
std::string file_contents_temperature;
std::string file_contents_excursion;
std::string file_contents_heartbeat;
int count, i;
float impedance_ohm[4];
float temperature_C[4];
float excursion_mm[4];
float heartbeat[4];
if (kImpedancePath == nullptr || strlen(kImpedancePath) == 0) {
ALOGD("Audio impedance path not specified");
return;
} else if (!ReadFileToString(kImpedancePath, &file_contents_impedance)) {
ALOGD("Unable to read speaker impedance path %s", kImpedancePath);
return;
}
if (kSpeakerTemperaturePath == nullptr || strlen(kSpeakerTemperaturePath) == 0) {
ALOGD("Audio speaker temperature path not specified");
return;
} else if (!ReadFileToString(kSpeakerTemperaturePath, &file_contents_temperature)) {
ALOGD("Unable to read speaker temperature path %s", kSpeakerTemperaturePath);
return;
}
if (kSpeakerExcursionPath == nullptr || strlen(kSpeakerExcursionPath) == 0) {
ALOGD("Audio speaker excursion path not specified");
return;
} else if (!ReadFileToString(kSpeakerExcursionPath, &file_contents_excursion)) {
ALOGD("Unable to read speaker excursion path %s", kSpeakerExcursionPath);
return;
}
if (kSpeakerHeartbeatPath == nullptr || strlen(kSpeakerHeartbeatPath) == 0) {
ALOGD("Audio speaker heartbeat path not specified");
return;
} else if (!ReadFileToString(kSpeakerHeartbeatPath, &file_contents_heartbeat)) {
ALOGD("Unable to read speaker heartbeat path %s", kSpeakerHeartbeatPath);
return;
}
count = sscanf(file_contents_impedance.c_str(), "%g,%g,%g,%g", &impedance_ohm[0],
&impedance_ohm[1], &impedance_ohm[2], &impedance_ohm[3]);
if (count <= 0)
return;
count = sscanf(file_contents_temperature.c_str(), "%g,%g,%g,%g", &temperature_C[0],
&temperature_C[1], &temperature_C[2], &temperature_C[3]);
if (count <= 0)
return;
count = sscanf(file_contents_excursion.c_str(), "%g,%g,%g,%g", &excursion_mm[0],
&excursion_mm[1], &excursion_mm[2], &excursion_mm[3]);
if (count <= 0)
return;
count = sscanf(file_contents_heartbeat.c_str(), "%g,%g,%g,%g", &heartbeat[0], &heartbeat[1],
&heartbeat[2], &heartbeat[3]);
if (count <= 0)
return;
VendorSpeakerStatsReported obj[4];
for (i = 0; i < count && i < 4; i++) {
obj[i].set_speaker_location(i);
obj[i].set_impedance(static_cast<int32_t>(impedance_ohm[i] * 1000));
obj[i].set_max_temperature(static_cast<int32_t>(temperature_C[i] * 1000));
obj[i].set_excursion(static_cast<int32_t>(excursion_mm[i] * 1000));
obj[i].set_heartbeat(static_cast<int32_t>(heartbeat[i]));
reportSpeakerHealthStat(stats_client, obj[i]);
}
}
void SysfsCollector::logDisplayStats(const std::shared_ptr<IStats> &stats_client) {
display_stats_reporter_.logDisplayStats(stats_client, kDisplayStatsPaths);
}
void SysfsCollector::logThermalStats(const std::shared_ptr<IStats> &stats_client) {
thermal_stats_reporter_.logThermalStats(stats_client, kThermalStatsPaths);
}
/**
* Report the Speech DSP state.
*/
void SysfsCollector::logSpeechDspStat(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (kSpeechDspPath == nullptr || strlen(kSpeechDspPath) == 0) {
ALOGV("Speech DSP path not specified");
return;
}
if (!ReadFileToString(kSpeechDspPath, &file_contents)) {
ALOGE("Unable to read speech dsp path %s", kSpeechDspPath);
return;
}
int32_t up_time = 0, down_time = 0, crash_count = 0, recover_count = 0;
if (sscanf(file_contents.c_str(), "%d,%d,%d,%d", &up_time, &down_time, &crash_count,
&recover_count) != 4) {
ALOGE("Unable to parse speech dsp stat %s", file_contents.c_str());
return;
}
ALOGD("SpeechDSP uptime %d downtime %d crashcount %d recovercount %d", up_time, down_time,
crash_count, recover_count);
VendorSpeechDspStat dsp_stat;
dsp_stat.set_total_uptime_millis(up_time);
dsp_stat.set_total_downtime_millis(down_time);
dsp_stat.set_total_crash_count(crash_count);
dsp_stat.set_total_recover_count(recover_count);
reportSpeechDspStat(stats_client, dsp_stat);
}
void SysfsCollector::logBatteryCapacity(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (kBatteryCapacityCC == nullptr || strlen(kBatteryCapacityCC) == 0) {
ALOGV("Battery Capacity CC path not specified");
return;
}
if (kBatteryCapacityVFSOC == nullptr || strlen(kBatteryCapacityVFSOC) == 0) {
ALOGV("Battery Capacity VFSOC path not specified");
return;
}
int delta_cc_sum, delta_vfsoc_sum;
if (!ReadFileToInt(kBatteryCapacityCC, &delta_cc_sum) ||
!ReadFileToInt(kBatteryCapacityVFSOC, &delta_vfsoc_sum))
return;
// Load values array
std::vector<VendorAtomValue> values(2);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(delta_cc_sum);
values[BatteryCapacity::kDeltaCcSumFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(delta_vfsoc_sum);
values[BatteryCapacity::kDeltaVfsocSumFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kBatteryCapacity,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report ChargeStats to Stats service");
}
void SysfsCollector::logUFSLifetime(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (kUFSLifetimeA == nullptr || strlen(kUFSLifetimeA) == 0) {
ALOGV("UFS lifetimeA path not specified");
return;
}
if (kUFSLifetimeB == nullptr || strlen(kUFSLifetimeB) == 0) {
ALOGV("UFS lifetimeB path not specified");
return;
}
if (kUFSLifetimeC == nullptr || strlen(kUFSLifetimeC) == 0) {
ALOGV("UFS lifetimeC path not specified");
return;
}
int lifetimeA = 0, lifetimeB = 0, lifetimeC = 0;
if (!ReadFileToInt(kUFSLifetimeA, &lifetimeA) ||
!ReadFileToInt(kUFSLifetimeB, &lifetimeB) ||
!ReadFileToInt(kUFSLifetimeC, &lifetimeC)) {
ALOGE("Unable to read UFS lifetime : %s", strerror(errno));
return;
}
// Load values array
std::vector<VendorAtomValue> values(3);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(lifetimeA);
values[StorageUfsHealth::kLifetimeAFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(lifetimeB);
values[StorageUfsHealth::kLifetimeBFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(lifetimeC);
values[StorageUfsHealth::kLifetimeCFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kStorageUfsHealth,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report UfsHealthStat to Stats service");
}
}
void SysfsCollector::logUFSErrorStats(const std::shared_ptr<IStats> &stats_client) {
int value, host_reset_count = 0;
if (kUFSErrStatsPath.empty() || strlen(kUFSErrStatsPath.front().c_str()) == 0) {
ALOGV("UFS host reset count path not specified");
return;
}
for (int i = 0; i < kUFSErrStatsPath.size(); i++) {
if (!ReadFileToInt(kUFSErrStatsPath[i], &value)) {
ALOGE("Unable to read host reset count");
return;
}
host_reset_count += value;
}
// Load values array
std::vector<VendorAtomValue> values(1);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(host_reset_count);
values[StorageUfsResetCount::kHostResetCountFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kUfsResetCount,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report UFS host reset count to Stats service");
}
}
static std::string getUserDataBlock() {
std::unique_ptr<std::FILE, int (*)(std::FILE*)> fp(setmntent("/proc/mounts", "re"), endmntent);
if (fp == nullptr) {
ALOGE("Error opening /proc/mounts");
return "";
}
mntent* mentry;
while ((mentry = getmntent(fp.get())) != nullptr) {
if (strcmp(mentry->mnt_dir, "/data") == 0) {
return std::string(basename(mentry->mnt_fsname));
}
}
return "";
}
void SysfsCollector::logF2fsStats(const std::shared_ptr<IStats> &stats_client) {
int dirty, free, cp_calls_fg, gc_calls_fg, moved_block_fg, vblocks;
int cp_calls_bg, gc_calls_bg, moved_block_bg;
if (kF2fsStatsPath == nullptr) {
ALOGE("F2fs stats path not specified");
return;
}
const std::string userdataBlock = getUserDataBlock();
const std::string kF2fsStatsDir = kF2fsStatsPath + userdataBlock;
if (!ReadFileToInt(kF2fsStatsDir + "/dirty_segments", &dirty)) {
ALOGV("Unable to read dirty segments");
}
if (!ReadFileToInt(kF2fsStatsDir + "/free_segments", &free)) {
ALOGV("Unable to read free segments");
}
if (!ReadFileToInt(kF2fsStatsDir + "/cp_foreground_calls", &cp_calls_fg)) {
ALOGV("Unable to read cp_foreground_calls");
}
if (!ReadFileToInt(kF2fsStatsDir + "/cp_background_calls", &cp_calls_bg)) {
ALOGV("Unable to read cp_background_calls");
}
if (!ReadFileToInt(kF2fsStatsDir + "/gc_foreground_calls", &gc_calls_fg)) {
ALOGV("Unable to read gc_foreground_calls");
}
if (!ReadFileToInt(kF2fsStatsDir + "/gc_background_calls", &gc_calls_bg)) {
ALOGV("Unable to read gc_background_calls");
}
if (!ReadFileToInt(kF2fsStatsDir + "/moved_blocks_foreground", &moved_block_fg)) {
ALOGV("Unable to read moved_blocks_foreground");
}
if (!ReadFileToInt(kF2fsStatsDir + "/moved_blocks_background", &moved_block_bg)) {
ALOGV("Unable to read moved_blocks_background");
}
if (!ReadFileToInt(kF2fsStatsDir + "/avg_vblocks", &vblocks)) {
ALOGV("Unable to read avg_vblocks");
}
// Load values array
std::vector<VendorAtomValue> values(9);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(dirty);
values[F2fsStatsInfo::kDirtySegmentsFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(free);
values[F2fsStatsInfo::kFreeSegmentsFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(cp_calls_fg);
values[F2fsStatsInfo::kCpCallsFgFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(cp_calls_bg);
values[F2fsStatsInfo::kCpCallsBgFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(gc_calls_fg);
values[F2fsStatsInfo::kGcCallsFgFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(gc_calls_bg);
values[F2fsStatsInfo::kGcCallsBgFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(moved_block_fg);
values[F2fsStatsInfo::kMovedBlocksFgFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(moved_block_bg);
values[F2fsStatsInfo::kMovedBlocksBgFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(vblocks);
values[F2fsStatsInfo::kValidBlocksFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kF2FsStats,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report F2fs stats to Stats service");
}
}
void SysfsCollector::logF2fsAtomicWriteInfo(const std::shared_ptr<IStats> &stats_client) {
int peak_atomic_write, committed_atomic_block, revoked_atomic_block;
if (kF2fsStatsPath == nullptr) {
ALOGV("F2fs stats path not specified");
return;
}
std::string userdataBlock = getUserDataBlock();
std::string path = kF2fsStatsPath + (userdataBlock + "/peak_atomic_write");
if (!ReadFileToInt(path, &peak_atomic_write)) {
ALOGE("Unable to read peak_atomic_write");
return;
} else {
if (!WriteStringToFile(std::to_string(0), path)) {
ALOGE("Failed to write to file %s", path.c_str());
return;
}
}
path = kF2fsStatsPath + (userdataBlock + "/committed_atomic_block");
if (!ReadFileToInt(path, &committed_atomic_block)) {
ALOGE("Unable to read committed_atomic_block");
return;
} else {
if (!WriteStringToFile(std::to_string(0), path)) {
ALOGE("Failed to write to file %s", path.c_str());
return;
}
}
path = kF2fsStatsPath + (userdataBlock + "/revoked_atomic_block");
if (!ReadFileToInt(path, &revoked_atomic_block)) {
ALOGE("Unable to read revoked_atomic_block");
return;
} else {
if (!WriteStringToFile(std::to_string(0), path)) {
ALOGE("Failed to write to file %s", path.c_str());
return;
}
}
// Load values array
std::vector<VendorAtomValue> values(3);
values[F2fsAtomicWriteInfo::kPeakAtomicWriteFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::intValue>(peak_atomic_write);
values[F2fsAtomicWriteInfo::kCommittedAtomicBlockFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::intValue>(committed_atomic_block);
values[F2fsAtomicWriteInfo::kRevokedAtomicBlockFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::intValue>(revoked_atomic_block);
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kF2FsAtomicWriteInfo,
.values = values};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report F2fs Atomic Write info to Stats service");
}
}
void SysfsCollector::logF2fsCompressionInfo(const std::shared_ptr<IStats> &stats_client) {
int compr_written_blocks, compr_saved_blocks, compr_new_inodes;
if (kF2fsStatsPath == nullptr) {
ALOGV("F2fs stats path not specified");
return;
}
std::string userdataBlock = getUserDataBlock();
std::string path = kF2fsStatsPath + (userdataBlock + "/compr_written_block");
if (!ReadFileToInt(path, &compr_written_blocks)) {
ALOGE("Unable to read compression written blocks");
return;
}
path = kF2fsStatsPath + (userdataBlock + "/compr_saved_block");
if (!ReadFileToInt(path, &compr_saved_blocks)) {
ALOGE("Unable to read compression saved blocks");
return;
} else {
if (!WriteStringToFile(std::to_string(0), path)) {
ALOGE("Failed to write to file %s", path.c_str());
return;
}
}
path = kF2fsStatsPath + (userdataBlock + "/compr_new_inode");
if (!ReadFileToInt(path, &compr_new_inodes)) {
ALOGE("Unable to read compression new inodes");
return;
} else {
if (!WriteStringToFile(std::to_string(0), path)) {
ALOGE("Failed to write to file %s", path.c_str());
return;
}
}
// Load values array
std::vector<VendorAtomValue> values(3);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(compr_written_blocks);
values[F2fsCompressionInfo::kComprWrittenBlocksFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(compr_saved_blocks);
values[F2fsCompressionInfo::kComprSavedBlocksFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(compr_new_inodes);
values[F2fsCompressionInfo::kComprNewInodesFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kF2FsCompressionInfo,
.values = values};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report F2fs compression info to Stats service");
}
}
int SysfsCollector::getReclaimedSegments(const std::string &mode) {
std::string userDataStatsPath = kF2fsStatsPath + getUserDataBlock();
std::string gcSegmentModePath = userDataStatsPath + "/gc_segment_mode";
std::string gcReclaimedSegmentsPath = userDataStatsPath + "/gc_reclaimed_segments";
int reclaimed_segments;
if (!WriteStringToFile(mode, gcSegmentModePath)) {
ALOGE("Failed to change gc_segment_mode to %s", mode.c_str());
return -1;
}
if (!ReadFileToInt(gcReclaimedSegmentsPath, &reclaimed_segments)) {
ALOGE("GC mode(%s): Unable to read gc_reclaimed_segments", mode.c_str());
return -1;
}
if (!WriteStringToFile(std::to_string(0), gcReclaimedSegmentsPath)) {
ALOGE("GC mode(%s): Failed to reset gc_reclaimed_segments", mode.c_str());
return -1;
}
return reclaimed_segments;
}
void SysfsCollector::logF2fsGcSegmentInfo(const std::shared_ptr<IStats> &stats_client) {
int reclaimed_segments_normal, reclaimed_segments_urgent_high;
int reclaimed_segments_urgent_mid, reclaimed_segments_urgent_low;
std::string gc_normal_mode = std::to_string(0); // GC normal mode
std::string gc_urgent_high_mode = std::to_string(4); // GC urgent high mode
std::string gc_urgent_low_mode = std::to_string(5); // GC urgent low mode
std::string gc_urgent_mid_mode = std::to_string(6); // GC urgent mid mode
if (kF2fsStatsPath == nullptr) {
ALOGV("F2fs stats path not specified");
return;
}
reclaimed_segments_normal = getReclaimedSegments(gc_normal_mode);
if (reclaimed_segments_normal == -1) return;
reclaimed_segments_urgent_high = getReclaimedSegments(gc_urgent_high_mode);
if (reclaimed_segments_urgent_high == -1) return;
reclaimed_segments_urgent_low = getReclaimedSegments(gc_urgent_low_mode);
if (reclaimed_segments_urgent_low == -1) return;
reclaimed_segments_urgent_mid = getReclaimedSegments(gc_urgent_mid_mode);
if (reclaimed_segments_urgent_mid == -1) return;
// Load values array
std::vector<VendorAtomValue> values(4);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(reclaimed_segments_normal);
values[F2fsGcSegmentInfo::kReclaimedSegmentsNormalFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(reclaimed_segments_urgent_high);
values[F2fsGcSegmentInfo::kReclaimedSegmentsUrgentHighFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(reclaimed_segments_urgent_low);
values[F2fsGcSegmentInfo::kReclaimedSegmentsUrgentLowFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(reclaimed_segments_urgent_mid);
values[F2fsGcSegmentInfo::kReclaimedSegmentsUrgentMidFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kF2FsGcSegmentInfo,
.values = values};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report F2fs GC Segment info to Stats service");
}
}
void SysfsCollector::logF2fsSmartIdleMaintEnabled(const std::shared_ptr<IStats> &stats_client) {
bool smart_idle_enabled = android::base::GetBoolProperty(
"persist.device_config.storage_native_boot.smart_idle_maint_enabled", false);
// Load values array
VendorAtomValue tmp;
std::vector<VendorAtomValue> values(1);
tmp.set<VendorAtomValue::intValue>(smart_idle_enabled);
values[F2fsSmartIdleMaintEnabledStateChanged::kEnabledFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = PixelAtoms::ReverseDomainNames().pixel(),
.atomId = PixelAtoms::Atom::kF2FsSmartIdleMaintEnabledStateChanged,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report F2fsSmartIdleMaintEnabled to Stats service");
}
}
void SysfsCollector::logBlockStatsReported(const std::shared_ptr<IStats> &stats_client) {
std::string sdaPath = "/sys/block/sda/stat";
std::string file_contents;
std::string stat;
std::vector<std::string> stats;
std::stringstream ss;
// These index comes from kernel Document
// Documentation/ABI/stable/sysfs-block
const int READ_IO_IDX = 0, READ_SEC_IDX = 2, READ_TICK_IDX = 3;
const int WRITE_IO_IDX = 4, WRITE_SEC_IDX = 6, WRITE_TICK_IDX = 7;
uint64_t read_io, read_sectors, read_ticks;
uint64_t write_io, write_sectors, write_ticks;
if (!ReadFileToString(sdaPath.c_str(), &file_contents)) {
ALOGE("Failed to read block layer stat %s", sdaPath.c_str());
return;
}
ss.str(file_contents);
while (ss >> stat) {
stats.push_back(stat);
}
if (stats.size() < kBlockStatsLength) {
ALOGE("block layer stat format is incorrect %s, length %zu/%d", file_contents.c_str(),
stats.size(), kBlockStatsLength);
return;
}
read_io = std::stoul(stats[READ_IO_IDX]);
read_sectors = std::stoul(stats[READ_SEC_IDX]);
read_ticks = std::stoul(stats[READ_TICK_IDX]);
write_io = std::stoul(stats[WRITE_IO_IDX]);
write_sectors = std::stoul(stats[WRITE_SEC_IDX]);
write_ticks = std::stoul(stats[WRITE_TICK_IDX]);
// Load values array
std::vector<VendorAtomValue> values(6);
values[BlockStatsReported::kReadIoFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(read_io);
values[BlockStatsReported::kReadSectorsFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(read_sectors);
values[BlockStatsReported::kReadTicksFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(read_ticks);
values[BlockStatsReported::kWriteIoFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(write_io);
values[BlockStatsReported::kWriteSectorsFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(write_sectors);
values[BlockStatsReported::kWriteTicksFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(write_ticks);
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = PixelAtoms::ReverseDomainNames().pixel(),
.atomId = PixelAtoms::Atom::kBlockStatsReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report block layer stats to Stats service");
}
}
void SysfsCollector::logTempResidencyStats(const std::shared_ptr<IStats> &stats_client) {
for (const auto &temp_residency_and_reset_path : kTempResidencyAndResetPaths) {
temp_residency_reporter_.logTempResidencyStats(stats_client,
temp_residency_and_reset_path.first,
temp_residency_and_reset_path.second);
}
}
void SysfsCollector::reportZramMmStat(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (!kZramMmStatPath) {
ALOGV("ZramMmStat path not specified");
return;
}
if (!ReadFileToString(kZramMmStatPath, &file_contents)) {
ALOGE("Unable to ZramMmStat %s - %s", kZramMmStatPath, strerror(errno));
return;
} else {
int64_t orig_data_size = 0;
int64_t compr_data_size = 0;
int64_t mem_used_total = 0;
int64_t mem_limit = 0;
int64_t max_used_total = 0;
int64_t same_pages = 0;
int64_t pages_compacted = 0;
int64_t huge_pages = 0;
int64_t huge_pages_since_boot = 0;
// huge_pages_since_boot may not exist according to kernel version.
// only check if the number of collected data is equal or larger then 8
if (sscanf(file_contents.c_str(),
"%" SCNd64 " %" SCNd64 " %" SCNd64 " %" SCNd64 " %" SCNd64 " %" SCNd64
" %" SCNd64 " %" SCNd64 " %" SCNd64,
&orig_data_size, &compr_data_size, &mem_used_total, &mem_limit, &max_used_total,
&same_pages, &pages_compacted, &huge_pages, &huge_pages_since_boot) < 8) {
ALOGE("Unable to parse ZramMmStat %s from file %s to int.",
file_contents.c_str(), kZramMmStatPath);
}
// Load values array.
// The size should be the same as the number of fields in ZramMmStat
std::vector<VendorAtomValue> values(6);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(orig_data_size);
values[ZramMmStat::kOrigDataSizeFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(compr_data_size);
values[ZramMmStat::kComprDataSizeFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(mem_used_total);
values[ZramMmStat::kMemUsedTotalFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(same_pages);
values[ZramMmStat::kSamePagesFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(huge_pages);
values[ZramMmStat::kHugePagesFieldNumber - kVendorAtomOffset] = tmp;
// Skip the first data to avoid a big spike in this accumulated value.
if (prev_huge_pages_since_boot_ == -1)
tmp.set<VendorAtomValue::intValue>(0);
else
tmp.set<VendorAtomValue::intValue>(huge_pages_since_boot - prev_huge_pages_since_boot_);
values[ZramMmStat::kHugePagesSinceBootFieldNumber - kVendorAtomOffset] = tmp;
prev_huge_pages_since_boot_ = huge_pages_since_boot;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kZramMmStat,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Zram Unable to report ZramMmStat to Stats service");
}
}
void SysfsCollector::reportZramBdStat(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
if (!kZramBdStatPath) {
ALOGV("ZramBdStat path not specified");
return;
}
if (!ReadFileToString(kZramBdStatPath, &file_contents)) {
ALOGE("Unable to ZramBdStat %s - %s", kZramBdStatPath, strerror(errno));
return;
} else {
int64_t bd_count = 0;
int64_t bd_reads = 0;
int64_t bd_writes = 0;
if (sscanf(file_contents.c_str(), "%" SCNd64 " %" SCNd64 " %" SCNd64,
&bd_count, &bd_reads, &bd_writes) != 3) {
ALOGE("Unable to parse ZramBdStat %s from file %s to int.",
file_contents.c_str(), kZramBdStatPath);
}
// Load values array
std::vector<VendorAtomValue> values(3);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(bd_count);
values[ZramBdStat::kBdCountFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(bd_reads);
values[ZramBdStat::kBdReadsFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(bd_writes);
values[ZramBdStat::kBdWritesFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kZramBdStat,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Zram Unable to report ZramBdStat to Stats service");
}
}
void SysfsCollector::logZramStats(const std::shared_ptr<IStats> &stats_client) {
reportZramMmStat(stats_client);
reportZramBdStat(stats_client);
}
void SysfsCollector::logBootStats(const std::shared_ptr<IStats> &stats_client) {
int mounted_time_sec = 0;
if (kF2fsStatsPath == nullptr) {
ALOGE("F2fs stats path not specified");
return;
}
std::string userdataBlock = getUserDataBlock();
if (!ReadFileToInt(kF2fsStatsPath + (userdataBlock + "/mounted_time_sec"), &mounted_time_sec)) {
ALOGV("Unable to read mounted_time_sec");
return;
}
int fsck_time_ms = android::base::GetIntProperty("ro.boottime.init.fsck.data", 0);
int checkpoint_time_ms = android::base::GetIntProperty("ro.boottime.init.mount.data", 0);
if (fsck_time_ms == 0 && checkpoint_time_ms == 0) {
ALOGV("Not yet initialized");
return;
}
// Load values array
std::vector<VendorAtomValue> values(3);
VendorAtomValue tmp;
tmp.set<VendorAtomValue::intValue>(mounted_time_sec);
values[BootStatsInfo::kMountedTimeSecFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(fsck_time_ms / 1000);
values[BootStatsInfo::kFsckTimeSecFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(checkpoint_time_ms / 1000);
values[BootStatsInfo::kCheckpointTimeSecFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kBootStats,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report Boot stats to Stats service");
} else {
log_once_reported = true;
}
}
/**
* Report the AMS & CCA rate.
*/
void SysfsCollector::logVendorAudioHardwareStats(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
uint32_t milli_ams_rate, cca_active_rate, cca_enable_rate;
bool isAmsReady = false, isCCAReady = false;
if (kAmsRatePath == nullptr) {
ALOGD("Audio AMS Rate path not specified");
} else {
if (!ReadFileToString(kAmsRatePath, &file_contents)) {
ALOGD("Unable to read ams_rate path %s", kAmsRatePath);
} else {
if (sscanf(file_contents.c_str(), "%u", &milli_ams_rate) != 1) {
ALOGD("Unable to parse ams_rate %s", file_contents.c_str());
} else {
isAmsReady = true;
ALOGD("milli_ams_rate = %u", milli_ams_rate);
}
}
}
if (kCCARatePath == nullptr) {
ALOGD("Audio CCA Rate path not specified");
} else {
if (!ReadFileToString(kCCARatePath, &file_contents)) {
ALOGD("Unable to read cca_rate path %s", kCCARatePath);
} else {
if (sscanf(file_contents.c_str(), "%u,%u", &cca_active_rate, &cca_enable_rate) != 2) {
ALOGD("Unable to parse cca rates %s", file_contents.c_str());
} else {
isCCAReady = true;
ALOGD("cca_active_rate = %u, cca_enable_rate = %u", cca_active_rate,
cca_enable_rate);
}
}
}
if (!(isAmsReady || isCCAReady)) {
ALOGD("no ams or cca data to report");
return;
}
std::vector<VendorAtomValue> values(3);
VendorAtomValue tmp;
if (isAmsReady) {
tmp.set<VendorAtomValue::intValue>(milli_ams_rate);
values[VendorAudioHardwareStatsReported::kMilliRateOfAmsPerDayFieldNumber -
kVendorAtomOffset] = tmp;
}
if (isCCAReady) {
tmp.set<VendorAtomValue::intValue>(cca_active_rate);
values[VendorAudioHardwareStatsReported::kRateOfCcaActivePerDayFieldNumber -
kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(cca_enable_rate);
values[VendorAudioHardwareStatsReported::kRateOfCcaEnablePerDayFieldNumber -
kVendorAtomOffset] = tmp;
}
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kVendorAudioHardwareStatsReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report VendorAudioHardwareStatsReported to Stats service");
else
ALOGD("Reported VendorAudioHardwareStatsReported");
}
/**
* Report PDM States which indicates microphone background noise level.
* This function will report at most 4 atoms showing different background noise type.
*/
void SysfsCollector::logVendorAudioPdmStatsReported(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
std::vector<int> pdm_states;
if (kPDMStatePath == nullptr) {
ALOGD("Audio PDM State path not specified");
} else {
if (!ReadFileToString(kPDMStatePath, &file_contents)) {
ALOGD("Unable to read PDM State path %s", kPDMStatePath);
} else {
std::stringstream file_content_stream(file_contents);
while (file_content_stream.good()) {
std::string substr;
int state;
getline(file_content_stream, substr, ',');
if (sscanf(substr.c_str(), "%d", &state) != 1) {
ALOGD("Unable to parse PDM State %s", file_contents.c_str());
} else {
pdm_states.push_back(state);
ALOGD("Parsed PDM State: %d", state);
}
}
}
}
if (pdm_states.empty()) {
ALOGD("Empty PDM State parsed.");
return;
}
if (pdm_states.size() > 4) {
ALOGD("Too many values parsed.");
return;
}
for (int index = 0; index < pdm_states.size(); index++) {
std::vector<VendorAtomValue> values(2);
VendorAtomValue tmp;
if (pdm_states[index] == 0) {
ALOGD("Skipped VendorAudioPdmStatsReported at index %d", index);
continue;
}
tmp.set<VendorAtomValue::intValue>(index);
values[VendorAudioPdmStatsReported::kPdmIndexFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(pdm_states[index]);
values[VendorAudioPdmStatsReported::kStateFieldNumber - kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kVendorAudioPdmStatsReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report VendorAudioPdmStatsReported at index %d", index);
else
ALOGD("Reported VendorAudioPdmStatsReported at index %d", index);
}
}
/**
* Report Third party audio effects stats.
* This function will report at most 5 atoms showing different instance stats.
*/
void SysfsCollector::logWavesStats(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
std::vector<std::vector<int>> volume_duration_per_instance;
constexpr int num_instances = 5;
constexpr int num_volume = 10;
if (kWavesPath == nullptr) {
ALOGD("Audio Waves stats path not specified");
return;
}
if (!ReadFileToString(kWavesPath, &file_contents)) {
ALOGD("Unable to read Wave stats path %s", kWavesPath);
} else {
std::stringstream file_content_stream(file_contents);
int duration;
std::vector<int> volume_duration;
while (file_content_stream.good() && file_content_stream >> duration) {
volume_duration.push_back(duration);
if (volume_duration.size() >= num_volume) {
volume_duration_per_instance.push_back(volume_duration);
volume_duration.clear();
}
}
}
if (volume_duration_per_instance.size() != num_instances) {
ALOGE("Number of instances %zu doesn't match the correct number %d",
volume_duration_per_instance.size(), num_instances);
return;
}
for (int i = 0; i < volume_duration_per_instance.size(); i++) {
if (volume_duration_per_instance[i].size() != num_volume) {
ALOGE("Number of volume %zu doesn't match the correct number %d",
volume_duration_per_instance[i].size(), num_volume);
return;
}
}
std::vector<int> volume_range_field_numbers = {
VendorAudioThirdPartyEffectStatsReported::kVolumeRange0ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange1ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange2ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange3ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange4ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange5ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange6ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange7ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange8ActiveMsPerDayFieldNumber,
VendorAudioThirdPartyEffectStatsReported::kVolumeRange9ActiveMsPerDayFieldNumber};
for (int index = 0; index < volume_duration_per_instance.size(); index++) {
std::vector<VendorAtomValue> values(11);
VendorAtomValue tmp;
bool has_value = false;
for (int volume_index = 0; volume_index < num_volume; volume_index++) {
if (volume_duration_per_instance[index][volume_index] > 0) {
has_value = true;
}
}
if (!has_value) {
ALOGD("Skipped VendorAudioThirdPartyEffectStatsReported at index %d", index);
continue;
}
tmp.set<VendorAtomValue::intValue>(index);
values[VendorAudioThirdPartyEffectStatsReported::kInstanceFieldNumber - kVendorAtomOffset] =
tmp;
for (int volume_index = 0; volume_index < num_volume; volume_index++) {
tmp.set<VendorAtomValue::intValue>(volume_duration_per_instance[index][volume_index]);
values[volume_range_field_numbers[volume_index] - kVendorAtomOffset] = tmp;
}
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kVendorAudioThirdPartyEffectStatsReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report VendorAudioThirdPartyEffectStatsReported at index %d", index);
else
ALOGD("Reported VendorAudioThirdPartyEffectStatsReported at index %d", index);
}
}
/**
* Report Audio Adapted Information stats such as thermal throttling.
* This function will report at most 6 atoms showing different instance stats.
*/
void SysfsCollector::logAdaptedInfoStats(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
std::vector<int> count_per_feature;
std::vector<int> duration_per_feature;
constexpr int num_features = 6;
if (kAdaptedInfoCountPath == nullptr) {
ALOGD("Audio Adapted Info Count stats path not specified");
return;
}
if (kAdaptedInfoDurationPath == nullptr) {
ALOGD("Audio Adapted Info Duration stats path not specified");
return;
}
if (!ReadFileToString(kAdaptedInfoCountPath, &file_contents)) {
ALOGD("Unable to read Adapted Info Count stats path %s", kAdaptedInfoCountPath);
} else {
std::stringstream file_content_stream(file_contents);
int count;
while (file_content_stream.good() && file_content_stream >> count) {
count_per_feature.push_back(count);
}
}
if (count_per_feature.size() != num_features) {
ALOGD("Audio Adapted Info Count doesn't match the number of features. %zu / %d",
count_per_feature.size(), num_features);
return;
}
if (!ReadFileToString(kAdaptedInfoDurationPath, &file_contents)) {
ALOGD("Unable to read Adapted Info Duration stats path %s", kAdaptedInfoDurationPath);
} else {
std::stringstream file_content_stream(file_contents);
int duration;
while (file_content_stream.good() && file_content_stream >> duration) {
duration_per_feature.push_back(duration);
}
}
if (duration_per_feature.size() != num_features) {
ALOGD("Audio Adapted Info Duration doesn't match the number of features. %zu / %d",
duration_per_feature.size(), num_features);
return;
}
for (int index = 0; index < num_features; index++) {
std::vector<VendorAtomValue> values(3);
VendorAtomValue tmp;
if (count_per_feature[index] == 0 && duration_per_feature[index] == 0) {
ALOGD("Skipped VendorAudioAdaptedInfoStatsReported at index %d", index);
continue;
}
tmp.set<VendorAtomValue::intValue>(index);
values[VendorAudioAdaptedInfoStatsReported::kFeatureIdFieldNumber - kVendorAtomOffset] =
tmp;
tmp.set<VendorAtomValue::intValue>(count_per_feature[index]);
values[VendorAudioAdaptedInfoStatsReported::kActiveCountsPerDayFieldNumber -
kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(duration_per_feature[index]);
values[VendorAudioAdaptedInfoStatsReported::kActiveDurationMsPerDayFieldNumber -
kVendorAtomOffset] = tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kVendorAudioAdaptedInfoStatsReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report VendorAudioAdaptedInfoStatsReported at index %d", index);
else
ALOGD("Reported VendorAudioAdaptedInfoStatsReported at index %d", index);
}
}
/**
* Report audio PCM usage stats such as latency and active count.
* This function will report at most 19 atoms showing different PCM type.
*/
void SysfsCollector::logPcmUsageStats(const std::shared_ptr<IStats> &stats_client) {
std::string file_contents;
std::vector<int> count_per_type;
std::vector<int> latency_per_type;
constexpr int num_type = 19;
if (kPcmLatencyPath == nullptr) {
ALOGD("PCM Latency path not specified");
return;
}
if (kPcmCountPath == nullptr) {
ALOGD("PCM Count path not specified");
return;
}
if (!ReadFileToString(kPcmCountPath, &file_contents)) {
ALOGD("Unable to read PCM Count path %s", kPcmCountPath);
} else {
std::stringstream file_content_stream(file_contents);
int count;
while (file_content_stream.good() && file_content_stream >> count) {
count_per_type.push_back(count);
}
}
if (count_per_type.size() != num_type) {
ALOGD("Audio PCM Count path doesn't match the number of features. %zu / %d",
count_per_type.size(), num_type);
return;
}
if (!ReadFileToString(kPcmLatencyPath, &file_contents)) {
ALOGD("Unable to read PCM Latency path %s", kPcmLatencyPath);
} else {
std::stringstream file_content_stream(file_contents);
int duration;
while (file_content_stream.good() && file_content_stream >> duration) {
latency_per_type.push_back(duration);
}
}
if (latency_per_type.size() != num_type) {
ALOGD("Audio PCM Latency path doesn't match the number of features. %zu / %d",
latency_per_type.size(), num_type);
return;
}
for (int index = 0; index < num_type; index++) {
std::vector<VendorAtomValue> values(3);
VendorAtomValue tmp;
if (latency_per_type[index] == 0 && count_per_type[index] == 0) {
continue;
}
tmp.set<VendorAtomValue::intValue>(index);
values[VendorAudioPcmStatsReported::kTypeFieldNumber - kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(latency_per_type[index]);
values[VendorAudioPcmStatsReported::kPcmOpenLatencyAvgMsPerDayFieldNumber -
kVendorAtomOffset] = tmp;
tmp.set<VendorAtomValue::intValue>(count_per_type[index]);
values[VendorAudioPcmStatsReported::kPcmActiveCountsPerDayFieldNumber - kVendorAtomOffset] =
tmp;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kVendorAudioPcmStatsReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report VendorAudioPcmStatsReported at index %d", index);
else
ALOGD("Reported VendorAudioPcmStatsReported at index %d successfully", index);
}
}
/**
* Logs the Resume Latency stats.
*/
void SysfsCollector::logVendorResumeLatencyStats(const std::shared_ptr<IStats> &stats_client) {
std::string uart_enabled = android::base::GetProperty("init.svc.console", "");
if (uart_enabled == "running") {
return;
}
std::string file_contents;
if (!kResumeLatencyMetricsPath) {
ALOGE("ResumeLatencyMetrics path not specified");
return;
}
if (!ReadFileToString(kResumeLatencyMetricsPath, &file_contents)) {
ALOGE("Unable to ResumeLatencyMetric %s - %s", kResumeLatencyMetricsPath, strerror(errno));
return;
}
int offset = 0;
int bytes_read;
const char *data = file_contents.c_str();
int data_len = file_contents.length();
int curr_bucket_cnt;
if (!sscanf(data + offset, "Resume Latency Bucket Count: %d\n%n", &curr_bucket_cnt,
&bytes_read))
return;
offset += bytes_read;
if (offset >= data_len)
return;
int64_t max_latency;
if (!sscanf(data + offset, "Max Resume Latency: %" PRId64 "\n%n", &max_latency, &bytes_read))
return;
offset += bytes_read;
if (offset >= data_len)
return;
uint64_t sum_latency;
if (!sscanf(data + offset, "Sum Resume Latency: %" PRIu64 "\n%n", &sum_latency, &bytes_read))
return;
offset += bytes_read;
if (offset >= data_len)
return;
if (curr_bucket_cnt > kMaxResumeLatencyBuckets)
return;
if (curr_bucket_cnt != prev_data.bucket_cnt) {
prev_data.resume_latency_buckets.clear();
}
int64_t total_latency_cnt = 0;
int64_t count;
int index = 2;
std::vector<VendorAtomValue> values(curr_bucket_cnt + 2);
VendorAtomValue tmp;
// Iterate over resume latency buckets to get latency count within some latency thresholds
while (sscanf(data + offset, "%*ld - %*ldms ====> %" PRId64 "\n%n", &count, &bytes_read) == 1 ||
sscanf(data + offset, "%*ld - infms ====> %" PRId64 "\n%n", &count, &bytes_read) == 1) {
offset += bytes_read;
if (offset >= data_len && (index + 1 < curr_bucket_cnt + 2))
return;
if (curr_bucket_cnt == prev_data.bucket_cnt) {
tmp.set<VendorAtomValue::longValue>(count -
prev_data.resume_latency_buckets[index - 2]);
prev_data.resume_latency_buckets[index - 2] = count;
} else {
tmp.set<VendorAtomValue::longValue>(count);
prev_data.resume_latency_buckets.push_back(count);
}
if (index >= curr_bucket_cnt + 2)
return;
values[index] = tmp;
index += 1;
total_latency_cnt += count;
}
tmp.set<VendorAtomValue::longValue>(max_latency);
values[0] = tmp;
if ((sum_latency - prev_data.resume_latency_sum_ms < 0) ||
(total_latency_cnt - prev_data.resume_count <= 0)) {
tmp.set<VendorAtomValue::longValue>(-1);
ALOGI("average resume latency get overflow");
} else {
tmp.set<VendorAtomValue::longValue>(
(int64_t)(sum_latency - prev_data.resume_latency_sum_ms) /
(total_latency_cnt - prev_data.resume_count));
}
values[1] = tmp;
prev_data.resume_latency_sum_ms = sum_latency;
prev_data.resume_count = total_latency_cnt;
prev_data.bucket_cnt = curr_bucket_cnt;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kVendorResumeLatencyStats,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report VendorResumeLatencyStats to Stats service");
}
bool cmp(const std::pair<int, int64_t> &a, const std::pair<int, int64_t> &b) {
return a.second > b.second;
}
/**
* Sort irq stats by irq latency, and load top 5 irq stats.
*/
void process_irqatom_values(std::vector<std::pair<int, int64_t>> sorted_pair,
std::vector<VendorAtomValue> *values) {
VendorAtomValue tmp;
sort(sorted_pair.begin(), sorted_pair.end(), cmp);
int irq_stats_size = sorted_pair.size();
for (int i = 0; i < 5; i++) {
if (irq_stats_size < 5 && i >= irq_stats_size) {
tmp.set<VendorAtomValue::longValue>(-1);
values->push_back(tmp);
tmp.set<VendorAtomValue::longValue>(0);
values->push_back(tmp);
} else {
tmp.set<VendorAtomValue::longValue>(sorted_pair[i].first);
values->push_back(tmp);
tmp.set<VendorAtomValue::longValue>(sorted_pair[i].second);
values->push_back(tmp);
}
}
}
/**
* Logs the Long irq stats.
*/
void SysfsCollector::logVendorLongIRQStatsReported(const std::shared_ptr<IStats> &stats_client) {
std::string uart_enabled = android::base::GetProperty("init.svc.console", "");
if (uart_enabled == "running") {
return;
}
std::string file_contents;
if (!kLongIRQMetricsPath) {
ALOGV("LongIRQ path not specified");
return;
}
if (!ReadFileToString(kLongIRQMetricsPath, &file_contents)) {
ALOGE("Unable to LongIRQ %s - %s", kLongIRQMetricsPath, strerror(errno));
return;
}
int offset = 0;
int bytes_read;
const char *data = file_contents.c_str();
int data_len = file_contents.length();
// Get, process, store softirq stats
std::vector<std::pair<int, int64_t>> sorted_softirq_pair;
int64_t softirq_count;
if (sscanf(data + offset, "long SOFTIRQ count: %" PRId64 "\n%n", &softirq_count, &bytes_read) !=
1)
return;
offset += bytes_read;
if (offset >= data_len)
return;
std::vector<VendorAtomValue> values;
VendorAtomValue tmp;
if (softirq_count - prev_data.softirq_count < 0) {
tmp.set<VendorAtomValue::intValue>(-1);
ALOGI("long softirq count get overflow");
} else {
tmp.set<VendorAtomValue::longValue>(softirq_count - prev_data.softirq_count);
}
values.push_back(tmp);
if (sscanf(data + offset, "long SOFTIRQ detail (num, latency):\n%n", &bytes_read) != 0)
return;
offset += bytes_read;
if (offset >= data_len)
return;
// Iterate over softirq stats and record top 5 long softirq
int64_t softirq_latency;
int softirq_num;
while (sscanf(data + offset, "%d %" PRId64 "\n%n", &softirq_num, &softirq_latency,
&bytes_read) == 2) {
sorted_softirq_pair.push_back(std::make_pair(softirq_num, softirq_latency));
offset += bytes_read;
if (offset >= data_len)
return;
}
process_irqatom_values(sorted_softirq_pair, &values);
// Get, process, store irq stats
std::vector<std::pair<int, int64_t>> sorted_irq_pair;
int64_t irq_count;
if (sscanf(data + offset, "long IRQ count: %" PRId64 "\n%n", &irq_count, &bytes_read) != 1)
return;
offset += bytes_read;
if (offset >= data_len)
return;
if (irq_count - prev_data.irq_count < 0) {
tmp.set<VendorAtomValue::intValue>(-1);
ALOGI("long irq count get overflow");
} else {
tmp.set<VendorAtomValue::longValue>(irq_count - prev_data.irq_count);
}
values.push_back(tmp);
if (sscanf(data + offset, "long IRQ detail (num, latency):\n%n", &bytes_read) != 0)
return;
offset += bytes_read;
if (offset >= data_len)
return;
int64_t irq_latency;
int irq_num;
int index = 0;
// Iterate over softirq stats and record top 5 long irq
while (sscanf(data + offset, "%d %" PRId64 "\n%n", &irq_num, &irq_latency, &bytes_read) == 2) {
sorted_irq_pair.push_back(std::make_pair(irq_num, irq_latency));
offset += bytes_read;
if (offset >= data_len && index < 5)
return;
index += 1;
}
process_irqatom_values(sorted_irq_pair, &values);
prev_data.softirq_count = softirq_count;
prev_data.irq_count = irq_count;
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kVendorLongIrqStatsReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk())
ALOGE("Unable to report kVendorLongIRQStatsReported to Stats service");
}
void SysfsCollector::logPartitionUsedSpace(const std::shared_ptr<IStats> &stats_client) {
struct statfs fs_info;
char path[] = "/mnt/vendor/persist";
if (statfs(path, &fs_info) == -1) {
ALOGE("statfs: %s", strerror(errno));
return;
}
// Load values array
std::vector<VendorAtomValue> values(3);
values[PartitionsUsedSpaceReported::kDirectoryFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::intValue>
(PixelAtoms::PartitionsUsedSpaceReported::PERSIST);
values[PartitionsUsedSpaceReported::kFreeBytesFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(fs_info.f_bsize * fs_info.f_bfree);
values[PartitionsUsedSpaceReported::kTotalBytesFieldNumber - kVendorAtomOffset] =
VendorAtomValue::make<VendorAtomValue::longValue>(fs_info.f_bsize * fs_info.f_blocks);
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kPartitionUsedSpaceReported,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report Partitions Used Space Reported to stats service");
}
}
void SysfsCollector::logPcieLinkStats(const std::shared_ptr<IStats> &stats_client) {
struct sysfs_map {
const char *sysfs_path;
bool is_counter;
int modem_val;
int wifi_val;
int modem_msg_field_number;
int wifi_msg_field_number;
};
int i;
bool reportPcieLinkStats = false;
/* Map sysfs data to PcieLinkStatsReported message elements */
struct sysfs_map datamap[] = {
{"link_down_irqs", true, 0, 0,
PcieLinkStatsReported::kModemPcieLinkdownsFieldNumber,
PcieLinkStatsReported::kWifiPcieLinkdownsFieldNumber},
{"complete_timeout_irqs", true, 0, 0,
PcieLinkStatsReported::kModemPcieCompletionTimeoutsFieldNumber,
PcieLinkStatsReported::kWifiPcieCompletionTimeoutsFieldNumber},
{"link_up_failures", true, 0, 0,
PcieLinkStatsReported::kModemPcieLinkupFailuresFieldNumber,
PcieLinkStatsReported::kWifiPcieLinkupFailuresFieldNumber},
{"link_recovery_failures", true, 0, 0,
PcieLinkStatsReported::kModemPcieLinkRecoveryFailuresFieldNumber,
PcieLinkStatsReported::kWifiPcieLinkRecoveryFailuresFieldNumber},
{"pll_lock_average", false, 0, 0,
PcieLinkStatsReported::kModemPciePllLockAvgFieldNumber,
PcieLinkStatsReported::kWifiPciePllLockAvgFieldNumber},
{"link_up_average", false, 0, 0,
PcieLinkStatsReported::kModemPcieLinkUpAvgFieldNumber,
PcieLinkStatsReported::kWifiPcieLinkUpAvgFieldNumber },
};
if (kModemPcieLinkStatsPath == nullptr) {
ALOGD("Modem PCIe stats path not specified");
} else {
for (i=0; i < ARRAY_SIZE(datamap); i++) {
std::string modempath =
std::string(kModemPcieLinkStatsPath) + "/" + datamap[i].sysfs_path;
if (ReadFileToInt(modempath, &(datamap[i].modem_val))) {
reportPcieLinkStats = true;
ALOGD("Modem %s = %d", datamap[i].sysfs_path,
datamap[i].modem_val);
if (datamap[i].is_counter) {
std::string value = std::to_string(datamap[i].modem_val);
/* Writing the value back clears the counter */
if (!WriteStringToFile(value, modempath)) {
ALOGE("Unable to clear modem PCIe statistics file: %s - %s",
modempath.c_str(), strerror(errno));
}
}
}
}
}
if (kWifiPcieLinkStatsPath == nullptr) {
ALOGD("Wifi PCIe stats path not specified");
} else {
for (i=0; i < ARRAY_SIZE(datamap); i++) {
std::string wifipath =
std::string(kWifiPcieLinkStatsPath) + "/" + datamap[i].sysfs_path;
if (ReadFileToInt(wifipath, &(datamap[i].wifi_val))) {
reportPcieLinkStats = true;
ALOGD("Wifi %s = %d", datamap[i].sysfs_path,
datamap[i].wifi_val);
if (datamap[i].is_counter) {
std::string value = std::to_string(datamap[i].wifi_val);
/* Writing the value back clears the counter */
if (!WriteStringToFile(value, wifipath)) {
ALOGE("Unable to clear wifi PCIe statistics file: %s - %s",
wifipath.c_str(), strerror(errno));
}
}
}
}
}
if (!reportPcieLinkStats) {
ALOGD("No PCIe link stats to report");
return;
}
// Load values array
std::vector<VendorAtomValue> values(2 * ARRAY_SIZE(datamap));
VendorAtomValue tmp;
for (i=0; i < ARRAY_SIZE(datamap); i++) {
if (datamap[i].modem_val > 0) {
tmp.set<VendorAtomValue::intValue>(datamap[i].modem_val);
values[datamap[i].modem_msg_field_number - kVendorAtomOffset] = tmp;
}
if (datamap[i].wifi_val > 0) {
tmp.set<VendorAtomValue::intValue>(datamap[i].wifi_val);
values[datamap[i].wifi_msg_field_number - kVendorAtomOffset] = tmp;
}
}
// Send vendor atom to IStats HAL
VendorAtom event = {.reverseDomainName = "",
.atomId = PixelAtoms::Atom::kPcieLinkStats,
.values = std::move(values)};
const ndk::ScopedAStatus ret = stats_client->reportVendorAtom(event);
if (!ret.isOk()) {
ALOGE("Unable to report PCIe link statistics to stats service");
}
}
/**
* Read the contents of kPowerMitigationDurationPath and report them.
*/
void SysfsCollector::logMitigationDurationCounts(const std::shared_ptr<IStats> &stats_client) {
if (kPowerMitigationDurationPath == nullptr || strlen(kPowerMitigationDurationPath) == 0) {
ALOGE("Mitigation Duration path is invalid!");
return;
}
mitigation_duration_reporter_.logMitigationDuration(stats_client, kPowerMitigationDurationPath);
}
void SysfsCollector::logPerDay() {
const std::shared_ptr<IStats> stats_client = getStatsService();
if (!stats_client) {
ALOGE("Unable to get AIDL Stats service");
return;
}
// Collect once per service init; can be multiple due to service reinit
if (!log_once_reported) {
logBootStats(stats_client);
}
logBatteryCapacity(stats_client);
logBatteryChargeCycles(stats_client);
logBatteryEEPROM(stats_client);
logBatteryHealth(stats_client);
logBlockStatsReported(stats_client);
logCodec1Failed(stats_client);
logCodecFailed(stats_client);
logDisplayStats(stats_client);
logF2fsStats(stats_client);
logF2fsAtomicWriteInfo(stats_client);
logF2fsCompressionInfo(stats_client);
logF2fsGcSegmentInfo(stats_client);
logF2fsSmartIdleMaintEnabled(stats_client);
logSlowIO(stats_client);
logSpeakerImpedance(stats_client);
logSpeechDspStat(stats_client);
logUFSLifetime(stats_client);
logUFSErrorStats(stats_client);
logSpeakerHealthStats(stats_client);
mm_metrics_reporter_.logCmaStatus(stats_client);
mm_metrics_reporter_.logPixelMmMetricsPerDay(stats_client);
logVendorAudioHardwareStats(stats_client);
logThermalStats(stats_client);
logTempResidencyStats(stats_client);
logVendorLongIRQStatsReported(stats_client);
logVendorResumeLatencyStats(stats_client);
logPartitionUsedSpace(stats_client);
logPcieLinkStats(stats_client);
logMitigationDurationCounts(stats_client);
logVendorAudioPdmStatsReported(stats_client);
logWavesStats(stats_client);
logAdaptedInfoStats(stats_client);
logPcmUsageStats(stats_client);
}
void SysfsCollector::aggregatePer5Min() {
mm_metrics_reporter_.aggregatePixelMmMetricsPer5Min();
}
void SysfsCollector::logBrownout() {
const std::shared_ptr<IStats> stats_client = getStatsService();
if (!stats_client) {
ALOGE("Unable to get AIDL Stats service");
return;
}
if (kBrownoutLogPath != nullptr && strlen(kBrownoutLogPath) > 0)
brownout_detected_reporter_.logBrownout(stats_client, kBrownoutLogPath,
kBrownoutReasonProp);
}
void SysfsCollector::logOnce() {
logBrownout();
}
void SysfsCollector::logPerHour() {
const std::shared_ptr<IStats> stats_client = getStatsService();
if (!stats_client) {
ALOGE("Unable to get AIDL Stats service");
return;
}
mm_metrics_reporter_.logPixelMmMetricsPerHour(stats_client);
logZramStats(stats_client);
if (kPowerMitigationStatsPath != nullptr && strlen(kPowerMitigationStatsPath) > 0)
mitigation_stats_reporter_.logMitigationStatsPerHour(stats_client,
kPowerMitigationStatsPath);
}
/**
* Loop forever collecting stats from sysfs nodes and reporting them via
* IStats.
*/
void SysfsCollector::collect(void) {
int timerfd = timerfd_create(CLOCK_BOOTTIME, 0);
if (timerfd < 0) {
ALOGE("Unable to create timerfd - %s", strerror(errno));
return;
}
// Sleep for 30 seconds on launch to allow codec driver to load.
sleep(30);
// sample & aggregate for the first time.
aggregatePer5Min();
// Collect first set of stats on boot.
logOnce();
logPerHour();
logPerDay();
struct itimerspec period;
// gcd (greatest common divisor) of all the following timings
constexpr int kSecondsPerWake = 5 * 60;
constexpr int kWakesPer5Min = 5 * 60 / kSecondsPerWake;
constexpr int kWakesPerHour = 60 * 60 / kSecondsPerWake;
constexpr int kWakesPerDay = 24 * 60 * 60 / kSecondsPerWake;
int wake_5min = 0;
int wake_hours = 0;
int wake_days = 0;
period.it_interval.tv_sec = kSecondsPerWake;
period.it_interval.tv_nsec = 0;
period.it_value.tv_sec = kSecondsPerWake;
period.it_value.tv_nsec = 0;
if (timerfd_settime(timerfd, 0, &period, NULL)) {
ALOGE("Unable to set one hour timer - %s", strerror(errno));
return;
}
while (1) {
int readval;
union {
char buf[8];
uint64_t count;
} expire;
do {
errno = 0;
readval = read(timerfd, expire.buf, sizeof(expire.buf));
} while (readval < 0 && errno == EINTR);
if (readval < 0) {
ALOGE("Timerfd error - %s\n", strerror(errno));
return;
}
wake_5min += expire.count;
wake_hours += expire.count;
wake_days += expire.count;
if (wake_5min >= kWakesPer5Min) {
wake_5min %= kWakesPer5Min;
aggregatePer5Min();
}
if (wake_hours >= kWakesPerHour) {
if (wake_hours >= 2 * kWakesPerHour)
ALOGW("Hourly wake: sleep too much: expire.count=%" PRId64, expire.count);
wake_hours %= kWakesPerHour;
logPerHour();
}
if (wake_days >= kWakesPerDay) {
if (wake_hours >= 2 * kWakesPerDay)
ALOGW("Daily wake: sleep too much: expire.count=%" PRId64, expire.count);
wake_days %= kWakesPerDay;
logPerDay();
}
}
}
} // namespace pixel
} // namespace google
} // namespace hardware
} // namespace android