blob: 8bc674145856f4a0f1fbbc87aa18dc63a26de12e [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_THERMAL | ATRACE_TAG_HAL)
#include "thermal-helper.h"
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <utils/Trace.h>
#include <iterator>
#include <set>
#include <sstream>
#include <thread>
#include <vector>
namespace android {
namespace hardware {
namespace thermal {
namespace V2_0 {
namespace implementation {
constexpr std::string_view kCpuOnlineRoot("/sys/devices/system/cpu");
constexpr std::string_view kThermalSensorsRoot("/sys/devices/virtual/thermal");
constexpr std::string_view kCpuUsageFile("/proc/stat");
constexpr std::string_view kCpuOnlineFileSuffix("online");
constexpr std::string_view kCpuPresentFile("/sys/devices/system/cpu/present");
constexpr std::string_view kSensorPrefix("thermal_zone");
constexpr std::string_view kCoolingDevicePrefix("cooling_device");
constexpr std::string_view kThermalNameFile("type");
constexpr std::string_view kSensorPolicyFile("policy");
constexpr std::string_view kSensorTempSuffix("temp");
constexpr std::string_view kSensorTripPointTempZeroFile("trip_point_0_temp");
constexpr std::string_view kSensorTripPointHystZeroFile("trip_point_0_hyst");
constexpr std::string_view kUserSpaceSuffix("user_space");
constexpr std::string_view kCoolingDeviceCurStateSuffix("cur_state");
constexpr std::string_view kCoolingDeviceMaxStateSuffix("max_state");
constexpr std::string_view kCoolingDeviceState2powerSuffix("state2power_table");
constexpr std::string_view kConfigProperty("vendor.thermal.config");
constexpr std::string_view kConfigDefaultFileName("thermal_info_config.json");
constexpr std::string_view kThermalGenlProperty("persist.vendor.enable.thermal.genl");
constexpr std::string_view kThermalDisabledProperty("vendor.disable.thermal.control");
namespace {
using android::base::StringPrintf;
/*
* Pixel don't offline CPU, so std::thread::hardware_concurrency(); should work.
* However /sys/devices/system/cpu/present is preferred.
* The file is expected to contain single text line with two numbers %d-%d,
* which is a range of available cpu numbers, e.g. 0-7 would mean there
* are 8 cores number from 0 to 7.
* For Android systems this approach is safer than using cpufeatures, see bug
* b/36941727.
*/
static int getNumberOfCores() {
std::string file;
if (!android::base::ReadFileToString(kCpuPresentFile.data(), &file)) {
LOG(ERROR) << "Error reading CPU present file: " << kCpuPresentFile;
return 0;
}
std::vector<std::string> pieces = android::base::Split(file, "-");
if (pieces.size() != 2) {
LOG(ERROR) << "Error parsing CPU present file content: " << file;
return 0;
}
auto min_core = std::stoul(pieces[0]);
auto max_core = std::stoul(pieces[1]);
if (max_core < min_core) {
LOG(ERROR) << "Error parsing CPU present min and max: " << min_core << " - " << max_core;
return 0;
}
return static_cast<std::size_t>(max_core - min_core + 1);
}
const int kMaxCpus = getNumberOfCores();
void parseCpuUsagesFileAndAssignUsages(hidl_vec<CpuUsage> *cpu_usages) {
std::string data;
if (!android::base::ReadFileToString(kCpuUsageFile.data(), &data)) {
LOG(ERROR) << "Error reading CPU usage file: " << kCpuUsageFile;
return;
}
std::istringstream stat_data(data);
std::string line;
while (std::getline(stat_data, line)) {
if (!line.find("cpu") && isdigit(line[3])) {
// Split the string using spaces.
std::vector<std::string> words = android::base::Split(line, " ");
std::string cpu_name = words[0];
int cpu_num = std::stoi(cpu_name.substr(3));
if (cpu_num < kMaxCpus) {
uint64_t user = std::stoull(words[1]);
uint64_t nice = std::stoull(words[2]);
uint64_t system = std::stoull(words[3]);
uint64_t idle = std::stoull(words[4]);
// Check if the CPU is online by reading the online file.
std::string cpu_online_path =
StringPrintf("%s/%s/%s", kCpuOnlineRoot.data(), cpu_name.c_str(),
kCpuOnlineFileSuffix.data());
std::string is_online;
if (!android::base::ReadFileToString(cpu_online_path, &is_online)) {
LOG(ERROR) << "Could not open CPU online file: " << cpu_online_path;
if (cpu_num != 0) {
return;
}
// Some architecture cannot offline cpu0, so assuming it is online
is_online = "1";
}
is_online = android::base::Trim(is_online);
(*cpu_usages)[cpu_num].active = user + nice + system;
(*cpu_usages)[cpu_num].total = user + nice + system + idle;
(*cpu_usages)[cpu_num].isOnline = (is_online == "1") ? true : false;
} else {
LOG(ERROR) << "Unexpected CPU number: " << words[0];
return;
}
}
}
}
std::unordered_map<std::string, std::string> parseThermalPathMap(std::string_view prefix) {
std::unordered_map<std::string, std::string> path_map;
std::unique_ptr<DIR, int (*)(DIR *)> dir(opendir(kThermalSensorsRoot.data()), closedir);
if (!dir) {
return path_map;
}
// std::filesystem is not available for vendor yet
// see discussion: aosp/894015
while (struct dirent *dp = readdir(dir.get())) {
if (dp->d_type != DT_DIR) {
continue;
}
if (!android::base::StartsWith(dp->d_name, prefix.data())) {
continue;
}
std::string path = android::base::StringPrintf("%s/%s/%s", kThermalSensorsRoot.data(),
dp->d_name, kThermalNameFile.data());
std::string name;
if (!android::base::ReadFileToString(path, &name)) {
PLOG(ERROR) << "Failed to read from " << path;
continue;
}
path_map.emplace(
android::base::Trim(name),
android::base::StringPrintf("%s/%s", kThermalSensorsRoot.data(), dp->d_name));
}
return path_map;
}
} // namespace
/*
* Populate the sensor_name_to_file_map_ map by walking through the file tree,
* reading the type file and assigning the temp file path to the map. If we do
* not succeed, abort.
*/
ThermalHelper::ThermalHelper(const NotificationCallback &cb)
: thermal_watcher_(new ThermalWatcher(
std::bind(&ThermalHelper::thermalWatcherCallbackFunc, this, std::placeholders::_1))),
cb_(cb) {
const std::string config_path =
"/vendor/etc/" +
android::base::GetProperty(kConfigProperty.data(), kConfigDefaultFileName.data());
bool thermal_throttling_disabled =
android::base::GetBoolProperty(kThermalDisabledProperty.data(), false);
is_initialized_ = ParseCoolingDevice(config_path, &cooling_device_info_map_) &&
ParseSensorInfo(config_path, &sensor_info_map_);
if (thermal_throttling_disabled) {
return;
}
if (!is_initialized_) {
LOG(FATAL) << "Failed to parse thermal configs";
}
auto tz_map = parseThermalPathMap(kSensorPrefix.data());
auto cdev_map = parseThermalPathMap(kCoolingDevicePrefix.data());
is_initialized_ = initializeSensorMap(tz_map) && initializeCoolingDevices(cdev_map);
if (!is_initialized_) {
LOG(FATAL) << "ThermalHAL could not be initialized properly.";
}
if (!power_files_.registerPowerRailsToWatch(config_path)) {
LOG(FATAL) << "Failed to register power rails";
}
for (auto const &name_status_pair : sensor_info_map_) {
sensor_status_map_[name_status_pair.first] = {
.severity = ThrottlingSeverity::NONE,
.prev_hot_severity = ThrottlingSeverity::NONE,
.prev_cold_severity = ThrottlingSeverity::NONE,
.prev_hint_severity = ThrottlingSeverity::NONE,
.last_update_time = boot_clock::time_point::min(),
.thermal_cached = {NAN, boot_clock::time_point::min()},
};
if (name_status_pair.second.throttling_info != nullptr) {
if (!thermal_throttling_.registerThermalThrottling(
name_status_pair.first, name_status_pair.second.throttling_info,
cooling_device_info_map_)) {
LOG(FATAL) << name_status_pair.first << " failed to register thermal throttling";
}
}
// Update cooling device max state
for (auto &binded_cdev_info_pair :
name_status_pair.second.throttling_info->binded_cdev_info_map) {
const auto &cdev_info = cooling_device_info_map_.at(binded_cdev_info_pair.first);
for (auto &cdev_ceiling : binded_cdev_info_pair.second.cdev_ceiling) {
if (cdev_ceiling > cdev_info.max_state) {
if (cdev_ceiling != std::numeric_limits<int>::max()) {
LOG(ERROR)
<< "Sensor " << name_status_pair.first << "'s "
<< binded_cdev_info_pair.first << " cdev_ceiling:" << cdev_ceiling
<< " is higher than max state:" << cdev_info.max_state;
}
cdev_ceiling = cdev_info.max_state;
}
}
}
if (name_status_pair.second.virtual_sensor_info != nullptr &&
!name_status_pair.second.virtual_sensor_info->trigger_sensor.empty() &&
name_status_pair.second.is_watch) {
if (sensor_info_map_.count(
name_status_pair.second.virtual_sensor_info->trigger_sensor)) {
sensor_info_map_[name_status_pair.second.virtual_sensor_info->trigger_sensor]
.is_watch = true;
} else {
LOG(FATAL) << name_status_pair.first << "'s trigger sensor: "
<< name_status_pair.second.virtual_sensor_info->trigger_sensor
<< " is invalid";
}
}
}
const bool thermal_genl_enabled =
android::base::GetBoolProperty(kThermalGenlProperty.data(), false);
std::set<std::string> monitored_sensors;
initializeTrip(tz_map, &monitored_sensors, thermal_genl_enabled);
if (thermal_genl_enabled) {
thermal_watcher_->registerFilesToWatchNl(monitored_sensors);
} else {
thermal_watcher_->registerFilesToWatch(monitored_sensors);
}
// Need start watching after status map initialized
is_initialized_ = thermal_watcher_->startWatchingDeviceFiles();
if (!is_initialized_) {
LOG(FATAL) << "ThermalHAL could not start watching thread properly.";
}
if (!connectToPowerHal()) {
LOG(ERROR) << "Fail to connect to Power Hal";
} else {
updateSupportedPowerHints();
}
}
bool getThermalZoneTypeById(int tz_id, std::string *type) {
std::string tz_type;
std::string path =
android::base::StringPrintf("%s/%s%d/%s", kThermalSensorsRoot.data(),
kSensorPrefix.data(), tz_id, kThermalNameFile.data());
LOG(INFO) << "TZ Path: " << path;
if (!::android::base::ReadFileToString(path, &tz_type)) {
LOG(ERROR) << "Failed to read sensor: " << tz_type;
return false;
}
// Strip the newline.
*type = ::android::base::Trim(tz_type);
LOG(INFO) << "TZ type: " << *type;
return true;
}
bool ThermalHelper::readCoolingDevice(std::string_view cooling_device,
CoolingDevice_2_0 *out) const {
// Read the file. If the file can't be read temp will be empty string.
std::string data;
if (!cooling_devices_.readThermalFile(cooling_device, &data)) {
LOG(ERROR) << "readCoolingDevice: failed to read cooling_device: " << cooling_device;
return false;
}
const CdevInfo &cdev_info = cooling_device_info_map_.at(cooling_device.data());
const CoolingType &type = cdev_info.type;
out->type = type;
out->name = cooling_device.data();
out->value = std::stoi(data);
return true;
}
bool ThermalHelper::readTemperature(std::string_view sensor_name, Temperature_1_0 *out) {
// Return fail if the thermal sensor cannot be read.
float temp;
if (!readThermalSensor(sensor_name, &temp, false)) {
LOG(ERROR) << "readTemperature: failed to read sensor: " << sensor_name;
return false;
}
const SensorInfo &sensor_info = sensor_info_map_.at(sensor_name.data());
TemperatureType_1_0 type =
(static_cast<int>(sensor_info.type) > static_cast<int>(TemperatureType_1_0::SKIN))
? TemperatureType_1_0::UNKNOWN
: static_cast<TemperatureType_1_0>(sensor_info.type);
out->type = type;
out->name = sensor_name.data();
out->currentValue = temp * sensor_info.multiplier;
out->throttlingThreshold =
sensor_info.hot_thresholds[static_cast<size_t>(ThrottlingSeverity::SEVERE)];
out->shutdownThreshold =
sensor_info.hot_thresholds[static_cast<size_t>(ThrottlingSeverity::SHUTDOWN)];
out->vrThrottlingThreshold = sensor_info.vr_threshold;
return true;
}
bool ThermalHelper::readTemperature(
std::string_view sensor_name, Temperature_2_0 *out,
std::pair<ThrottlingSeverity, ThrottlingSeverity> *throtting_status,
const bool force_sysfs) {
// Return fail if the thermal sensor cannot be read.
float temp;
if (!readThermalSensor(sensor_name, &temp, force_sysfs)) {
LOG(ERROR) << "readTemperature: failed to read sensor: " << sensor_name;
return false;
}
const auto &sensor_info = sensor_info_map_.at(sensor_name.data());
out->type = sensor_info.type;
out->name = sensor_name.data();
out->value = temp * sensor_info.multiplier;
std::pair<ThrottlingSeverity, ThrottlingSeverity> status =
std::make_pair(ThrottlingSeverity::NONE, ThrottlingSeverity::NONE);
// Only update status if the thermal sensor is being monitored
if (sensor_info.is_watch) {
ThrottlingSeverity prev_hot_severity, prev_cold_severity;
{
// reader lock, readTemperature will be called in Binder call and the watcher thread.
std::shared_lock<std::shared_mutex> _lock(sensor_status_map_mutex_);
prev_hot_severity = sensor_status_map_.at(sensor_name.data()).prev_hot_severity;
prev_cold_severity = sensor_status_map_.at(sensor_name.data()).prev_cold_severity;
}
status = getSeverityFromThresholds(sensor_info.hot_thresholds, sensor_info.cold_thresholds,
sensor_info.hot_hysteresis, sensor_info.cold_hysteresis,
prev_hot_severity, prev_cold_severity, out->value);
}
if (throtting_status) {
*throtting_status = status;
}
out->throttlingStatus = static_cast<size_t>(status.first) > static_cast<size_t>(status.second)
? status.first
: status.second;
return true;
}
bool ThermalHelper::readTemperatureThreshold(std::string_view sensor_name,
TemperatureThreshold *out) const {
// Read the file. If the file can't be read temp will be empty string.
std::string temp;
std::string path;
if (!sensor_info_map_.count(sensor_name.data())) {
LOG(ERROR) << __func__ << ": sensor not found: " << sensor_name;
return false;
}
const auto &sensor_info = sensor_info_map_.at(sensor_name.data());
out->type = sensor_info.type;
out->name = sensor_name.data();
out->hotThrottlingThresholds = sensor_info.hot_thresholds;
out->coldThrottlingThresholds = sensor_info.cold_thresholds;
out->vrThrottlingThreshold = sensor_info.vr_threshold;
return true;
}
void ThermalHelper::updateCoolingDevices(const std::vector<std::string> &updated_cdev) {
int max_state;
const auto &thermal_throttling_status_map = thermal_throttling_.GetThermalThrottlingStatusMap();
for (const auto &target_cdev : updated_cdev) {
max_state = 0;
for (const auto &thermal_throttling_status_pair : thermal_throttling_status_map) {
if (!thermal_throttling_status_pair.second.cdev_status_map.count(target_cdev)) {
continue;
}
const auto state =
thermal_throttling_status_pair.second.cdev_status_map.at(target_cdev);
if (state > max_state) {
max_state = state;
}
}
if (cooling_devices_.writeCdevFile(target_cdev, std::to_string(max_state))) {
LOG(INFO) << "Successfully update cdev " << target_cdev << " sysfs to " << max_state;
} else {
LOG(ERROR) << "Failed to update cdev " << target_cdev << " sysfs to " << max_state;
}
}
}
std::pair<ThrottlingSeverity, ThrottlingSeverity> ThermalHelper::getSeverityFromThresholds(
const ThrottlingArray &hot_thresholds, const ThrottlingArray &cold_thresholds,
const ThrottlingArray &hot_hysteresis, const ThrottlingArray &cold_hysteresis,
ThrottlingSeverity prev_hot_severity, ThrottlingSeverity prev_cold_severity,
float value) const {
ThrottlingSeverity ret_hot = ThrottlingSeverity::NONE;
ThrottlingSeverity ret_hot_hysteresis = ThrottlingSeverity::NONE;
ThrottlingSeverity ret_cold = ThrottlingSeverity::NONE;
ThrottlingSeverity ret_cold_hysteresis = ThrottlingSeverity::NONE;
// Here we want to control the iteration from high to low, and hidl_enum_range doesn't support
// a reverse iterator yet.
for (size_t i = static_cast<size_t>(ThrottlingSeverity::SHUTDOWN);
i > static_cast<size_t>(ThrottlingSeverity::NONE); --i) {
if (!std::isnan(hot_thresholds[i]) && hot_thresholds[i] <= value &&
ret_hot == ThrottlingSeverity::NONE) {
ret_hot = static_cast<ThrottlingSeverity>(i);
}
if (!std::isnan(hot_thresholds[i]) && (hot_thresholds[i] - hot_hysteresis[i]) < value &&
ret_hot_hysteresis == ThrottlingSeverity::NONE) {
ret_hot_hysteresis = static_cast<ThrottlingSeverity>(i);
}
if (!std::isnan(cold_thresholds[i]) && cold_thresholds[i] >= value &&
ret_cold == ThrottlingSeverity::NONE) {
ret_cold = static_cast<ThrottlingSeverity>(i);
}
if (!std::isnan(cold_thresholds[i]) && (cold_thresholds[i] + cold_hysteresis[i]) > value &&
ret_cold_hysteresis == ThrottlingSeverity::NONE) {
ret_cold_hysteresis = static_cast<ThrottlingSeverity>(i);
}
}
if (static_cast<size_t>(ret_hot) < static_cast<size_t>(prev_hot_severity)) {
ret_hot = ret_hot_hysteresis;
}
if (static_cast<size_t>(ret_cold) < static_cast<size_t>(prev_cold_severity)) {
ret_cold = ret_cold_hysteresis;
}
return std::make_pair(ret_hot, ret_cold);
}
bool ThermalHelper::initializeSensorMap(
const std::unordered_map<std::string, std::string> &path_map) {
for (const auto &sensor_info_pair : sensor_info_map_) {
std::string_view sensor_name = sensor_info_pair.first;
if (sensor_info_pair.second.virtual_sensor_info != nullptr) {
continue;
}
if (!path_map.count(sensor_name.data())) {
LOG(ERROR) << "Could not find " << sensor_name << " in sysfs";
return false;
}
std::string path;
if (sensor_info_pair.second.temp_path.empty()) {
path = android::base::StringPrintf("%s/%s", path_map.at(sensor_name.data()).c_str(),
kSensorTempSuffix.data());
} else {
path = sensor_info_pair.second.temp_path;
}
if (!thermal_sensors_.addThermalFile(sensor_name, path)) {
LOG(ERROR) << "Could not add " << sensor_name << "to sensors map";
return false;
}
}
return true;
}
bool ThermalHelper::initializeCoolingDevices(
const std::unordered_map<std::string, std::string> &path_map) {
for (auto &cooling_device_info_pair : cooling_device_info_map_) {
std::string cooling_device_name = cooling_device_info_pair.first;
if (!path_map.count(cooling_device_name)) {
LOG(ERROR) << "Could not find " << cooling_device_name << " in sysfs";
return false;
}
// Add cooling device path for thermalHAL to get current state
std::string_view path = path_map.at(cooling_device_name);
std::string read_path;
if (!cooling_device_info_pair.second.read_path.empty()) {
read_path = cooling_device_info_pair.second.read_path.data();
} else {
read_path = android::base::StringPrintf("%s/%s", path.data(),
kCoolingDeviceCurStateSuffix.data());
}
if (!cooling_devices_.addThermalFile(cooling_device_name, read_path)) {
LOG(ERROR) << "Could not add " << cooling_device_name
<< " read path to cooling device map";
return false;
}
std::string state2power_path = android::base::StringPrintf(
"%s/%s", path.data(), kCoolingDeviceState2powerSuffix.data());
std::string state2power_str;
if (android::base::ReadFileToString(state2power_path, &state2power_str)) {
LOG(INFO) << "Cooling device " << cooling_device_info_pair.first
<< " use state2power read from sysfs";
cooling_device_info_pair.second.state2power.clear();
std::stringstream power(state2power_str);
unsigned int power_number;
int i = 0;
while (power >> power_number) {
cooling_device_info_pair.second.state2power.push_back(
static_cast<float>(power_number));
LOG(INFO) << "Cooling device " << cooling_device_info_pair.first << " state:" << i
<< " power: " << power_number;
i++;
}
}
// Get max cooling device request state
std::string max_state;
std::string max_state_path = android::base::StringPrintf(
"%s/%s", path.data(), kCoolingDeviceMaxStateSuffix.data());
if (!android::base::ReadFileToString(max_state_path, &max_state)) {
LOG(ERROR) << cooling_device_info_pair.first
<< " could not open max state file:" << max_state_path;
cooling_device_info_pair.second.max_state = std::numeric_limits<int>::max();
} else {
cooling_device_info_pair.second.max_state = std::stoi(android::base::Trim(max_state));
LOG(INFO) << "Cooling device " << cooling_device_info_pair.first
<< " max state: " << cooling_device_info_pair.second.max_state
<< " state2power number: "
<< cooling_device_info_pair.second.state2power.size();
if (cooling_device_info_pair.second.state2power.size() > 0 &&
static_cast<int>(cooling_device_info_pair.second.state2power.size()) !=
(cooling_device_info_pair.second.max_state + 1)) {
LOG(ERROR) << "Invalid state2power number: "
<< cooling_device_info_pair.second.state2power.size()
<< ", number should be " << cooling_device_info_pair.second.max_state + 1
<< " (max_state + 1)";
return false;
}
}
// Add cooling device path for thermalHAL to request state
cooling_device_name =
android::base::StringPrintf("%s_%s", cooling_device_name.c_str(), "w");
std::string write_path;
if (!cooling_device_info_pair.second.write_path.empty()) {
write_path = cooling_device_info_pair.second.write_path.data();
} else {
write_path = android::base::StringPrintf("%s/%s", path.data(),
kCoolingDeviceCurStateSuffix.data());
}
if (!cooling_devices_.addThermalFile(cooling_device_name, write_path)) {
LOG(ERROR) << "Could not add " << cooling_device_name
<< " write path to cooling device map";
return false;
}
}
return true;
}
void ThermalHelper::setMinTimeout(SensorInfo *sensor_info) {
sensor_info->polling_delay = kMinPollIntervalMs;
sensor_info->passive_delay = kMinPollIntervalMs;
}
void ThermalHelper::initializeTrip(const std::unordered_map<std::string, std::string> &path_map,
std::set<std::string> *monitored_sensors,
bool thermal_genl_enabled) {
for (auto &sensor_info : sensor_info_map_) {
if (!sensor_info.second.is_watch || (sensor_info.second.virtual_sensor_info != nullptr)) {
continue;
}
bool trip_update = false;
std::string_view sensor_name = sensor_info.first;
std::string_view tz_path = path_map.at(sensor_name.data());
std::string tz_policy;
std::string path =
android::base::StringPrintf("%s/%s", (tz_path.data()), kSensorPolicyFile.data());
if (thermal_genl_enabled) {
trip_update = true;
} else {
// Check if thermal zone support uevent notify
if (!android::base::ReadFileToString(path, &tz_policy)) {
LOG(ERROR) << sensor_name << " could not open tz policy file:" << path;
} else {
tz_policy = android::base::Trim(tz_policy);
if (tz_policy != kUserSpaceSuffix) {
LOG(ERROR) << sensor_name << " does not support uevent notify";
} else {
trip_update = true;
}
}
}
if (trip_update) {
// Update thermal zone trip point
for (size_t i = 0; i < kThrottlingSeverityCount; ++i) {
if (!std::isnan(sensor_info.second.hot_thresholds[i]) &&
!std::isnan(sensor_info.second.hot_hysteresis[i])) {
// Update trip_point_0_temp threshold
std::string threshold = std::to_string(static_cast<int>(
sensor_info.second.hot_thresholds[i] / sensor_info.second.multiplier));
path = android::base::StringPrintf("%s/%s", (tz_path.data()),
kSensorTripPointTempZeroFile.data());
if (!android::base::WriteStringToFile(threshold, path)) {
LOG(ERROR) << "fail to update " << sensor_name << " trip point: " << path
<< " to " << threshold;
trip_update = false;
break;
}
// Update trip_point_0_hyst threshold
threshold = std::to_string(static_cast<int>(
sensor_info.second.hot_hysteresis[i] / sensor_info.second.multiplier));
path = android::base::StringPrintf("%s/%s", (tz_path.data()),
kSensorTripPointHystZeroFile.data());
if (!android::base::WriteStringToFile(threshold, path)) {
LOG(ERROR) << "fail to update " << sensor_name << "trip hyst" << threshold
<< path;
trip_update = false;
break;
}
break;
} else if (i == kThrottlingSeverityCount - 1) {
LOG(ERROR) << sensor_name << ":all thresholds are NAN";
trip_update = false;
break;
}
}
monitored_sensors->insert(sensor_info.first);
}
if (!trip_update) {
LOG(INFO) << "config Sensor: " << sensor_info.first
<< " to default polling interval: " << kMinPollIntervalMs.count();
setMinTimeout(&sensor_info.second);
}
}
}
bool ThermalHelper::fillTemperatures(hidl_vec<Temperature_1_0> *temperatures) {
std::vector<Temperature_1_0> ret;
for (const auto &name_info_pair : sensor_info_map_) {
Temperature_1_0 temp;
if (name_info_pair.second.is_hidden) {
continue;
}
if (readTemperature(name_info_pair.first, &temp)) {
ret.emplace_back(std::move(temp));
} else {
LOG(ERROR) << __func__
<< ": error reading temperature for sensor: " << name_info_pair.first;
return false;
}
}
*temperatures = ret;
return ret.size() > 0;
}
bool ThermalHelper::fillCurrentTemperatures(bool filterType, bool filterCallback,
TemperatureType_2_0 type,
hidl_vec<Temperature_2_0> *temperatures) {
std::vector<Temperature_2_0> ret;
for (const auto &name_info_pair : sensor_info_map_) {
Temperature_2_0 temp;
if (name_info_pair.second.is_hidden) {
continue;
}
if (filterType && name_info_pair.second.type != type) {
continue;
}
if (filterCallback && !name_info_pair.second.send_cb) {
continue;
}
if (readTemperature(name_info_pair.first, &temp, nullptr, false)) {
ret.emplace_back(std::move(temp));
} else {
LOG(ERROR) << __func__
<< ": error reading temperature for sensor: " << name_info_pair.first;
}
}
*temperatures = ret;
return ret.size() > 0;
}
bool ThermalHelper::fillTemperatureThresholds(bool filterType, TemperatureType_2_0 type,
hidl_vec<TemperatureThreshold> *thresholds) const {
std::vector<TemperatureThreshold> ret;
for (const auto &name_info_pair : sensor_info_map_) {
TemperatureThreshold temp;
if (name_info_pair.second.is_hidden) {
continue;
}
if (filterType && name_info_pair.second.type != type) {
continue;
}
if (readTemperatureThreshold(name_info_pair.first, &temp)) {
ret.emplace_back(std::move(temp));
} else {
LOG(ERROR) << __func__ << ": error reading temperature threshold for sensor: "
<< name_info_pair.first;
return false;
}
}
*thresholds = ret;
return ret.size() > 0;
}
bool ThermalHelper::fillCurrentCoolingDevices(bool filterType, CoolingType type,
hidl_vec<CoolingDevice_2_0> *cooling_devices) const {
std::vector<CoolingDevice_2_0> ret;
for (const auto &name_info_pair : cooling_device_info_map_) {
CoolingDevice_2_0 value;
if (filterType && name_info_pair.second.type != type) {
continue;
}
if (readCoolingDevice(name_info_pair.first, &value)) {
ret.emplace_back(std::move(value));
} else {
LOG(ERROR) << __func__ << ": error reading cooling device: " << name_info_pair.first;
return false;
}
}
*cooling_devices = ret;
return ret.size() > 0;
}
bool ThermalHelper::fillCpuUsages(hidl_vec<CpuUsage> *cpu_usages) const {
cpu_usages->resize(kMaxCpus);
for (int i = 0; i < kMaxCpus; i++) {
(*cpu_usages)[i].name = StringPrintf("cpu%d", i);
(*cpu_usages)[i].active = 0;
(*cpu_usages)[i].total = 0;
(*cpu_usages)[i].isOnline = false;
}
parseCpuUsagesFileAndAssignUsages(cpu_usages);
return true;
}
bool ThermalHelper::readThermalSensor(std::string_view sensor_name, float *temp,
const bool force_sysfs) {
float temp_val = 0.0;
std::string file_reading;
std::string log_buf;
boot_clock::time_point now = boot_clock::now();
ATRACE_NAME(StringPrintf("ThermalHelper::readThermalSensor - %s", sensor_name.data()).c_str());
if (!(sensor_info_map_.count(sensor_name.data()) &&
sensor_status_map_.count(sensor_name.data()))) {
return false;
}
const auto &sensor_info = sensor_info_map_.at(sensor_name.data());
auto &sensor_status = sensor_status_map_.at(sensor_name.data());
// Check if thermal data need to be read from buffer
if (!force_sysfs && (sensor_status.thermal_cached.timestamp != boot_clock::time_point::min()) &&
(std::chrono::duration_cast<std::chrono::milliseconds>(
now - sensor_status.thermal_cached.timestamp) < sensor_info.time_resolution) &&
!isnan(sensor_status.thermal_cached.temp)) {
*temp = sensor_status.thermal_cached.temp;
LOG(VERBOSE) << "read " << sensor_name.data() << " from buffer, value:" << *temp;
return true;
}
// Reading thermal sensor according to it's composition
if (sensor_info.virtual_sensor_info == nullptr) {
if (!thermal_sensors_.readThermalFile(sensor_name.data(), &file_reading)) {
return false;
}
if (file_reading.empty()) {
LOG(ERROR) << "failed to read sensor: " << sensor_name;
return false;
}
*temp = std::stof(::android::base::Trim(file_reading));
} else {
for (size_t i = 0; i < sensor_info.virtual_sensor_info->linked_sensors.size(); i++) {
float sensor_reading = 0.0;
if (!readThermalSensor(sensor_info.virtual_sensor_info->linked_sensors[i],
&sensor_reading, force_sysfs)) {
return false;
}
log_buf.append(StringPrintf("(%s: %0.2f)",
sensor_info.virtual_sensor_info->linked_sensors[i].c_str(),
sensor_reading));
if (std::isnan(sensor_info.virtual_sensor_info->coefficients[i])) {
return false;
}
float coefficient = sensor_info.virtual_sensor_info->coefficients[i];
switch (sensor_info.virtual_sensor_info->formula) {
case FormulaOption::COUNT_THRESHOLD:
if ((coefficient < 0 && sensor_reading < -coefficient) ||
(coefficient >= 0 && sensor_reading >= coefficient))
temp_val += 1;
break;
case FormulaOption::WEIGHTED_AVG:
temp_val += sensor_reading * coefficient;
break;
case FormulaOption::MAXIMUM:
if (i == 0)
temp_val = std::numeric_limits<float>::lowest();
if (sensor_reading * coefficient > temp_val)
temp_val = sensor_reading * coefficient;
break;
case FormulaOption::MINIMUM:
if (i == 0)
temp_val = std::numeric_limits<float>::max();
if (sensor_reading * coefficient < temp_val)
temp_val = sensor_reading * coefficient;
break;
default:
break;
}
}
LOG(VERBOSE) << sensor_name.data() << "'s sub sensors:" << log_buf;
*temp = (temp_val + sensor_info.virtual_sensor_info->offset);
}
{
std::unique_lock<std::shared_mutex> _lock(sensor_status_map_mutex_);
sensor_status.thermal_cached.temp = *temp;
sensor_status.thermal_cached.timestamp = now;
}
return true;
}
// This is called in the different thread context and will update sensor_status
// uevent_sensors is the set of sensors which trigger uevent from thermal core driver.
std::chrono::milliseconds ThermalHelper::thermalWatcherCallbackFunc(
const std::set<std::string> &uevent_sensors) {
std::vector<Temperature_2_0> temps;
std::vector<std::string> cooling_devices_to_update;
boot_clock::time_point now = boot_clock::now();
auto min_sleep_ms = std::chrono::milliseconds::max();
bool power_data_is_updated = false;
ATRACE_CALL();
for (auto &name_status_pair : sensor_status_map_) {
bool force_update = false;
bool force_sysfs = false;
Temperature_2_0 temp;
TemperatureThreshold threshold;
SensorStatus &sensor_status = name_status_pair.second;
const SensorInfo &sensor_info = sensor_info_map_.at(name_status_pair.first);
// Only handle the sensors in allow list
if (!sensor_info.is_watch) {
continue;
}
ATRACE_NAME(StringPrintf("ThermalHelper::thermalWatcherCallbackFunc - %s",
name_status_pair.first.data())
.c_str());
std::chrono::milliseconds time_elapsed_ms = std::chrono::milliseconds::zero();
auto sleep_ms = (sensor_status.severity != ThrottlingSeverity::NONE)
? sensor_info.passive_delay
: sensor_info.polling_delay;
if (sensor_info.virtual_sensor_info != nullptr &&
!sensor_info.virtual_sensor_info->trigger_sensor.empty()) {
const auto trigger_sensor_status =
sensor_status_map_.at(sensor_info.virtual_sensor_info->trigger_sensor);
if (trigger_sensor_status.severity != ThrottlingSeverity::NONE) {
sleep_ms = sensor_info.passive_delay;
}
}
// Check if the sensor need to be updated
if (sensor_status.last_update_time == boot_clock::time_point::min()) {
force_update = true;
LOG(VERBOSE) << "Force update " << name_status_pair.first
<< "'s temperature after booting";
} else {
time_elapsed_ms = std::chrono::duration_cast<std::chrono::milliseconds>(
now - sensor_status.last_update_time);
if (time_elapsed_ms > sleep_ms) {
// Update the sensor because sleep timeout
force_update = true;
} else if (uevent_sensors.size() &&
uevent_sensors.find((sensor_info.virtual_sensor_info != nullptr)
? sensor_info.virtual_sensor_info->trigger_sensor
: name_status_pair.first) !=
uevent_sensors.end()) {
// Force update the sensor from sysfs
force_update = true;
force_sysfs = true;
}
}
LOG(VERBOSE) << "sensor " << name_status_pair.first
<< ": time_elpased=" << time_elapsed_ms.count()
<< ", sleep_ms=" << sleep_ms.count() << ", force_update = " << force_update
<< ", force_sysfs = " << force_sysfs;
if (!force_update) {
auto timeout_remaining = sleep_ms - time_elapsed_ms;
if (min_sleep_ms > timeout_remaining) {
min_sleep_ms = timeout_remaining;
}
LOG(VERBOSE) << "sensor " << name_status_pair.first
<< ": timeout_remaining=" << timeout_remaining.count();
continue;
}
std::pair<ThrottlingSeverity, ThrottlingSeverity> throtting_status;
if (!readTemperature(name_status_pair.first, &temp, &throtting_status, force_sysfs)) {
LOG(ERROR) << __func__
<< ": error reading temperature for sensor: " << name_status_pair.first;
continue;
}
if (!readTemperatureThreshold(name_status_pair.first, &threshold)) {
LOG(ERROR) << __func__ << ": error reading temperature threshold for sensor: "
<< name_status_pair.first;
continue;
}
{
// writer lock
std::unique_lock<std::shared_mutex> _lock(sensor_status_map_mutex_);
if (throtting_status.first != sensor_status.prev_hot_severity) {
sensor_status.prev_hot_severity = throtting_status.first;
}
if (throtting_status.second != sensor_status.prev_cold_severity) {
sensor_status.prev_cold_severity = throtting_status.second;
}
if (temp.throttlingStatus != sensor_status.severity) {
temps.push_back(temp);
sensor_status.severity = temp.throttlingStatus;
sleep_ms = (sensor_status.severity != ThrottlingSeverity::NONE)
? sensor_info.passive_delay
: sensor_info.polling_delay;
}
}
if (!power_data_is_updated) {
power_files_.refreshPowerStatus();
power_data_is_updated = true;
}
if (sensor_status.severity == ThrottlingSeverity::NONE) {
LOG(VERBOSE) << temp.name << ": " << temp.value;
thermal_throttling_.clearThrottlingData(name_status_pair.first, sensor_info);
} else {
LOG(INFO) << temp.name << ": " << temp.value;
// update thermal throttling request
thermal_throttling_.thermalThrottlingUpdate(
temp, sensor_info, sensor_status.severity, time_elapsed_ms,
power_files_.GetPowerStatusMap(), cooling_device_info_map_);
}
thermal_throttling_.computeCoolingDevicesRequest(name_status_pair.first, sensor_info,
sensor_status.severity,
&cooling_devices_to_update);
if (min_sleep_ms > sleep_ms) {
min_sleep_ms = sleep_ms;
}
LOG(VERBOSE) << "Sensor " << name_status_pair.first << ": sleep_ms=" << sleep_ms.count()
<< ", min_sleep_ms voting result=" << min_sleep_ms.count();
sensor_status.last_update_time = now;
}
if (!cooling_devices_to_update.empty()) {
updateCoolingDevices(cooling_devices_to_update);
}
if (!temps.empty()) {
for (const auto &t : temps) {
if (sensor_info_map_.at(t.name).send_cb && cb_) {
cb_(t);
}
if (sensor_info_map_.at(t.name).send_powerhint && isAidlPowerHalExist()) {
sendPowerExtHint(t);
}
}
}
return min_sleep_ms;
}
bool ThermalHelper::connectToPowerHal() {
return power_hal_service_.connect();
}
void ThermalHelper::updateSupportedPowerHints() {
for (auto const &name_status_pair : sensor_info_map_) {
if (!(name_status_pair.second.send_powerhint)) {
continue;
}
ThrottlingSeverity current_severity = ThrottlingSeverity::NONE;
for (const auto &severity : hidl_enum_range<ThrottlingSeverity>()) {
if (severity == ThrottlingSeverity::NONE) {
supported_powerhint_map_[name_status_pair.first][ThrottlingSeverity::NONE] =
ThrottlingSeverity::NONE;
continue;
}
bool isSupported = false;
ndk::ScopedAStatus isSupportedResult;
if (power_hal_service_.isPowerHalExtConnected()) {
isSupported = power_hal_service_.isModeSupported(name_status_pair.first, severity);
}
if (isSupported)
current_severity = severity;
supported_powerhint_map_[name_status_pair.first][severity] = current_severity;
}
}
}
void ThermalHelper::sendPowerExtHint(const Temperature_2_0 &t) {
ATRACE_CALL();
std::lock_guard<std::shared_mutex> lock(sensor_status_map_mutex_);
ThrottlingSeverity prev_hint_severity;
prev_hint_severity = sensor_status_map_.at(t.name).prev_hint_severity;
ThrottlingSeverity current_hint_severity = supported_powerhint_map_[t.name][t.throttlingStatus];
if (prev_hint_severity == current_hint_severity)
return;
if (prev_hint_severity != ThrottlingSeverity::NONE) {
power_hal_service_.setMode(t.name, prev_hint_severity, false);
}
if (current_hint_severity != ThrottlingSeverity::NONE) {
power_hal_service_.setMode(t.name, current_hint_severity, true);
}
sensor_status_map_[t.name].prev_hint_severity = current_hint_severity;
}
} // namespace implementation
} // namespace V2_0
} // namespace thermal
} // namespace hardware
} // namespace android