blob: 484ad05a7952ca95b4183e1f44732a304523b9a1 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/android/hardware/vibrator/BnVibratorCallback.h>
#include <android-base/logging.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <linux/input.h>
#include <linux/uinput.h>
#include <future>
#include "Vibrator.h"
#include "mocks.h"
#include "types.h"
#include "utils.h"
namespace aidl {
namespace android {
namespace hardware {
namespace vibrator {
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Assign;
using ::testing::AtLeast;
using ::testing::AtMost;
using ::testing::Combine;
using ::testing::DoAll;
using ::testing::DoDefault;
using ::testing::Exactly;
using ::testing::Expectation;
using ::testing::ExpectationSet;
using ::testing::Ge;
using ::testing::Mock;
using ::testing::MockFunction;
using ::testing::Range;
using ::testing::Return;
using ::testing::Sequence;
using ::testing::SetArgPointee;
using ::testing::SetArgReferee;
using ::testing::Test;
using ::testing::TestParamInfo;
using ::testing::ValuesIn;
using ::testing::WithParamInterface;
// Forward Declarations
static EffectQueue Queue(const QueueEffect &effect);
static EffectQueue Queue(const QueueDelay &delay);
template <typename T, typename U, typename... Args>
static EffectQueue Queue(const T &first, const U &second, Args... rest);
static EffectLevel Level(float intensity, float levelLow, float levelHigh);
static EffectScale Scale(float intensity, float levelLow, float levelHigh);
// Constants With Arbitrary Values
static constexpr uint32_t CAL_VERSION = 2;
static constexpr std::array<EffectLevel, 2> V_TICK_DEFAULT = {1, 100};
static constexpr std::array<EffectLevel, 2> V_CLICK_DEFAULT{1, 100};
static constexpr std::array<EffectLevel, 2> V_LONG_DEFAULT{1, 100};
static constexpr std::array<EffectDuration, 14> EFFECT_DURATIONS{
0, 100, 30, 1000, 300, 130, 150, 500, 100, 15, 20, 1000, 1000, 1000};
// Constants With Prescribed Values
static const std::map<Effect, EffectIndex> EFFECT_INDEX{
{Effect::CLICK, 2},
{Effect::TICK, 2},
{Effect::HEAVY_CLICK, 2},
{Effect::TEXTURE_TICK, 9},
};
static constexpr uint32_t MIN_ON_OFF_INTERVAL_US = 8500;
static constexpr uint8_t VOLTAGE_SCALE_MAX = 100;
static constexpr int8_t MAX_COLD_START_LATENCY_MS = 6; // I2C Transaction + DSP Return-From-Standby
static constexpr auto POLLING_TIMEOUT = 20;
enum WaveformIndex : uint16_t {
/* Physical waveform */
WAVEFORM_LONG_VIBRATION_EFFECT_INDEX = 0,
WAVEFORM_RESERVED_INDEX_1 = 1,
WAVEFORM_CLICK_INDEX = 2,
WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX = 3,
WAVEFORM_THUD_INDEX = 4,
WAVEFORM_SPIN_INDEX = 5,
WAVEFORM_QUICK_RISE_INDEX = 6,
WAVEFORM_SLOW_RISE_INDEX = 7,
WAVEFORM_QUICK_FALL_INDEX = 8,
WAVEFORM_LIGHT_TICK_INDEX = 9,
WAVEFORM_LOW_TICK_INDEX = 10,
WAVEFORM_RESERVED_MFG_1,
WAVEFORM_RESERVED_MFG_2,
WAVEFORM_RESERVED_MFG_3,
WAVEFORM_MAX_PHYSICAL_INDEX,
/* OWT waveform */
WAVEFORM_COMPOSE = WAVEFORM_MAX_PHYSICAL_INDEX,
WAVEFORM_PWLE,
/*
* Refer to <linux/input.h>, the WAVEFORM_MAX_INDEX must not exceed 96.
* #define FF_GAIN 0x60 // 96 in decimal
* #define FF_MAX_EFFECTS FF_GAIN
*/
WAVEFORM_MAX_INDEX,
};
static const EffectScale ON_GLOBAL_SCALE{levelToScale(V_LONG_DEFAULT[1])};
static const EffectIndex ON_EFFECT_INDEX{0};
static const std::map<EffectTuple, EffectScale> EFFECT_SCALE{
{{Effect::TICK, EffectStrength::LIGHT},
Scale(0.5f * 0.5f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::TICK, EffectStrength::MEDIUM},
Scale(0.5f * 0.7f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::TICK, EffectStrength::STRONG},
Scale(0.5f * 1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::CLICK, EffectStrength::LIGHT},
Scale(0.7f * 0.5f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::CLICK, EffectStrength::MEDIUM},
Scale(0.7f * 0.7f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::CLICK, EffectStrength::STRONG},
Scale(0.7f * 1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::HEAVY_CLICK, EffectStrength::LIGHT},
Scale(1.0f * 0.5f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::HEAVY_CLICK, EffectStrength::MEDIUM},
Scale(1.0f * 0.7f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::HEAVY_CLICK, EffectStrength::STRONG},
Scale(1.0f * 1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
{{Effect::TEXTURE_TICK, EffectStrength::LIGHT},
Scale(0.5f * 0.5f, V_TICK_DEFAULT[0], V_TICK_DEFAULT[1])},
{{Effect::TEXTURE_TICK, EffectStrength::MEDIUM},
Scale(0.5f * 0.7f, V_TICK_DEFAULT[0], V_TICK_DEFAULT[1])},
{{Effect::TEXTURE_TICK, EffectStrength::STRONG},
Scale(0.5f * 1.0f, V_TICK_DEFAULT[0], V_TICK_DEFAULT[1])},
};
static const std::map<EffectTuple, EffectQueue> EFFECT_QUEUE{
{{Effect::DOUBLE_CLICK, EffectStrength::LIGHT},
Queue(QueueEffect{EFFECT_INDEX.at(Effect::CLICK),
Level(0.7f * 0.5f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
100,
QueueEffect{EFFECT_INDEX.at(Effect::CLICK),
Level(1.0f * 0.5f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])})},
{{Effect::DOUBLE_CLICK, EffectStrength::MEDIUM},
Queue(QueueEffect{EFFECT_INDEX.at(Effect::CLICK),
Level(0.7f * 0.7f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
100,
QueueEffect{EFFECT_INDEX.at(Effect::CLICK),
Level(1.0f * 0.7f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])})},
{{Effect::DOUBLE_CLICK, EffectStrength::STRONG},
Queue(QueueEffect{EFFECT_INDEX.at(Effect::CLICK),
Level(0.7f * 1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])},
100,
QueueEffect{EFFECT_INDEX.at(Effect::CLICK),
Level(1.0f * 1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])})},
};
EffectQueue Queue(const QueueEffect &effect) {
auto index = std::get<0>(effect);
auto level = std::get<1>(effect);
auto string = std::to_string(index) + "." + std::to_string(level);
auto duration = EFFECT_DURATIONS[index];
return {string, duration};
}
EffectQueue Queue(const QueueDelay &delay) {
auto string = std::to_string(delay);
return {string, delay};
}
template <typename T, typename U, typename... Args>
EffectQueue Queue(const T &first, const U &second, Args... rest) {
auto head = Queue(first);
auto tail = Queue(second, rest...);
auto string = std::get<0>(head) + "," + std::get<0>(tail);
auto duration = std::get<1>(head) + std::get<1>(tail);
return {string, duration};
}
static EffectLevel Level(float intensity, float levelLow, float levelHigh) {
return std::lround(intensity * (levelHigh - levelLow)) + levelLow;
}
static EffectScale Scale(float intensity, float levelLow, float levelHigh) {
return levelToScale(Level(intensity, levelLow, levelHigh));
}
class VibratorTest : public Test {
public:
void SetUp() override {
setenv("INPUT_EVENT_NAME", "CS40L26TestSuite", true);
std::unique_ptr<MockApi> mockapi;
std::unique_ptr<MockCal> mockcal;
createMock(&mockapi, &mockcal);
createVibrator(std::move(mockapi), std::move(mockcal));
}
void TearDown() override { deleteVibrator(); }
protected:
void createMock(std::unique_ptr<MockApi> *mockapi, std::unique_ptr<MockCal> *mockcal) {
*mockapi = std::make_unique<MockApi>();
*mockcal = std::make_unique<MockCal>();
mMockApi = mockapi->get();
mMockCal = mockcal->get();
ON_CALL(*mMockApi, destructor()).WillByDefault(Assign(&mMockApi, nullptr));
ON_CALL(*mMockApi, setFFGain(_, _)).WillByDefault(Return(true));
ON_CALL(*mMockApi, setFFEffect(_, _, _)).WillByDefault(Return(true));
ON_CALL(*mMockApi, setFFPlay(_, _, _)).WillByDefault(Return(true));
ON_CALL(*mMockApi, pollVibeState(_, _)).WillByDefault(Return(true));
ON_CALL(*mMockApi, uploadOwtEffect(_, _, _, _, _, _)).WillByDefault(Return(true));
ON_CALL(*mMockApi, eraseOwtEffect(_, _, _)).WillByDefault(Return(true));
ON_CALL(*mMockApi, getOwtFreeSpace(_))
.WillByDefault(DoAll(SetArgPointee<0>(11504), Return(true)));
ON_CALL(*mMockCal, destructor()).WillByDefault(Assign(&mMockCal, nullptr));
ON_CALL(*mMockCal, getVersion(_))
.WillByDefault(DoAll(SetArgPointee<0>(CAL_VERSION), Return(true)));
ON_CALL(*mMockCal, getTickVolLevels(_))
.WillByDefault(DoAll(SetArgPointee<0>(V_TICK_DEFAULT), Return(true)));
ON_CALL(*mMockCal, getClickVolLevels(_))
.WillByDefault(DoAll(SetArgPointee<0>(V_CLICK_DEFAULT), Return(true)));
ON_CALL(*mMockCal, getLongVolLevels(_))
.WillByDefault(DoAll(SetArgPointee<0>(V_LONG_DEFAULT), Return(true)));
relaxMock(false);
}
void createVibrator(std::unique_ptr<MockApi> mockapi, std::unique_ptr<MockCal> mockcal,
bool relaxed = true) {
if (relaxed) {
relaxMock(true);
}
mVibrator = ndk::SharedRefBase::make<Vibrator>(std::move(mockapi), std::move(mockcal));
if (relaxed) {
relaxMock(false);
}
}
void deleteVibrator(bool relaxed = true) {
if (relaxed) {
relaxMock(true);
}
mVibrator.reset();
}
private:
void relaxMock(bool relax) {
auto times = relax ? AnyNumber() : Exactly(0);
Mock::VerifyAndClearExpectations(mMockApi);
Mock::VerifyAndClearExpectations(mMockCal);
EXPECT_CALL(*mMockApi, destructor()).Times(times);
EXPECT_CALL(*mMockApi, setF0(_)).Times(times);
EXPECT_CALL(*mMockApi, setF0Offset(_)).Times(times);
EXPECT_CALL(*mMockApi, setRedc(_)).Times(times);
EXPECT_CALL(*mMockApi, setQ(_)).Times(times);
EXPECT_CALL(*mMockApi, hasOwtFreeSpace()).Times(times);
EXPECT_CALL(*mMockApi, getOwtFreeSpace(_)).Times(times);
EXPECT_CALL(*mMockApi, setF0CompEnable(_)).Times(times);
EXPECT_CALL(*mMockApi, setRedcCompEnable(_)).Times(times);
EXPECT_CALL(*mMockApi, pollVibeState(_, _)).Times(times);
EXPECT_CALL(*mMockApi, setFFGain(_, _)).Times(times);
EXPECT_CALL(*mMockApi, setFFEffect(_, _, _)).Times(times);
EXPECT_CALL(*mMockApi, setFFPlay(_, _, _)).Times(times);
EXPECT_CALL(*mMockApi, setMinOnOffInterval(_)).Times(times);
EXPECT_CALL(*mMockApi, getHapticAlsaDevice(_, _)).Times(times);
EXPECT_CALL(*mMockApi, setHapticPcmAmp(_, _, _, _)).Times(times);
EXPECT_CALL(*mMockApi, debug(_)).Times(times);
EXPECT_CALL(*mMockCal, destructor()).Times(times);
EXPECT_CALL(*mMockCal, getF0(_)).Times(times);
EXPECT_CALL(*mMockCal, getRedc(_)).Times(times);
EXPECT_CALL(*mMockCal, getQ(_)).Times(times);
EXPECT_CALL(*mMockCal, getTickVolLevels(_)).Times(times);
EXPECT_CALL(*mMockCal, getClickVolLevels(_)).Times(times);
EXPECT_CALL(*mMockCal, getLongVolLevels(_)).Times(times);
EXPECT_CALL(*mMockCal, isChirpEnabled()).Times(times);
EXPECT_CALL(*mMockCal, getLongFrequencyShift(_)).Times(times);
EXPECT_CALL(*mMockCal, debug(_)).Times(times);
}
protected:
MockApi *mMockApi;
MockCal *mMockCal;
std::shared_ptr<IVibrator> mVibrator;
uint32_t mEffectIndex;
};
TEST_F(VibratorTest, Constructor) {
std::unique_ptr<MockApi> mockapi;
std::unique_ptr<MockCal> mockcal;
std::string f0Val = std::to_string(std::rand());
std::string redcVal = std::to_string(std::rand());
std::string qVal = std::to_string(std::rand());
uint32_t calVer;
uint32_t supportedPrimitivesBits = 0x0;
Expectation volGet;
Sequence f0Seq, redcSeq, qSeq, supportedPrimitivesSeq;
EXPECT_CALL(*mMockApi, destructor()).WillOnce(DoDefault());
EXPECT_CALL(*mMockCal, destructor()).WillOnce(DoDefault());
deleteVibrator(false);
createMock(&mockapi, &mockcal);
EXPECT_CALL(*mMockCal, getF0(_))
.InSequence(f0Seq)
.WillOnce(DoAll(SetArgReferee<0>(f0Val), Return(true)));
EXPECT_CALL(*mMockApi, setF0(f0Val)).InSequence(f0Seq).WillOnce(Return(true));
EXPECT_CALL(*mMockCal, getRedc(_))
.InSequence(redcSeq)
.WillOnce(DoAll(SetArgReferee<0>(redcVal), Return(true)));
EXPECT_CALL(*mMockApi, setRedc(redcVal)).InSequence(redcSeq).WillOnce(Return(true));
EXPECT_CALL(*mMockCal, getQ(_))
.InSequence(qSeq)
.WillOnce(DoAll(SetArgReferee<0>(qVal), Return(true)));
EXPECT_CALL(*mMockApi, setQ(qVal)).InSequence(qSeq).WillOnce(Return(true));
EXPECT_CALL(*mMockCal, getLongFrequencyShift(_)).WillOnce(Return(true));
mMockCal->getVersion(&calVer);
if (calVer == 2) {
volGet = EXPECT_CALL(*mMockCal, getTickVolLevels(_)).WillOnce(DoDefault());
volGet = EXPECT_CALL(*mMockCal, getClickVolLevels(_)).WillOnce(DoDefault());
volGet = EXPECT_CALL(*mMockCal, getLongVolLevels(_)).WillOnce(DoDefault());
}
EXPECT_CALL(*mMockApi, setF0CompEnable(true)).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setRedcCompEnable(true)).WillOnce(Return(true));
EXPECT_CALL(*mMockCal, isChirpEnabled()).WillOnce(Return(true));
EXPECT_CALL(*mMockCal, getSupportedPrimitives(_))
.InSequence(supportedPrimitivesSeq)
.WillOnce(DoAll(SetArgPointee<0>(supportedPrimitivesBits), Return(true)));
EXPECT_CALL(*mMockApi, setMinOnOffInterval(MIN_ON_OFF_INTERVAL_US)).WillOnce(Return(true));
createVibrator(std::move(mockapi), std::move(mockcal), false);
}
TEST_F(VibratorTest, on) {
Sequence s1, s2;
uint16_t duration = std::rand() + 1;
EXPECT_CALL(*mMockApi, setFFGain(_, ON_GLOBAL_SCALE)).InSequence(s1).WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, setFFEffect(_, _, duration + MAX_COLD_START_LATENCY_MS))
.InSequence(s2)
.WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, setFFPlay(_, ON_EFFECT_INDEX, true))
.InSequence(s1, s2)
.WillOnce(DoDefault());
EXPECT_TRUE(mVibrator->on(duration, nullptr).isOk());
}
TEST_F(VibratorTest, off) {
Sequence s1;
EXPECT_CALL(*mMockApi, setFFGain(_, ON_GLOBAL_SCALE)).InSequence(s1).WillOnce(DoDefault());
EXPECT_TRUE(mVibrator->off().isOk());
}
TEST_F(VibratorTest, supportsAmplitudeControl_supported) {
int32_t capabilities;
EXPECT_CALL(*mMockApi, hasOwtFreeSpace()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, getHapticAlsaDevice(_, _)).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_GT(capabilities & IVibrator::CAP_AMPLITUDE_CONTROL, 0);
}
TEST_F(VibratorTest, supportsExternalAmplitudeControl_unsupported) {
int32_t capabilities;
EXPECT_CALL(*mMockApi, hasOwtFreeSpace()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, getHapticAlsaDevice(_, _)).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_EQ(capabilities & IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL, 0);
}
TEST_F(VibratorTest, setAmplitude_supported) {
EffectAmplitude amplitude = static_cast<float>(std::rand()) / RAND_MAX ?: 1.0f;
EXPECT_CALL(*mMockApi, setFFGain(_, amplitudeToScale(amplitude))).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setAmplitude(amplitude).isOk());
}
TEST_F(VibratorTest, supportsExternalControl_supported) {
int32_t capabilities;
EXPECT_CALL(*mMockApi, hasOwtFreeSpace()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, getHapticAlsaDevice(_, _)).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_GT(capabilities & IVibrator::CAP_EXTERNAL_CONTROL, 0);
}
TEST_F(VibratorTest, supportsExternalControl_unsupported) {
int32_t capabilities;
EXPECT_CALL(*mMockApi, hasOwtFreeSpace()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, getHapticAlsaDevice(_, _)).WillOnce(Return(false));
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_EQ(capabilities & IVibrator::CAP_EXTERNAL_CONTROL, 0);
}
TEST_F(VibratorTest, setExternalControl_enable) {
Sequence s1, s2;
EXPECT_CALL(*mMockApi, setFFGain(_, ON_GLOBAL_SCALE)).InSequence(s1).WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, getHapticAlsaDevice(_, _)).InSequence(s2).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setHapticPcmAmp(_, true, _, _))
.InSequence(s1, s2)
.WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setExternalControl(true).isOk());
}
TEST_F(VibratorTest, setExternalControl_disable) {
Sequence s1, s2, s3, s4;
// The default mIsUnderExternalControl is false, so it needs to turn on the External Control
// to make mIsUnderExternalControl become true.
EXPECT_CALL(*mMockApi, setFFGain(_, ON_GLOBAL_SCALE))
.InSequence(s1)
.InSequence(s1)
.WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, getHapticAlsaDevice(_, _)).InSequence(s2).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setHapticPcmAmp(_, true, _, _)).InSequence(s3).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setExternalControl(true).isOk());
EXPECT_CALL(*mMockApi, setFFGain(_, levelToScale(VOLTAGE_SCALE_MAX)))
.InSequence(s4)
.WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, setHapticPcmAmp(_, false, _, _))
.InSequence(s1, s2, s3, s4)
.WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setExternalControl(false).isOk());
}
class EffectsTest : public VibratorTest, public WithParamInterface<EffectTuple> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) {
auto param = info.param;
auto effect = std::get<0>(param);
auto strength = std::get<1>(param);
return toString(effect) + "_" + toString(strength);
}
};
TEST_P(EffectsTest, perform) {
auto param = GetParam();
auto effect = std::get<0>(param);
auto strength = std::get<1>(param);
auto scale = EFFECT_SCALE.find(param);
auto queue = EFFECT_QUEUE.find(param);
EffectDuration duration;
auto callback = ndk::SharedRefBase::make<MockVibratorCallback>();
std::promise<void> promise;
std::future<void> future{promise.get_future()};
auto complete = [&promise] {
promise.set_value();
return ndk::ScopedAStatus::ok();
};
bool composeEffect;
ExpectationSet eSetup;
Expectation eActivate, ePollHaptics, ePollStop, eEraseDone;
if (scale != EFFECT_SCALE.end()) {
EffectIndex index = EFFECT_INDEX.at(effect);
duration = EFFECT_DURATIONS[index];
eSetup += EXPECT_CALL(*mMockApi, setFFGain(_, levelToScale(scale->second)))
.WillOnce(DoDefault());
eActivate = EXPECT_CALL(*mMockApi, setFFPlay(_, index, true))
.After(eSetup)
.WillOnce(DoDefault());
} else if (queue != EFFECT_QUEUE.end()) {
duration = std::get<1>(queue->second);
eSetup += EXPECT_CALL(*mMockApi, setFFGain(_, ON_GLOBAL_SCALE))
.After(eSetup)
.WillOnce(DoDefault());
eSetup += EXPECT_CALL(*mMockApi, getOwtFreeSpace(_)).WillOnce(DoDefault());
eSetup += EXPECT_CALL(*mMockApi, uploadOwtEffect(_, _, _, _, _, _))
.After(eSetup)
.WillOnce(DoDefault());
eActivate = EXPECT_CALL(*mMockApi, setFFPlay(_, WAVEFORM_COMPOSE, true))
.After(eSetup)
.WillOnce(DoDefault());
composeEffect = true;
} else {
duration = 0;
}
if (duration) {
ePollHaptics = EXPECT_CALL(*mMockApi, pollVibeState(1, POLLING_TIMEOUT))
.After(eActivate)
.WillOnce(DoDefault());
ePollStop = EXPECT_CALL(*mMockApi, pollVibeState(0, -1))
.After(ePollHaptics)
.WillOnce(DoDefault());
if (composeEffect) {
eEraseDone = EXPECT_CALL(*mMockApi, eraseOwtEffect(_, _, _))
.After(ePollStop)
.WillOnce(DoDefault());
EXPECT_CALL(*callback, onComplete()).After(eEraseDone).WillOnce(complete);
} else {
EXPECT_CALL(*callback, onComplete()).After(ePollStop).WillOnce(complete);
}
}
int32_t lengthMs;
ndk::ScopedAStatus status = mVibrator->perform(effect, strength, callback, &lengthMs);
if (status.isOk()) {
EXPECT_LE(duration, lengthMs);
} else {
EXPECT_EQ(EX_UNSUPPORTED_OPERATION, status.getExceptionCode());
EXPECT_EQ(0, lengthMs);
}
if (duration) {
EXPECT_EQ(future.wait_for(std::chrono::milliseconds(100)), std::future_status::ready);
}
}
TEST_P(EffectsTest, alwaysOnEnable) {
// No real function now in P22+
auto param = GetParam();
auto effect = std::get<0>(param);
auto strength = std::get<1>(param);
auto scale = EFFECT_SCALE.find(param);
bool supported = (scale != EFFECT_SCALE.end());
if (supported) {
// Do nothing
}
ndk::ScopedAStatus status = mVibrator->alwaysOnEnable(0, effect, strength);
if (supported) {
EXPECT_EQ(EX_NONE, status.getExceptionCode());
} else {
EXPECT_EQ(EX_UNSUPPORTED_OPERATION, status.getExceptionCode());
}
}
const std::vector<Effect> kEffects{ndk::enum_range<Effect>().begin(),
ndk::enum_range<Effect>().end()};
const std::vector<EffectStrength> kEffectStrengths{ndk::enum_range<EffectStrength>().begin(),
ndk::enum_range<EffectStrength>().end()};
INSTANTIATE_TEST_CASE_P(VibratorTests, EffectsTest,
Combine(ValuesIn(kEffects.begin(), kEffects.end()),
ValuesIn(kEffectStrengths.begin(), kEffectStrengths.end())),
EffectsTest::PrintParam);
struct PrimitiveParam {
CompositePrimitive primitive;
EffectIndex index;
};
class PrimitiveTest : public VibratorTest, public WithParamInterface<PrimitiveParam> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) {
return toString(info.param.primitive);
}
};
const std::vector<PrimitiveParam> kPrimitiveParams = {
{CompositePrimitive::CLICK, 2}, {CompositePrimitive::THUD, 4},
{CompositePrimitive::SPIN, 5}, {CompositePrimitive::QUICK_RISE, 6},
{CompositePrimitive::SLOW_RISE, 7}, {CompositePrimitive::QUICK_FALL, 8},
{CompositePrimitive::LIGHT_TICK, 9}, {CompositePrimitive::LOW_TICK, 10},
};
TEST_P(PrimitiveTest, getPrimitiveDuration) {
auto param = GetParam();
auto primitive = param.primitive;
auto index = param.index;
int32_t duration;
EXPECT_EQ(EX_NONE, mVibrator->getPrimitiveDuration(primitive, &duration).getExceptionCode());
EXPECT_EQ(EFFECT_DURATIONS[index], duration);
}
INSTANTIATE_TEST_CASE_P(VibratorTests, PrimitiveTest,
ValuesIn(kPrimitiveParams.begin(), kPrimitiveParams.end()),
PrimitiveTest::PrintParam);
struct ComposeParam {
std::string name;
std::vector<CompositeEffect> composite;
EffectQueue queue;
};
class ComposeTest : public VibratorTest, public WithParamInterface<ComposeParam> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) { return info.param.name; }
};
TEST_P(ComposeTest, compose) {
auto param = GetParam();
auto composite = param.composite;
auto queue = std::get<0>(param.queue);
ExpectationSet eSetup;
Expectation eActivate, ePollHaptics, ePollStop, eEraseDone;
auto callback = ndk::SharedRefBase::make<MockVibratorCallback>();
std::promise<void> promise;
std::future<void> future{promise.get_future()};
auto complete = [&promise] {
promise.set_value();
return ndk::ScopedAStatus::ok();
};
eSetup += EXPECT_CALL(*mMockApi, setFFGain(_, ON_GLOBAL_SCALE))
.After(eSetup)
.WillOnce(DoDefault());
eSetup += EXPECT_CALL(*mMockApi, getOwtFreeSpace(_)).WillOnce(DoDefault());
eSetup += EXPECT_CALL(*mMockApi, uploadOwtEffect(_, _, _, _, _, _))
.After(eSetup)
.WillOnce(DoDefault());
eActivate = EXPECT_CALL(*mMockApi, setFFPlay(_, WAVEFORM_COMPOSE, true))
.After(eSetup)
.WillOnce(DoDefault());
ePollHaptics = EXPECT_CALL(*mMockApi, pollVibeState(1, POLLING_TIMEOUT))
.After(eActivate)
.WillOnce(DoDefault());
ePollStop =
EXPECT_CALL(*mMockApi, pollVibeState(0, -1)).After(ePollHaptics).WillOnce(DoDefault());
eEraseDone =
EXPECT_CALL(*mMockApi, eraseOwtEffect(_, _, _)).After(ePollStop).WillOnce(DoDefault());
EXPECT_CALL(*callback, onComplete()).After(eEraseDone).WillOnce(complete);
EXPECT_EQ(EX_NONE, mVibrator->compose(composite, callback).getExceptionCode());
EXPECT_EQ(future.wait_for(std::chrono::milliseconds(100)), std::future_status::ready);
}
const std::vector<ComposeParam> kComposeParams = {
{"click",
{{0, CompositePrimitive::CLICK, 1.0f}},
Queue(QueueEffect(2, Level(1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])), 0)},
{"thud",
{{1, CompositePrimitive::THUD, 0.8f}},
Queue(1, QueueEffect(4, Level(0.8f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])), 0)},
{"spin",
{{2, CompositePrimitive::SPIN, 0.6f}},
Queue(2, QueueEffect(5, Level(0.6f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])), 0)},
{"quick_rise",
{{3, CompositePrimitive::QUICK_RISE, 0.4f}},
Queue(3, QueueEffect(6, Level(0.4f, V_LONG_DEFAULT[0], V_LONG_DEFAULT[1])), 0)},
{"slow_rise",
{{4, CompositePrimitive::SLOW_RISE, 0.0f}},
Queue(4, QueueEffect(7, Level(0.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])), 0)},
{"quick_fall",
{{5, CompositePrimitive::QUICK_FALL, 1.0f}},
Queue(5, QueueEffect(8, Level(1.0f, V_LONG_DEFAULT[0], V_LONG_DEFAULT[1])), 0)},
{"pop",
{{6, CompositePrimitive::SLOW_RISE, 1.0f}, {50, CompositePrimitive::THUD, 1.0f}},
Queue(6, QueueEffect(7, Level(1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])), 50,
QueueEffect(4, Level(1.0f, V_CLICK_DEFAULT[0], V_CLICK_DEFAULT[1])), 0)},
{"snap",
{{7, CompositePrimitive::QUICK_RISE, 1.0f}, {0, CompositePrimitive::QUICK_FALL, 1.0f}},
Queue(7, QueueEffect(6, Level(1.0f, V_LONG_DEFAULT[0], V_LONG_DEFAULT[1])),
QueueEffect(8, Level(1.0f, V_LONG_DEFAULT[0], V_LONG_DEFAULT[1])), 0)},
};
INSTANTIATE_TEST_CASE_P(VibratorTests, ComposeTest,
ValuesIn(kComposeParams.begin(), kComposeParams.end()),
ComposeTest::PrintParam);
class AlwaysOnTest : public VibratorTest, public WithParamInterface<int32_t> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) {
return std::to_string(info.param);
}
};
TEST_P(AlwaysOnTest, alwaysOnEnable) {
auto param = GetParam();
auto scale = EFFECT_SCALE.begin();
std::advance(scale, std::rand() % EFFECT_SCALE.size());
auto effect = std::get<0>(scale->first);
auto strength = std::get<1>(scale->first);
switch (param) {
case 0:
case 1:
// Do nothing
break;
}
ndk::ScopedAStatus status = mVibrator->alwaysOnEnable(param, effect, strength);
EXPECT_EQ(EX_NONE, status.getExceptionCode());
}
TEST_P(AlwaysOnTest, alwaysOnDisable) {
auto param = GetParam();
switch (param) {
case 0:
case 1:
// Do nothing
break;
}
ndk::ScopedAStatus status = mVibrator->alwaysOnDisable(param);
EXPECT_EQ(EX_NONE, status.getExceptionCode());
}
INSTANTIATE_TEST_CASE_P(VibratorTests, AlwaysOnTest, Range(0, 1), AlwaysOnTest::PrintParam);
} // namespace vibrator
} // namespace hardware
} // namespace android
} // namespace aidl