blob: a7ce73134750f61df7a2f35c5cec2cbccc912dc1 [file] [log] [blame]
/*
* Copyright Samsung Electronics Co.,LTD.
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <log/log.h>
#include <hardware/exynos/acryl.h>
#include <hardware/hwcomposer2.h>
#include "acrylic_internal.h"
AcrylicCanvas::AcrylicCanvas(Acrylic *compositor, canvas_type_t type)
: mCompositor(compositor), mPixFormat(0), mNumBuffers(0), mFence(-1), mAttributes(ATTR_NONE),
mSettingFlags(0), mCanvasType(type)
{
// Initialize the image size to the possible smallest size
mImageDimension = compositor->getCapabilities().supportedMinSrcDimension();
}
AcrylicCanvas::~AcrylicCanvas()
{
setFence(-1);
}
static const char *canvasTypeName(unsigned int type)
{
static const char canvas_type_name[2][7] = {"source", "target"};
return canvas_type_name[type];
}
bool AcrylicCanvas::setImageDimension(int32_t width, int32_t height)
{
if (((getSettingFlags() & SETTING_DIMENSION) != 0) &&
(width == mImageDimension.hori) && (height == mImageDimension.vert))
return true;
if (!getCompositor()) {
ALOGE("Trying to set image dimension to an orphaned layer");
return false;
}
unset(SETTING_DIMENSION);
const HW2DCapability &cap = getCompositor()->getCapabilities();
hw2d_coord_t minsize, maxsize;
if (mCanvasType == CANVAS_SOURCE) {
minsize = cap.supportedMinSrcDimension();
maxsize = cap.supportedMaxSrcDimension();
} else {
minsize = cap.supportedMinDstDimension();
maxsize = cap.supportedMaxDstDimension();
}
if ((width < minsize.hori) || (height < minsize.vert) || (width > maxsize.hori) || (height > maxsize.vert)) {
ALOGE("Invalid %s image size %dx%d (limit: %dx%d ~ %dx%d )",
canvasTypeName(mCanvasType), width, height,
minsize.hori, minsize.vert, maxsize.hori, maxsize.vert);
return false;
}
minsize = cap.supportedDimensionAlign();
if (!!(width & (minsize.hori - 1)) || !!(height & (minsize.vert - 1))) {
ALOGE("%s image size %dx%d violates alignment restriction %dx%d",
canvasTypeName(mCanvasType), width, height, minsize.hori, minsize.vert);
return false;
}
mImageDimension.hori = static_cast<int16_t>(width);
mImageDimension.vert = static_cast<int16_t>(height);
set(SETTING_DIMENSION | SETTING_DIMENSION_MODIFIED);
ALOGD_TEST("Configured dimension: %dx%d (type: %s)", width, height, canvasTypeName(mCanvasType));
return true;
}
bool AcrylicCanvas::setImageBuffer(int a, int r, int g, int b, uint32_t attr)
{
if (!getCompositor()) {
ALOGE("Trying to set buffer to an orphaned layer");
return false;
}
const HW2DCapability &cap = getCompositor()->getCapabilities();
if (((mCanvasType == CANVAS_SOURCE) && !cap.isFeatureSupported(HW2DCapability::FEATURE_SOLIDCOLOR)) ||
(mCanvasType == CANVAS_TARGET)) {
ALOGE("SolidColor is not supported for %s", canvasTypeName(mCanvasType));
return false;
}
setFence(-1);
mMemoryType = MT_EMPTY;
mNumBuffers = 0;
mAttributes = (attr & ATTR_ALL_MASK) | ATTR_SOLIDCOLOR;
set(SETTING_BUFFER | SETTING_BUFFER_MODIFIED);
mSolidColor = ((a & 0xFF) << 24) | ((r & 0xFF) << 16) | ((g & 0xFF) << 8) | ((b & 0xFF));
return true;
}
bool AcrylicCanvas::setImageBuffer(int fd[MAX_HW2D_PLANES], size_t len[MAX_HW2D_PLANES], off_t offset[MAX_HW2D_PLANES],
int num_buffers, int fence, uint32_t attr)
{
if ((attr & ATTR_OTF) != 0)
return setImageOTFBuffer(attr);
if (!getCompositor()) {
ALOGE("Trying to set buffer to an orphaned layer");
return false;
}
const HW2DCapability &cap = getCompositor()->getCapabilities();
unsigned long alignmask = static_cast<unsigned long>(cap.supportedBaseAlign()) - 1;
if (num_buffers > MAX_HW2D_PLANES) {
ALOGE("Too many buffers %d are set passed to setImageBuffer(dmabuf)", num_buffers);
return false;
}
for (int i = 0; i < num_buffers; i++) {
if ((offset[i] < 0) || (static_cast<size_t>(offset[i]) >= len[i])) {
ALOGE("Too large offset %ld for length %zu of buffer[%d]", offset[i], len[i], i);
return false;
}
if ((offset[i] & alignmask) != 0) {
ALOGE("Alignment of offset %#lx of buffer[%d] violates the alignment of %#lx",
offset[i], i, alignmask + 1);
return false;
}
}
for (int i = 0; i < num_buffers; i++) {
m.mBufferFd[i] = fd[i];
mBufferLength[i] = len[i];
mBufferOffset[i] = offset[i];
ALOGD_TEST("Configured buffer[%d]: fd %d, len %zu, offset %u (type: %s)",
i, m.mBufferFd[i], mBufferLength[i], mBufferOffset[i],
canvasTypeName(mCanvasType));
}
ALOGE_IF((attr & ~ATTR_ALL_MASK) != 0,
"Configured unsupported attribute %#x to setImageBuffer(dmabuf))", attr);
setFence(fence);
mMemoryType = MT_DMABUF;
mNumBuffers = num_buffers;
mAttributes = attr & ATTR_ALL_MASK;
ALOGD_TEST("Configured buffer: fence %d, type %d, count %d, attr %#x (type: %s)",
mFence, mMemoryType, mNumBuffers, mAttributes, canvasTypeName(mCanvasType));
set(SETTING_BUFFER | SETTING_BUFFER_MODIFIED);
return true;
}
bool AcrylicCanvas::setImageBuffer(void *addr[MAX_HW2D_PLANES], size_t len[MAX_HW2D_PLANES],
int num_buffers, uint32_t attr)
{
if ((attr & ATTR_OTF) != 0)
return setImageOTFBuffer(attr);
if (!getCompositor()) {
ALOGE("Trying to set buffer to an orphaned layer");
return false;
}
const HW2DCapability &cap = getCompositor()->getCapabilities();
unsigned long alignmask = static_cast<unsigned long>(cap.supportedBaseAlign()) - 1;
if (num_buffers > MAX_HW2D_PLANES) {
ALOGE("Too many buffers %d are set passed to setImageBuffer(userptr)", num_buffers);
return false;
}
for (int i = 0; i < num_buffers; i++) {
if ((reinterpret_cast<unsigned long>(addr[i]) & alignmask) != 0) {
ALOGE("Alignment of address %p of buffer[%d] violates the alignment of %#lx",
addr[i], i, alignmask + 1);
return false;
}
}
for (int i = 0; i < num_buffers; i++) {
m.mBufferAddr[i] = addr[i];
mBufferLength[i] = len[i];
mBufferOffset[i] = 0;
ALOGD_TEST("Configured buffer[%d]: addr %p, len %zu, offset %u (type: %s)",
i, m.mBufferAddr[i], mBufferLength[i], mBufferOffset[i],
canvasTypeName(mCanvasType));
}
ALOGE_IF((attr & ~ATTR_ALL_MASK) != 0,
"Configured unsupported attribute %#x to setImageBuffer(userptr))", attr);
setFence(-1);
mMemoryType = MT_USERPTR;
mNumBuffers = num_buffers;
mAttributes = attr & ATTR_ALL_MASK;
ALOGD_TEST("Configured buffer: fence %d, type %d, count %d, attr %#x (type: %s)",
mFence, mMemoryType, mNumBuffers, mAttributes, canvasTypeName(mCanvasType));
set(SETTING_BUFFER | SETTING_BUFFER_MODIFIED);
return true;
}
bool AcrylicCanvas::setImageOTFBuffer(uint32_t attr)
{
if (!getCompositor()) {
ALOGE("Trying to set buffer to an orphaned layer");
return false;
}
const HW2DCapability &cap = getCompositor()->getCapabilities();
if (((mCanvasType == CANVAS_SOURCE) && !cap.isFeatureSupported(HW2DCapability::FEATURE_OTF_READ)) ||
((mCanvasType == CANVAS_TARGET) && !cap.isFeatureSupported(HW2DCapability::FEATURE_OTF_WRITE))) {
ALOGE("OTF is not supported for %s", canvasTypeName(mCanvasType));
return false;
}
setFence(-1);
mMemoryType = MT_EMPTY;
mNumBuffers = 0;
mAttributes = (attr & ATTR_ALL_MASK) | ATTR_OTF;
set(SETTING_BUFFER | SETTING_BUFFER_MODIFIED);
return true;
}
bool AcrylicCanvas::setImageType(uint32_t fmt, int dataspace)
{
if (((getSettingFlags() & SETTING_TYPE) != 0) &&
(mPixFormat == fmt) && (mDataSpace == dataspace))
return true;
if (!getCompositor()) {
ALOGE("Trying to set image type to an orphaned layer");
return false;
}
unset(SETTING_TYPE);
const HW2DCapability &cap = getCompositor()->getCapabilities();
if (!cap.isFormatSupported(fmt)) {
ALOGE("fmt %#x is not supported.", fmt);
return false;
}
if (!cap.isDataspaceSupported(dataspace)) {
ALOGE("dataspace %d is not supported.", dataspace);
return false;
}
mPixFormat = fmt;
mDataSpace = dataspace;
ALOGD_TEST("Configured format %#x and dataspace %#x (type: %s)",
mPixFormat, mDataSpace, canvasTypeName(mCanvasType));
set(SETTING_TYPE | SETTING_TYPE_MODIFIED);
return true;
}
void AcrylicCanvas::setFence(int fence)
{
if (mFence >= 0)
close(mFence);
mFence = fence;
}
AcrylicLayer::AcrylicLayer(Acrylic *compositor)
: AcrylicCanvas(compositor), mTransitData(nullptr), mBlendingMode(HWC_BLENDING_NONE),
mTransform(0), mZOrder(0), mMaxLuminance(100), mMinLuminance(0), mPlaneAlpha(255)
{
// Default settings:
// - Bleding mode: SRC_OVER
// - Rotaion: 0 degree
// - Flip: none
// - z-order: 0
// - plane alpha: 1 (255)
// - master display: [0.0000 nit ~ 100.0000 nit] (SDR)
// - target area: full area of the target image
mTargetRect.pos = {0, 0};
mTargetRect.size = {0, 0};
}
AcrylicLayer::~AcrylicLayer()
{
if (mCompositor)
mCompositor->removeLayer(this);
}
bool AcrylicLayer::setCompositMode(uint32_t mode, uint8_t alpha, int z_order)
{
if (!getCompositor()) {
ALOGE("Trying to set compositing mode to an orphaned layer");
return false;
}
const HW2DCapability &cap = getCompositor()->getCapabilities();
bool okay = true;
switch (mode) {
case HWC_BLENDING_NONE:
case HWC2_BLEND_MODE_NONE:
if (!(cap.supportedCompositingMode() & HW2DCapability::BLEND_SRC_COPY))
okay = false;
break;
case HWC_BLENDING_PREMULT:
case HWC2_BLEND_MODE_PREMULTIPLIED:
if (!(cap.supportedCompositingMode() & HW2DCapability::BLEND_SRC_OVER))
okay = false;
break;
case HWC_BLENDING_COVERAGE:
case HWC2_BLEND_MODE_COVERAGE:
if (!(cap.supportedCompositingMode() & HW2DCapability::BLEND_NONE))
okay = false;
break;
default:
ALOGE("Unknown bleding mode %#x", mode);
return false;
}
if (!okay) {
ALOGE("Unsupported blending mode %#x", mode);
return false;
}
mBlendingMode = mode;
mZOrder = z_order;
mPlaneAlpha = alpha;
ALOGD_TEST("Configured compositing mode: mode %d, z-order %d, alpha %d",
mBlendingMode, mZOrder, mPlaneAlpha);
return true;
}
#define ALOGE_RECT(msg, title, rect) ALOGE(msg ": (%d, %d) -> (%d, %d)", title, (rect).left, (rect).top, (rect).right, (rect).bottom);
bool AcrylicLayer::setCompositArea(hwc_rect_t &src_area, hwc_rect_t &out_area, uint32_t transform, uint32_t attr)
{
if (!getCompositor()) {
ALOGE("Trying to set compositing area to an orphaned layer");
return false;
}
const HW2DCapability &cap = getCompositor()->getCapabilities();
hw2d_coord_t limit;
// 1. Transform capability check
if ((transform & cap.getHWCTransformMask()) != transform) {
ALOGE("transform value %#x is not supported: supported transform mask: %#x",
transform, cap.getHWCTransformMask());
return false;
}
// 2. Source area verification
int32_t val = src_area.left | src_area.top | src_area.right | src_area.bottom;
if (val < 0) {
ALOGE_RECT("Negative position in the %s area", "source", src_area);
return false;
}
if ((src_area.left >= src_area.right) || (src_area.top >= src_area.bottom)) {
ALOGE_RECT("Invalid %s position and area", "source", out_area);
return false;
}
limit = cap.supportedMinSrcDimension();
if ((get_width(src_area) < limit.hori) || (get_height(src_area) < limit.vert)) {
ALOGE_RECT("Too small %s area", "source", src_area);
return false;
}
limit = getImageDimension();
if ((src_area.right > limit.hori) || (src_area.bottom > limit.vert)) {
ALOGE_RECT("Too large %s area", "source", src_area);
ALOGE(" Image full size: %dx%d", limit.hori, limit.vert);
return false;
}
// 3. Target area verification
val = out_area.left | out_area.top | out_area.right | out_area.bottom;
if (val != 0) {
// The following checks on the target area are deferred to commit()
// - if area size is larger than the limit
// - if the right/bottom position exceed the limit
if (val < 0) {
ALOGE_RECT("Negative position in the %s area", "target", out_area);
return false;
}
if ((out_area.left >= out_area.right) || (out_area.top >= out_area.bottom)) {
ALOGE_RECT("Invalid %s position and area", "target", out_area);
return false;
}
limit = cap.supportedMinDstDimension();
if ((get_width(out_area) < limit.hori) || (get_height(out_area) < limit.vert)) {
ALOGE_RECT("too small %s area", "target", out_area);
return false;
}
// 4. Scaling limit verification if target area is specified
hw2d_coord_t src_xy, out_xy;
src_xy.hori = get_width(src_area);
src_xy.vert = get_height(src_area);
out_xy.hori = get_width(out_area);
out_xy.vert = get_height(out_area);
bool scaling_ok = !(attr & ATTR_NORESAMPLING)
? cap.supportedResampling(src_xy, out_xy, transform)
: cap.supportedResizing(src_xy, out_xy, transform);
if (!scaling_ok) {
ALOGE("Unsupported scaling from %dx%d@(%d,%d) --> %dx%d@(%d,%d) with transform %d and attr %#x",
get_width(src_area), get_height(src_area), src_area.left, src_area.top,
get_width(out_area), get_height(out_area), out_area.left, out_area.top, transform, attr);
return false;
}
}
mTargetRect.pos.hori = static_cast<int16_t>(out_area.left);
mTargetRect.pos.vert = static_cast<int16_t>(out_area.top);
mTargetRect.size.hori = static_cast<int16_t>(get_width(out_area));
mTargetRect.size.vert = static_cast<int16_t>(get_height(out_area));
mImageRect.pos.hori = static_cast<int16_t>(src_area.left);
mImageRect.pos.vert = static_cast<int16_t>(src_area.top);
mImageRect.size.hori = static_cast<int16_t>(get_width(src_area));
mImageRect.size.vert = static_cast<int16_t>(get_height(src_area));
mTransform = transform;
mCompositAttr = attr & ATTR_ALL_MASK;
ALOGD_TEST("Configured area: %dx%d@%dx%d -> %dx%d@%dx%d, transform: %d, attr: %#x",
mImageRect.size.hori, mImageRect.size.vert, mImageRect.pos.hori, mImageRect.pos.vert,
mTargetRect.size.hori, mTargetRect.size.vert, mTargetRect.pos.hori, mTargetRect.pos.vert,
mTransform, mCompositAttr);
return true;
}
bool AcrylicLayer::setImageDimension(int32_t width, int32_t height)
{
if (!AcrylicCanvas::setImageDimension(width, height))
return false;
// NOTE: the crop area should be initialized with the new image size
mImageRect.pos = {0, 0};
mImageRect.size = getImageDimension();
ALOGD_TEST("Reset the image rect to %dx%d@0x0", mImageRect.size.hori, mImageRect.size.vert);
return true;
}
void AcrylicLayer::setMasterDisplayLuminance(uint16_t min, uint16_t max)
{
if (max < 100) {
ALOGE("Too small max display luminance %u.", max);
} else {
mMaxLuminance = max;
mMinLuminance = min;
}
}
void AcrylicLayer::importLayer(AcrylicLayer &other, bool inherit_transform)
{
// Data to import
// - image size and the image rect
// - buffer and its attributes
// - acquire fence (the fence of @other should be invalidated)
// - pixel format, color space
// - geometric transformation if @inherit_transform is true
// Data NOT to import
// - the target rect
// - the blending attribute
// - z-order and plane alpha
hw2d_coord_t xy = other.getImageDimension();
AcrylicCanvas::setImageDimension(xy.hori, xy.vert);
setImageType(other.getFormat(), other.getDataspace());
uint32_t attr = ATTR_NONE;
if (other.isProtected())
attr |= ATTR_PROTECTED;
if (other.isCompressed())
attr |= ATTR_COMPRESSED;
if (other.isCompressedWideblk()) attr |= ATTR_COMPRESSED_WIDEBLK;
if (other.getBufferType() == MT_DMABUF) {
int fd[3];
off_t off[3];
size_t len[3];
for (unsigned int i = 0; i < other.getBufferCount(); i++) {
fd[i] = other.getDmabuf(i);
off[i] = other.getOffset(i);
len[i] = other.getBufferLength(i);
}
setImageBuffer(fd, len, off, other.getBufferCount(), other.getFence(), attr);
} else {
void *addr[3];
size_t len[3];
for (unsigned int i = 0; i < other.getBufferCount(); i++) {
addr[i] = other.getUserptr(i);
len[i] = other.getBufferLength(i);
}
setImageBuffer(addr, len, other.getBufferCount(), attr);
}
other.clearFence();
mImageRect = other.mImageRect;
if (inherit_transform)
mTransform = other.mTransform;
}