blob: 92c04697b25ad3cfffe0c08a79df4038990b37d8 [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef VK_UTIL_H
#define VK_UTIL_H
/* common inlines and macros for vulkan drivers */
#include <stdio.h>
#include <stdlib.h>
#include <vulkan/vulkan.h>
#include <functional>
#include <memory>
#include <optional>
#include "base/Lock.h"
#include "common/vk_struct_id.h"
struct vk_struct_common {
VkStructureType sType;
struct vk_struct_common *pNext;
};
struct vk_struct_chain_iterator {
vk_struct_common *value;
};
#define vk_foreach_struct(__iter, __start) \
for (struct vk_struct_common *__iter = \
(struct vk_struct_common *)(__start); \
__iter; __iter = __iter->pNext)
#define vk_foreach_struct_const(__iter, __start) \
for (const struct vk_struct_common *__iter = \
(const struct vk_struct_common *)(__start); \
__iter; __iter = __iter->pNext)
/**
* A wrapper for a Vulkan output array. A Vulkan output array is one that
* follows the convention of the parameters to
* vkGetPhysicalDeviceQueueFamilyProperties().
*
* Example Usage:
*
* VkResult
* vkGetPhysicalDeviceQueueFamilyProperties(
* VkPhysicalDevice physicalDevice,
* uint32_t* pQueueFamilyPropertyCount,
* VkQueueFamilyProperties* pQueueFamilyProperties)
* {
* VK_OUTARRAY_MAKE(props, pQueueFamilyProperties,
* pQueueFamilyPropertyCount);
*
* vk_outarray_append(&props, p) {
* p->queueFlags = ...;
* p->queueCount = ...;
* }
*
* vk_outarray_append(&props, p) {
* p->queueFlags = ...;
* p->queueCount = ...;
* }
*
* return vk_outarray_status(&props);
* }
*/
struct __vk_outarray {
/** May be null. */
void *data;
/**
* Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
* data is null.
*/
uint32_t cap;
/**
* Count of elements successfully written to the array. Every write is
* considered successful if data is null.
*/
uint32_t *filled_len;
/**
* Count of elements that would have been written to the array if its
* capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
* when `*filled_len < wanted_len`.
*/
uint32_t wanted_len;
};
static inline void __vk_outarray_init(struct __vk_outarray *a, void *data,
uint32_t *len) {
a->data = data;
a->cap = *len;
a->filled_len = len;
*a->filled_len = 0;
a->wanted_len = 0;
if (a->data == NULL) a->cap = UINT32_MAX;
}
static inline VkResult __vk_outarray_status(const struct __vk_outarray *a) {
if (*a->filled_len < a->wanted_len)
return VK_INCOMPLETE;
else
return VK_SUCCESS;
}
static inline void *__vk_outarray_next(struct __vk_outarray *a,
size_t elem_size) {
void *p = NULL;
a->wanted_len += 1;
if (*a->filled_len >= a->cap) return NULL;
if (a->data != NULL)
p = ((uint8_t *)a->data) + (*a->filled_len) * elem_size;
*a->filled_len += 1;
return p;
}
#define vk_outarray(elem_t) \
struct { \
struct __vk_outarray base; \
elem_t meta[]; \
}
#define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
#define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
#define vk_outarray_init(a, data, len) \
__vk_outarray_init(&(a)->base, (data), (len))
#define VK_OUTARRAY_MAKE(name, data, len) \
vk_outarray(__typeof__((data)[0])) name; \
vk_outarray_init(&name, (data), (len))
#define vk_outarray_status(a) __vk_outarray_status(&(a)->base)
#define vk_outarray_next(a) \
((vk_outarray_typeof_elem(a) *)__vk_outarray_next( \
&(a)->base, vk_outarray_sizeof_elem(a)))
/**
* Append to a Vulkan output array.
*
* This is a block-based macro. For example:
*
* vk_outarray_append(&a, elem) {
* elem->foo = ...;
* elem->bar = ...;
* }
*
* The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
* VK_OUTARRAY_MAKE(). The variable `elem` is block-scoped and has type
* `elem_t *`.
*
* The macro unconditionally increments the array's `wanted_len`. If the array
* is not full, then the macro also increment its `filled_len` and then
* executes the block. When the block is executed, `elem` is non-null and
* points to the newly appended element.
*/
#define vk_outarray_append(a, elem) \
for (vk_outarray_typeof_elem(a) *elem = vk_outarray_next(a); elem != NULL; \
elem = NULL)
static inline void *__vk_find_struct(void *start, VkStructureType sType) {
vk_foreach_struct(s, start) {
if (s->sType == sType) return s;
}
return NULL;
}
template <class T, class H>
T *vk_find_struct(H *head) {
(void)vk_get_vk_struct_id<H>::id;
return static_cast<T *>(__vk_find_struct(static_cast<void *>(head),
vk_get_vk_struct_id<T>::id));
}
template <class T, class H>
const T *vk_find_struct(const H *head) {
(void)vk_get_vk_struct_id<H>::id;
return static_cast<const T *>(
__vk_find_struct(const_cast<void *>(static_cast<const void *>(head)),
vk_get_vk_struct_id<T>::id));
}
uint32_t vk_get_driver_version(void);
uint32_t vk_get_version_override(void);
#define VK_EXT_OFFSET (1000000000UL)
#define VK_ENUM_EXTENSION(__enum) \
((__enum) >= VK_EXT_OFFSET ? ((((__enum)-VK_EXT_OFFSET) / 1000UL) + 1) : 0)
#define VK_ENUM_OFFSET(__enum) \
((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
template <class T>
T vk_make_orphan_copy(const T &vk_struct) {
T copy = vk_struct;
copy.pNext = NULL;
return copy;
}
template <class T>
vk_struct_chain_iterator vk_make_chain_iterator(T *vk_struct) {
vk_get_vk_struct_id<T>::id;
vk_struct_chain_iterator result = {
reinterpret_cast<vk_struct_common *>(vk_struct)};
return result;
}
template <class T>
void vk_append_struct(vk_struct_chain_iterator *i, T *vk_struct) {
vk_get_vk_struct_id<T>::id;
vk_struct_common *p = i->value;
if (p->pNext) {
::abort();
}
p->pNext = reinterpret_cast<vk_struct_common *>(vk_struct);
vk_struct->pNext = NULL;
*i = vk_make_chain_iterator(vk_struct);
}
template <class S, class T> void vk_struct_chain_remove(S* unwanted, T* vk_struct)
{
if (!unwanted) return;
vk_foreach_struct(current, vk_struct) {
if ((void*)unwanted == current->pNext) {
const vk_struct_common* unwanted_as_common =
reinterpret_cast<const vk_struct_common*>(unwanted);
current->pNext = unwanted_as_common->pNext;
}
}
}
#define VK_CHECK(x) \
do { \
VkResult err = x; \
if (err != VK_SUCCESS) { \
::fprintf(stderr, "%s(%u) %s: %s failed, error code = %d\n", \
__FILE__, __LINE__, __FUNCTION__, #x, err); \
::abort(); \
} \
} while (0)
namespace vk_util {
class CRTPBase {};
template <class T, class U = CRTPBase>
class FindMemoryType : public U {
protected:
std::optional<uint32_t> findMemoryType(
uint32_t typeFilter, VkMemoryPropertyFlags properties) const {
const T &self = static_cast<const T &>(*this);
VkPhysicalDeviceMemoryProperties memProperties;
self.m_vk.vkGetPhysicalDeviceMemoryProperties(self.m_vkPhysicalDevice,
&memProperties);
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
if ((typeFilter & (1 << i)) &&
(memProperties.memoryTypes[i].propertyFlags & properties) ==
properties) {
return i;
}
}
return std::nullopt;
}
};
template <class T, class U = CRTPBase>
class RunSingleTimeCommand : public U {
protected:
void runSingleTimeCommands(
VkQueue queue, std::shared_ptr<android::base::Lock> queueLock,
std::function<void(const VkCommandBuffer &commandBuffer)> f) const {
const T &self = static_cast<const T &>(*this);
VkCommandBuffer cmdBuff;
VkCommandBufferAllocateInfo cmdBuffAllocInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = self.m_vkCommandPool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1};
VK_CHECK(self.m_vk.vkAllocateCommandBuffers(
self.m_vkDevice, &cmdBuffAllocInfo, &cmdBuff));
VkCommandBufferBeginInfo beginInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT};
VK_CHECK(self.m_vk.vkBeginCommandBuffer(cmdBuff, &beginInfo));
f(cmdBuff);
VK_CHECK(self.m_vk.vkEndCommandBuffer(cmdBuff));
VkSubmitInfo submitInfo = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmdBuff};
{
std::unique_ptr<android::base::AutoLock> lock = nullptr;
if (queueLock) {
lock = std::make_unique<android::base::AutoLock>(*queueLock);
}
VK_CHECK(
self.m_vk.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VK_CHECK(self.m_vk.vkQueueWaitIdle(queue));
}
self.m_vk.vkFreeCommandBuffers(self.m_vkDevice, self.m_vkCommandPool, 1,
&cmdBuff);
}
};
template <class T, class U = CRTPBase>
class RecordImageLayoutTransformCommands : public U {
protected:
void recordImageLayoutTransformCommands(VkCommandBuffer cmdBuff,
VkImage image,
VkImageLayout oldLayout,
VkImageLayout newLayout) const {
const T &self = static_cast<const T &>(*this);
VkImageMemoryBarrier imageBarrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcAccessMask =
VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask =
VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
.oldLayout = oldLayout,
.newLayout = newLayout,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1}};
self.m_vk.vkCmdPipelineBarrier(cmdBuff,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0,
nullptr, 0, nullptr, 1, &imageBarrier);
}
};
} // namespace vk_util
#endif /* VK_UTIL_H */