blob: 7eb77431b41340db61ece0509b89d4ecf4d51693 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "EmulatedCameraProviderHwlImpl"
#include "EmulatedCameraProviderHWLImpl.h"
#include <android-base/file.h>
#include <android-base/strings.h>
#include <cutils/properties.h>
#include <hardware/camera_common.h>
#include <log/log.h>
#include "EmulatedCameraDeviceHWLImpl.h"
#include "EmulatedCameraDeviceSessionHWLImpl.h"
#include "EmulatedLogicalRequestState.h"
#include "EmulatedSensor.h"
#include "EmulatedTorchState.h"
#include "utils/HWLUtils.h"
#include "vendor_tag_defs.h"
namespace android {
// Location of the camera configuration files.
constexpr std::string_view kCameraConfigBack = "emu_camera_back.json";
constexpr std::string_view kCameraConfigFront = "emu_camera_front.json";
constexpr std::string_view kCameraConfigExternal = "emu_camera_external.json";
constexpr std::string_view kCameraConfigDepth = "emu_camera_depth.json";
constexpr std::string_view kCameraConfigFiles[] = {
kCameraConfigBack, kCameraConfigFront, kCameraConfigExternal,
kCameraConfigDepth};
constexpr std::string_view kConfigurationFileDirVendor = "/vendor/etc/config/";
constexpr std::string_view kConfigurationFileDirApex =
"/apex/com.google.emulated.camera.provider.hal/etc/config/";
constexpr StreamSize s240pStreamSize = std::pair(240, 180);
constexpr StreamSize s720pStreamSize = std::pair(1280, 720);
constexpr StreamSize s1440pStreamSize = std::pair(1920, 1440);
std::unique_ptr<EmulatedCameraProviderHwlImpl>
EmulatedCameraProviderHwlImpl::Create() {
auto provider = std::unique_ptr<EmulatedCameraProviderHwlImpl>(
new EmulatedCameraProviderHwlImpl());
if (provider == nullptr) {
ALOGE("%s: Creating EmulatedCameraProviderHwlImpl failed.", __FUNCTION__);
return nullptr;
}
status_t res = provider->Initialize();
if (res != OK) {
ALOGE("%s: Initializing EmulatedCameraProviderHwlImpl failed: %s (%d).",
__FUNCTION__, strerror(-res), res);
return nullptr;
}
ALOGI("%s: Created EmulatedCameraProviderHwlImpl", __FUNCTION__);
return provider;
}
status_t EmulatedCameraProviderHwlImpl::GetTagFromName(const char* name,
uint32_t* tag) {
if (name == nullptr || tag == nullptr) {
return BAD_VALUE;
}
size_t name_length = strlen(name);
// First, find the section by the longest string match
const char* section = NULL;
size_t section_index = 0;
size_t section_length = 0;
for (size_t i = 0; i < ANDROID_SECTION_COUNT; ++i) {
const char* str = camera_metadata_section_names[i];
ALOGV("%s: Trying to match against section '%s'", __FUNCTION__, str);
if (strstr(name, str) == name) { // name begins with the section name
size_t str_length = strlen(str);
ALOGV("%s: Name begins with section name", __FUNCTION__);
// section name is the longest we've found so far
if (section == NULL || section_length < str_length) {
section = str;
section_index = i;
section_length = str_length;
ALOGV("%s: Found new best section (%s)", __FUNCTION__, section);
}
}
}
if (section == NULL) {
return NAME_NOT_FOUND;
} else {
ALOGV("%s: Found matched section '%s' (%zu)", __FUNCTION__, section,
section_index);
}
// Get the tag name component of the name
const char* name_tag_name = name + section_length + 1; // x.y.z -> z
if (section_length + 1 >= name_length) {
return BAD_VALUE;
}
// Match rest of name against the tag names in that section only
uint32_t candidate_tag = 0;
// Match built-in tags (typically android.*)
uint32_t tag_begin, tag_end; // [tag_begin, tag_end)
tag_begin = camera_metadata_section_bounds[section_index][0];
tag_end = camera_metadata_section_bounds[section_index][1];
for (candidate_tag = tag_begin; candidate_tag < tag_end; ++candidate_tag) {
const char* tag_name = get_camera_metadata_tag_name(candidate_tag);
if (strcmp(name_tag_name, tag_name) == 0) {
ALOGV("%s: Found matched tag '%s' (%d)", __FUNCTION__, tag_name,
candidate_tag);
break;
}
}
if (candidate_tag == tag_end) {
return NAME_NOT_FOUND;
}
*tag = candidate_tag;
return OK;
}
static bool IsMaxSupportedSizeGreaterThanOrEqual(
const std::set<StreamSize>& stream_sizes, StreamSize compare_size) {
for (const auto& stream_size : stream_sizes) {
if (stream_size.first * stream_size.second >=
compare_size.first * compare_size.second) {
return true;
}
}
return false;
}
static bool SupportsCapability(const uint32_t camera_id,
const HalCameraMetadata& static_metadata,
uint8_t cap) {
camera_metadata_ro_entry_t entry;
auto ret = static_metadata.Get(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, &entry);
if (ret != OK || (entry.count == 0)) {
ALOGE("Error getting capabilities for camera id %u", camera_id);
return false;
}
for (size_t i = 0; i < entry.count; i++) {
if (entry.data.u8[i] == cap) {
return true;
}
}
return false;
}
bool EmulatedCameraProviderHwlImpl::SupportsMandatoryConcurrentStreams(
uint32_t camera_id) {
HalCameraMetadata& static_metadata = *(static_metadata_[camera_id]);
auto map = std::make_unique<StreamConfigurationMap>(static_metadata);
auto yuv_output_sizes = map->GetOutputSizes(HAL_PIXEL_FORMAT_YCBCR_420_888);
auto blob_output_sizes = map->GetOutputSizes(HAL_PIXEL_FORMAT_BLOB);
auto depth16_output_sizes = map->GetOutputSizes(HAL_PIXEL_FORMAT_Y16);
auto priv_output_sizes =
map->GetOutputSizes(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED);
if (!SupportsCapability(
camera_id, static_metadata,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE) &&
IsMaxSupportedSizeGreaterThanOrEqual(depth16_output_sizes,
s240pStreamSize)) {
ALOGI("%s: Depth only output supported by camera id %u", __FUNCTION__,
camera_id);
return true;
}
if (yuv_output_sizes.empty()) {
ALOGW("%s: No YUV output supported by camera id %u", __FUNCTION__,
camera_id);
return false;
}
if (priv_output_sizes.empty()) {
ALOGW("No PRIV output supported by camera id %u", camera_id);
return false;
}
if (blob_output_sizes.empty()) {
ALOGW("No BLOB output supported by camera id %u", camera_id);
return false;
}
// According to the HAL spec, if a device supports format sizes > 1440p and
// 720p, it must support both 1440p and 720p streams for PRIV, JPEG and YUV
// formats. Otherwise it must support 2 streams (YUV / PRIV + JPEG) of the max
// supported size.
// Check for YUV output sizes
if (IsMaxSupportedSizeGreaterThanOrEqual(yuv_output_sizes, s1440pStreamSize) &&
(yuv_output_sizes.find(s1440pStreamSize) == yuv_output_sizes.end() ||
yuv_output_sizes.find(s720pStreamSize) == yuv_output_sizes.end())) {
ALOGW("%s: 1440p+720p YUV outputs not found for camera id %u", __FUNCTION__,
camera_id);
return false;
} else if (IsMaxSupportedSizeGreaterThanOrEqual(yuv_output_sizes,
s720pStreamSize) &&
yuv_output_sizes.find(s720pStreamSize) == yuv_output_sizes.end()) {
ALOGW("%s: 720p YUV output not found for camera id %u", __FUNCTION__,
camera_id);
return false;
}
// Check for PRIV output sizes
if (IsMaxSupportedSizeGreaterThanOrEqual(priv_output_sizes, s1440pStreamSize) &&
(priv_output_sizes.find(s1440pStreamSize) == priv_output_sizes.end() ||
priv_output_sizes.find(s720pStreamSize) == priv_output_sizes.end())) {
ALOGW("%s: 1440p + 720p PRIV outputs not found for camera id %u",
__FUNCTION__, camera_id);
return false;
} else if (IsMaxSupportedSizeGreaterThanOrEqual(priv_output_sizes,
s720pStreamSize) &&
priv_output_sizes.find(s720pStreamSize) == priv_output_sizes.end()) {
ALOGW("%s: 720p PRIV output not found for camera id %u", __FUNCTION__,
camera_id);
return false;
}
// Check for BLOB output sizes
if (IsMaxSupportedSizeGreaterThanOrEqual(blob_output_sizes, s1440pStreamSize) &&
(blob_output_sizes.find(s1440pStreamSize) == blob_output_sizes.end() ||
blob_output_sizes.find(s720pStreamSize) == blob_output_sizes.end())) {
ALOGW("%s: 1440p + 720p BLOB outputs not found for camera id %u",
__FUNCTION__, camera_id);
return false;
} else if (IsMaxSupportedSizeGreaterThanOrEqual(blob_output_sizes,
s720pStreamSize) &&
blob_output_sizes.find(s720pStreamSize) == blob_output_sizes.end()) {
ALOGW("%s: 720p BLOB output not found for camera id %u", __FUNCTION__,
camera_id);
return false;
}
return true;
}
status_t EmulatedCameraProviderHwlImpl::GetConcurrentStreamingCameraIds(
std::vector<std::unordered_set<uint32_t>>* combinations) {
if (combinations == nullptr) {
return BAD_VALUE;
}
// Collect all camera ids that support the guaranteed stream combinations
// (720p YUV and IMPLEMENTATION_DEFINED) and put them in one set. We don't
// make all possible combinations since it should be possible to stream all
// of them at once in the emulated camera.
std::unordered_set<uint32_t> candidate_ids;
for (auto& entry : camera_id_map_) {
if (SupportsMandatoryConcurrentStreams(entry.first)) {
candidate_ids.insert(entry.first);
}
}
combinations->emplace_back(std::move(candidate_ids));
return OK;
}
status_t EmulatedCameraProviderHwlImpl::IsConcurrentStreamCombinationSupported(
const std::vector<CameraIdAndStreamConfiguration>& configs,
bool* is_supported) {
*is_supported = false;
// Go through the given camera ids, get their sensor characteristics, stream
// config maps and call EmulatedSensor::IsStreamCombinationSupported()
for (auto& config : configs) {
// TODO: Consider caching sensor characteristics and StreamConfigurationMap
if (camera_id_map_.find(config.camera_id) == camera_id_map_.end()) {
ALOGE("%s: Camera id %u does not exist", __FUNCTION__, config.camera_id);
return BAD_VALUE;
}
auto stream_configuration_map = std::make_unique<StreamConfigurationMap>(
*(static_metadata_[config.camera_id]));
auto stream_configuration_map_max_resolution =
std::make_unique<StreamConfigurationMap>(
*(static_metadata_[config.camera_id]), /*maxResolution*/ true);
LogicalCharacteristics sensor_chars;
status_t ret =
GetSensorCharacteristics((static_metadata_[config.camera_id]).get(),
&sensor_chars[config.camera_id]);
if (ret != OK) {
ALOGE("%s: Unable to extract sensor chars for camera id %u", __FUNCTION__,
config.camera_id);
return UNKNOWN_ERROR;
}
PhysicalStreamConfigurationMap physical_stream_configuration_map;
PhysicalStreamConfigurationMap physical_stream_configuration_map_max_resolution;
auto const& physicalCameraInfo = camera_id_map_[config.camera_id];
for (size_t i = 0; i < physicalCameraInfo.size(); i++) {
uint32_t physical_camera_id = physicalCameraInfo[i].second;
physical_stream_configuration_map.emplace(
physical_camera_id, std::make_unique<StreamConfigurationMap>(
*(static_metadata_[physical_camera_id])));
physical_stream_configuration_map_max_resolution.emplace(
physical_camera_id,
std::make_unique<StreamConfigurationMap>(
*(static_metadata_[physical_camera_id]), /*maxResolution*/ true));
ret = GetSensorCharacteristics(static_metadata_[physical_camera_id].get(),
&sensor_chars[physical_camera_id]);
if (ret != OK) {
ALOGE("%s: Unable to extract camera %d sensor characteristics %s (%d)",
__FUNCTION__, physical_camera_id, strerror(-ret), ret);
return ret;
}
}
if (!EmulatedSensor::IsStreamCombinationSupported(
config.camera_id, config.stream_configuration,
*stream_configuration_map, *stream_configuration_map_max_resolution,
physical_stream_configuration_map,
physical_stream_configuration_map_max_resolution, sensor_chars)) {
return OK;
}
}
*is_supported = true;
return OK;
}
bool IsDigit(const std::string& value) {
if (value.empty()) {
return false;
}
for (const auto& c : value) {
if (!std::isdigit(c) && (!std::ispunct(c))) {
return false;
}
}
return true;
}
template <typename T>
status_t GetEnumValue(uint32_t tag_id, const char* cstring, T* result /*out*/) {
if ((result == nullptr) || (cstring == nullptr)) {
return BAD_VALUE;
}
uint32_t enum_value;
auto ret =
camera_metadata_enum_value(tag_id, cstring, strlen(cstring), &enum_value);
if (ret != OK) {
ALOGE("%s: Failed to match tag id: 0x%x value: %s", __FUNCTION__, tag_id,
cstring);
return ret;
}
*result = enum_value;
return OK;
}
status_t GetUInt8Value(const Json::Value& value, uint32_t tag_id,
uint8_t* result /*out*/) {
if (result == nullptr) {
return BAD_VALUE;
}
if (value.isString()) {
errno = 0;
if (IsDigit(value.asString())) {
auto int_value = strtol(value.asCString(), nullptr, 10);
if ((int_value >= 0) && (int_value <= UINT8_MAX) && (errno == 0)) {
*result = int_value;
} else {
ALOGE("%s: Failed parsing tag id 0x%x", __func__, tag_id);
return BAD_VALUE;
}
} else {
return GetEnumValue(tag_id, value.asCString(), result);
}
} else {
ALOGE(
"%s: Unexpected json type: %d! All value types are expected to be "
"strings!",
__FUNCTION__, value.type());
return BAD_VALUE;
}
return OK;
}
status_t GetInt32Value(const Json::Value& value, uint32_t tag_id,
int32_t* result /*out*/) {
if (result == nullptr) {
return BAD_VALUE;
}
if (value.isString()) {
errno = 0;
if (IsDigit(value.asString())) {
auto int_value = strtol(value.asCString(), nullptr, 10);
if ((int_value >= INT32_MIN) && (int_value <= INT32_MAX) && (errno == 0)) {
*result = int_value;
} else {
ALOGE("%s: Failed parsing tag id 0x%x", __func__, tag_id);
return BAD_VALUE;
}
} else {
return GetEnumValue(tag_id, value.asCString(), result);
}
} else {
ALOGE(
"%s: Unexpected json type: %d! All value types are expected to be "
"strings!",
__FUNCTION__, value.type());
return BAD_VALUE;
}
return OK;
}
status_t GetInt64Value(const Json::Value& value, uint32_t tag_id,
int64_t* result /*out*/) {
if (result == nullptr) {
return BAD_VALUE;
}
if (value.isString()) {
errno = 0;
auto int_value = strtoll(value.asCString(), nullptr, 10);
if ((int_value >= INT64_MIN) && (int_value <= INT64_MAX) && (errno == 0)) {
*result = int_value;
} else {
ALOGE("%s: Failed parsing tag id 0x%x", __func__, tag_id);
return BAD_VALUE;
}
} else {
ALOGE(
"%s: Unexpected json type: %d! All value types are expected to be "
"strings!",
__FUNCTION__, value.type());
return BAD_VALUE;
}
return OK;
}
status_t GetFloatValue(const Json::Value& value, uint32_t tag_id,
float* result /*out*/) {
if (result == nullptr) {
return BAD_VALUE;
}
if (value.isString()) {
errno = 0;
auto float_value = strtof(value.asCString(), nullptr);
if (errno == 0) {
*result = float_value;
} else {
ALOGE("%s: Failed parsing tag id 0x%x", __func__, tag_id);
return BAD_VALUE;
}
} else {
ALOGE(
"%s: Unexpected json type: %d! All value types are expected to be "
"strings!",
__FUNCTION__, value.type());
return BAD_VALUE;
}
return OK;
}
status_t GetDoubleValue(const Json::Value& value, uint32_t tag_id,
double* result /*out*/) {
if (result == nullptr) {
return BAD_VALUE;
}
if (value.isString()) {
errno = 0;
auto double_value = strtod(value.asCString(), nullptr);
if (errno == 0) {
*result = double_value;
} else {
ALOGE("%s: Failed parsing tag id 0x%x", __func__, tag_id);
return BAD_VALUE;
}
} else {
ALOGE(
"%s: Unexpected json type: %d! All value types are expected to be "
"strings!",
__FUNCTION__, value.type());
return BAD_VALUE;
}
return OK;
}
template <typename T>
void FilterVendorKeys(uint32_t tag_id, std::vector<T>* values) {
if ((values == nullptr) || (values->empty())) {
return;
}
switch (tag_id) {
case ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS:
case ANDROID_REQUEST_AVAILABLE_RESULT_KEYS:
case ANDROID_REQUEST_AVAILABLE_SESSION_KEYS:
case ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: {
auto it = values->begin();
while (it != values->end()) {
// Per spec. the tags we are handling here will be "int32_t".
// In this case all vendor defined values will be negative.
if (*it < 0) {
it = values->erase(it);
} else {
it++;
}
}
} break;
default:
// no-op
break;
}
}
template <typename T, typename func_type>
status_t InsertTag(const Json::Value& json_value, uint32_t tag_id,
func_type get_val_func, HalCameraMetadata* meta /*out*/) {
if (meta == nullptr) {
return BAD_VALUE;
}
std::vector<T> values;
T result;
status_t ret = -1;
values.reserve(json_value.size());
for (const auto& val : json_value) {
ret = get_val_func(val, tag_id, &result);
if (ret != OK) {
break;
}
values.push_back(result);
}
if (ret == OK) {
FilterVendorKeys(tag_id, &values);
ret = meta->Set(tag_id, values.data(), values.size());
}
return ret;
}
status_t InsertRationalTag(const Json::Value& json_value, uint32_t tag_id,
HalCameraMetadata* meta /*out*/) {
if (meta == nullptr) {
return BAD_VALUE;
}
std::vector<camera_metadata_rational_t> values;
status_t ret = OK;
if (json_value.isArray() && ((json_value.size() % 2) == 0)) {
values.reserve(json_value.size() / 2);
auto it = json_value.begin();
while (it != json_value.end()) {
camera_metadata_rational_t result;
ret = GetInt32Value((*it), tag_id, &result.numerator);
it++;
ret |= GetInt32Value((*it), tag_id, &result.denominator);
it++;
if (ret != OK) {
break;
}
values.push_back(result);
}
} else {
ALOGE("%s: json type: %d doesn't match with rational tag type",
__FUNCTION__, json_value.type());
return BAD_VALUE;
}
if (ret == OK) {
ret = meta->Set(tag_id, values.data(), values.size());
}
return ret;
}
uint32_t EmulatedCameraProviderHwlImpl::ParseCharacteristics(
const Json::Value& value, ssize_t id) {
if (!value.isObject()) {
ALOGE("%s: Configuration root is not an object", __FUNCTION__);
return BAD_VALUE;
}
auto static_meta = HalCameraMetadata::Create(1, 10);
auto members = value.getMemberNames();
for (const auto& member : members) {
uint32_t tag_id;
auto stat = GetTagFromName(member.c_str(), &tag_id);
if (stat != OK) {
ALOGE("%s: tag %s not supported, skipping!", __func__, member.c_str());
continue;
}
auto tag_type = get_camera_metadata_tag_type(tag_id);
auto tag_value = value[member.c_str()];
switch (tag_type) {
case TYPE_BYTE:
InsertTag<uint8_t>(tag_value, tag_id, GetUInt8Value, static_meta.get());
break;
case TYPE_INT32:
InsertTag<int32_t>(tag_value, tag_id, GetInt32Value, static_meta.get());
break;
case TYPE_INT64:
InsertTag<int64_t>(tag_value, tag_id, GetInt64Value, static_meta.get());
break;
case TYPE_FLOAT:
InsertTag<float>(tag_value, tag_id, GetFloatValue, static_meta.get());
break;
case TYPE_DOUBLE:
InsertTag<double>(tag_value, tag_id, GetDoubleValue, static_meta.get());
break;
case TYPE_RATIONAL:
InsertRationalTag(tag_value, tag_id, static_meta.get());
break;
default:
ALOGE("%s: Unsupported tag type: %d!", __FUNCTION__, tag_type);
}
}
SensorCharacteristics sensor_characteristics;
auto ret =
GetSensorCharacteristics(static_meta.get(), &sensor_characteristics);
if (ret != OK) {
ALOGE("%s: Unable to extract sensor characteristics!", __FUNCTION__);
return ret;
}
if (!EmulatedSensor::AreCharacteristicsSupported(sensor_characteristics)) {
ALOGE("%s: Sensor characteristics not supported!", __FUNCTION__);
return BAD_VALUE;
}
// Although we don't support HdrPlus, this data is still required by HWL
int32_t payload_frames = 0;
static_meta->Set(google_camera_hal::kHdrplusPayloadFrames, &payload_frames, 1);
if (id < 0) {
static_metadata_.push_back(std::move(static_meta));
id = static_metadata_.size() - 1;
} else {
static_metadata_[id] = std::move(static_meta);
}
return id;
}
status_t EmulatedCameraProviderHwlImpl::WaitForQemuSfFakeCameraPropertyAvailable() {
// Camera service may start running before qemu-props sets
// vendor.qemu.sf.fake_camera to any of the following four values:
// "none,front,back,both"; so we need to wait.
int num_attempts = 100;
char prop[PROPERTY_VALUE_MAX];
bool timeout = true;
for (int i = 0; i < num_attempts; ++i) {
if (property_get("vendor.qemu.sf.fake_camera", prop, nullptr) != 0) {
timeout = false;
break;
}
usleep(5000);
}
if (timeout) {
ALOGE("timeout (%dms) waiting for property vendor.qemu.sf.fake_camera to be set\n",
5 * num_attempts);
return BAD_VALUE;
}
return OK;
}
status_t EmulatedCameraProviderHwlImpl::Initialize() {
// GCH expects all physical ids to be bigger than the logical ones.
// Resize 'static_metadata_' to fit all logical devices and insert them
// accordingly, push any remaining physical cameras in the back.
std::string config;
size_t logical_id = 0;
std::vector<std::string> config_file_locations;
std::string config_dir = "";
struct stat st;
if (stat(kConfigurationFileDirApex.data(), &st) == 0) {
config_dir += kConfigurationFileDirApex.data();
} else {
config_dir += kConfigurationFileDirVendor.data();
}
char prop[PROPERTY_VALUE_MAX];
if (!property_get_bool("ro.boot.qemu", false)) {
// Cuttlefish
property_get("ro.vendor.camera.config", prop, nullptr);
if (strcmp(prop, "external") == 0) {
config_file_locations.emplace_back(config_dir +
kCameraConfigExternal.data());
logical_id = 1;
} else {
// Default phone layout.
config_file_locations.emplace_back(config_dir + kCameraConfigBack.data());
config_file_locations.emplace_back(config_dir + kCameraConfigFront.data());
config_file_locations.emplace_back(config_dir + kCameraConfigDepth.data());
}
} else {
// Android Studio Emulator
if (!property_get_bool("ro.boot.qemu.legacy_fake_camera", false)) {
if (WaitForQemuSfFakeCameraPropertyAvailable() == OK) {
property_get("vendor.qemu.sf.fake_camera", prop, nullptr);
if (strcmp(prop, "both") == 0) {
config_file_locations.emplace_back(config_dir +
kCameraConfigBack.data());
config_file_locations.emplace_back(config_dir +
kCameraConfigFront.data());
} else if (strcmp(prop, "front") == 0) {
config_file_locations.emplace_back(config_dir +
kCameraConfigFront.data());
logical_id = 1;
} else if (strcmp(prop, "back") == 0) {
config_file_locations.emplace_back(config_dir +
kCameraConfigBack.data());
logical_id = 1;
}
}
}
}
static_metadata_.resize(ARRAY_SIZE(kCameraConfigFiles));
for (const auto& config_path : config_file_locations) {
if (!android::base::ReadFileToString(config_path, &config)) {
ALOGW("%s: Could not open configuration file: %s", __FUNCTION__,
config_path.c_str());
continue;
}
Json::CharReaderBuilder builder;
std::unique_ptr<Json::CharReader> config_reader(builder.newCharReader());
Json::Value root;
std::string error_message;
if (!config_reader->parse(&*config.begin(), &*config.end(), &root,
&error_message)) {
ALOGE("Could not parse configuration file: %s", error_message.c_str());
return BAD_VALUE;
}
if (root.isArray()) {
auto device_iter = root.begin();
auto result_id = ParseCharacteristics(*device_iter, logical_id);
if (logical_id != result_id) {
return result_id;
}
device_iter++;
// The first device entry is always the logical camera followed by the
// physical devices. They must be at least 2.
camera_id_map_.emplace(logical_id, std::vector<std::pair<CameraDeviceStatus, uint32_t>>());
if (root.size() >= 3) {
camera_id_map_[logical_id].reserve(root.size() - 1);
size_t current_physical_device = 0;
while (device_iter != root.end()) {
auto physical_id = ParseCharacteristics(*device_iter, /*id*/ -1);
if (physical_id < 0) {
return physical_id;
}
// Only notify unavailable physical camera if there are more than 2
// physical cameras backing the logical camera
auto device_status = (current_physical_device < 2) ? CameraDeviceStatus::kPresent :
CameraDeviceStatus::kNotPresent;
camera_id_map_[logical_id].push_back(std::make_pair(device_status, physical_id));
device_iter++; current_physical_device++;
}
auto physical_devices = std::make_unique<PhysicalDeviceMap>();
for (const auto& physical_device : camera_id_map_[logical_id]) {
physical_devices->emplace(
physical_device.second, std::make_pair(physical_device.first,
HalCameraMetadata::Clone(
static_metadata_[physical_device.second].get())));
}
auto updated_logical_chars =
EmulatedLogicalRequestState::AdaptLogicalCharacteristics(
HalCameraMetadata::Clone(static_metadata_[logical_id].get()),
std::move(physical_devices));
if (updated_logical_chars.get() != nullptr) {
static_metadata_[logical_id].swap(updated_logical_chars);
} else {
ALOGE("%s: Failed to updating logical camera characteristics!",
__FUNCTION__);
return BAD_VALUE;
}
}
} else {
auto result_id = ParseCharacteristics(root, logical_id);
if (result_id != logical_id) {
return result_id;
}
camera_id_map_.emplace(logical_id, std::vector<std::pair<CameraDeviceStatus, uint32_t>>());
}
logical_id++;
}
return OK;
}
status_t EmulatedCameraProviderHwlImpl::SetCallback(
const HwlCameraProviderCallback& callback) {
torch_cb_ = callback.torch_mode_status_change;
physical_camera_status_cb_ = callback.physical_camera_device_status_change;
return OK;
}
status_t EmulatedCameraProviderHwlImpl::TriggerDeferredCallbacks() {
std::lock_guard<std::mutex> lock(status_callback_future_lock_);
if (status_callback_future_.valid()) {
return OK;
}
status_callback_future_ = std::async(
std::launch::async,
&EmulatedCameraProviderHwlImpl::NotifyPhysicalCameraUnavailable, this);
return OK;
}
void EmulatedCameraProviderHwlImpl::WaitForStatusCallbackFuture() {
{
std::lock_guard<std::mutex> lock(status_callback_future_lock_);
if (!status_callback_future_.valid()) {
// If there is no future pending, construct a dummy one.
status_callback_future_ = std::async([]() { return; });
}
}
status_callback_future_.wait();
}
void EmulatedCameraProviderHwlImpl::NotifyPhysicalCameraUnavailable() {
for (const auto& one_map : camera_id_map_) {
for (const auto& physical_device : one_map.second) {
if (physical_device.first != CameraDeviceStatus::kNotPresent) {
continue;
}
uint32_t logical_camera_id = one_map.first;
uint32_t physical_camera_id = physical_device.second;
physical_camera_status_cb_(
logical_camera_id, physical_camera_id,
CameraDeviceStatus::kNotPresent);
}
}
}
status_t EmulatedCameraProviderHwlImpl::GetVendorTags(
std::vector<VendorTagSection>* vendor_tag_sections) {
if (vendor_tag_sections == nullptr) {
ALOGE("%s: vendor_tag_sections is nullptr.", __FUNCTION__);
return BAD_VALUE;
}
// No vendor specific tags as of now
return OK;
}
status_t EmulatedCameraProviderHwlImpl::GetVisibleCameraIds(
std::vector<std::uint32_t>* camera_ids) {
if (camera_ids == nullptr) {
ALOGE("%s: camera_ids is nullptr.", __FUNCTION__);
return BAD_VALUE;
}
for (const auto& device : camera_id_map_) {
camera_ids->push_back(device.first);
}
return OK;
}
status_t EmulatedCameraProviderHwlImpl::CreateCameraDeviceHwl(
uint32_t camera_id, std::unique_ptr<CameraDeviceHwl>* camera_device_hwl) {
if (camera_device_hwl == nullptr) {
ALOGE("%s: camera_device_hwl is nullptr.", __FUNCTION__);
return BAD_VALUE;
}
if (camera_id_map_.find(camera_id) == camera_id_map_.end()) {
ALOGE("%s: Invalid camera id: %u", __func__, camera_id);
return BAD_VALUE;
}
std::unique_ptr<HalCameraMetadata> meta =
HalCameraMetadata::Clone(static_metadata_[camera_id].get());
std::shared_ptr<EmulatedTorchState> torch_state;
camera_metadata_ro_entry entry;
bool flash_supported = false;
auto ret = meta->Get(ANDROID_FLASH_INFO_AVAILABLE, &entry);
if ((ret == OK) && (entry.count == 1)) {
if (entry.data.u8[0] == ANDROID_FLASH_INFO_AVAILABLE_TRUE) {
flash_supported = true;
}
}
if (flash_supported) {
torch_state = std::make_shared<EmulatedTorchState>(camera_id, torch_cb_);
}
auto physical_devices = std::make_unique<PhysicalDeviceMap>();
for (const auto& physical_device : camera_id_map_[camera_id]) {
physical_devices->emplace(
physical_device.second, std::make_pair(physical_device.first,
HalCameraMetadata::Clone(static_metadata_[physical_device.second].get())));
}
*camera_device_hwl = EmulatedCameraDeviceHwlImpl::Create(
camera_id, std::move(meta), std::move(physical_devices), torch_state);
if (*camera_device_hwl == nullptr) {
ALOGE("%s: Cannot create EmulatedCameraDeviceHWlImpl.", __FUNCTION__);
return BAD_VALUE;
}
return OK;
}
status_t EmulatedCameraProviderHwlImpl::CreateBufferAllocatorHwl(
std::unique_ptr<CameraBufferAllocatorHwl>* camera_buffer_allocator_hwl) {
if (camera_buffer_allocator_hwl == nullptr) {
ALOGE("%s: camera_buffer_allocator_hwl is nullptr.", __FUNCTION__);
return BAD_VALUE;
}
// Currently not supported
return INVALID_OPERATION;
}
status_t EmulatedCameraProviderHwlImpl::NotifyDeviceStateChange(
DeviceState /*device_state*/) {
return OK;
}
} // namespace android