blob: 736aac5841ec5f52fd576e47db0dc48461ff2d2f [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2AllocatorIon"
#include <utils/Log.h>
#include <list>
#include <ion/ion.h>
#include <sys/mman.h>
#include <unistd.h> // getpagesize, size_t, close, dup
#include <C2AllocatorIon.h>
#include <C2Buffer.h>
#include <C2Debug.h>
#include <C2ErrnoUtils.h>
namespace android {
namespace {
constexpr size_t USAGE_LRU_CACHE_SIZE = 1024;
}
/* size_t <=> int(lo), int(hi) conversions */
constexpr inline int size2intLo(size_t s) {
return int(s & 0xFFFFFFFF);
}
constexpr inline int size2intHi(size_t s) {
// cast to uint64_t as size_t may be 32 bits wide
return int((uint64_t(s) >> 32) & 0xFFFFFFFF);
}
constexpr inline size_t ints2size(int intLo, int intHi) {
// convert in 2 stages to 64 bits as intHi may be negative
return size_t(unsigned(intLo)) | size_t(uint64_t(unsigned(intHi)) << 32);
}
/* ========================================= ION HANDLE ======================================== */
/**
* ION handle
*
* There can be only a sole ion client per process, this is captured in the ion fd that is passed
* to the constructor, but this should be managed by the ion buffer allocator/mapper.
*
* ion uses ion_user_handle_t for buffers. We don't store this in the native handle as
* it requires an ion_free to decref. Instead, we share the buffer to get an fd that also holds
* a refcount.
*
* This handle will not capture mapped fd-s as updating that would require a global mutex.
*/
struct C2HandleIon : public C2Handle {
// ion handle owns ionFd(!) and bufferFd
C2HandleIon(int bufferFd, size_t size)
: C2Handle(cHeader),
mFds{ bufferFd },
mInts{ int(size & 0xFFFFFFFF), int((uint64_t(size) >> 32) & 0xFFFFFFFF), kMagic } { }
static bool isValid(const C2Handle * const o);
int bufferFd() const { return mFds.mBuffer; }
size_t size() const {
return size_t(unsigned(mInts.mSizeLo))
| size_t(uint64_t(unsigned(mInts.mSizeHi)) << 32);
}
protected:
struct {
int mBuffer; // shared ion buffer
} mFds;
struct {
int mSizeLo; // low 32-bits of size
int mSizeHi; // high 32-bits of size
int mMagic;
} mInts;
private:
typedef C2HandleIon _type;
enum {
kMagic = '\xc2io\x00',
numFds = sizeof(mFds) / sizeof(int),
numInts = sizeof(mInts) / sizeof(int),
version = sizeof(C2Handle)
};
//constexpr static C2Handle cHeader = { version, numFds, numInts, {} };
const static C2Handle cHeader;
};
const C2Handle C2HandleIon::cHeader = {
C2HandleIon::version,
C2HandleIon::numFds,
C2HandleIon::numInts,
{}
};
// static
bool C2HandleIon::isValid(const C2Handle * const o) {
if (!o || memcmp(o, &cHeader, sizeof(cHeader))) {
return false;
}
const C2HandleIon *other = static_cast<const C2HandleIon*>(o);
return other->mInts.mMagic == kMagic;
}
// TODO: is the dup of an ion fd identical to ion_share?
/* ======================================= ION ALLOCATION ====================================== */
class C2AllocationIon : public C2LinearAllocation {
public:
/* Interface methods */
virtual c2_status_t map(
size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence,
void **addr /* nonnull */) override;
virtual c2_status_t unmap(void *addr, size_t size, C2Fence *fenceFd) override;
virtual ~C2AllocationIon() override;
virtual const C2Handle *handle() const override;
virtual id_t getAllocatorId() const override;
virtual bool equals(const std::shared_ptr<C2LinearAllocation> &other) const override;
// internal methods
C2AllocationIon(int ionFd, size_t size, size_t align, unsigned heapMask, unsigned flags, C2Allocator::id_t id);
C2AllocationIon(int ionFd, size_t size, int shareFd, C2Allocator::id_t id);
c2_status_t status() const;
protected:
class Impl;
Impl *mImpl;
// TODO: we could make this encapsulate shared_ptr and copiable
C2_DO_NOT_COPY(C2AllocationIon);
};
class C2AllocationIon::Impl {
private:
/**
* Constructs an ion allocation.
*
* \note We always create an ion allocation, even if the allocation or import fails
* so that we can capture the error.
*
* \param ionFd ion client (ownership transferred to created object)
* \param capacity size of allocation
* \param bufferFd buffer handle (ownership transferred to created object). Must be
* invalid if err is not 0.
* \param buffer ion buffer user handle (ownership transferred to created object). Must be
* invalid if err is not 0.
* \param err errno during buffer allocation or import
*/
Impl(int ionFd, size_t capacity, int bufferFd, ion_user_handle_t buffer, C2Allocator::id_t id, int err)
: mIonFd(ionFd),
mHandle(bufferFd, capacity),
mBuffer(buffer),
mId(id),
mInit(c2_map_errno<ENOMEM, EACCES, EINVAL>(err)),
mMapFd(-1) {
if (mInit != C2_OK) {
// close ionFd now on error
if (mIonFd >= 0) {
close(mIonFd);
mIonFd = -1;
}
// C2_CHECK(bufferFd < 0);
// C2_CHECK(buffer < 0);
}
}
public:
/**
* Constructs an ion allocation by importing a shared buffer fd.
*
* \param ionFd ion client (ownership transferred to created object)
* \param capacity size of allocation
* \param bufferFd buffer handle (ownership transferred to created object)
*
* \return created ion allocation (implementation) which may be invalid if the
* import failed.
*/
static Impl *Import(int ionFd, size_t capacity, int bufferFd, C2Allocator::id_t id) {
ion_user_handle_t buffer = -1;
int ret = ion_import(ionFd, bufferFd, &buffer);
return new Impl(ionFd, capacity, bufferFd, buffer, id, ret);
}
/**
* Constructs an ion allocation by allocating an ion buffer.
*
* \param ionFd ion client (ownership transferred to created object)
* \param size size of allocation
* \param align desired alignment of allocation
* \param heapMask mask of heaps considered
* \param flags ion allocation flags
*
* \return created ion allocation (implementation) which may be invalid if the
* allocation failed.
*/
static Impl *Alloc(int ionFd, size_t size, size_t align, unsigned heapMask, unsigned flags, C2Allocator::id_t id) {
int bufferFd = -1;
ion_user_handle_t buffer = -1;
size_t alignedSize = align == 0 ? size : (size + align - 1) & ~(align - 1);
int ret = ion_alloc(ionFd, alignedSize, align, heapMask, flags, &buffer);
ALOGV("ion_alloc(ionFd = %d, size = %zu, align = %zu, prot = %d, flags = %d) "
"returned (%d) ; buffer = %d",
ionFd, alignedSize, align, heapMask, flags, ret, buffer);
if (ret == 0) {
// get buffer fd for native handle constructor
ret = ion_share(ionFd, buffer, &bufferFd);
if (ret != 0) {
ion_free(ionFd, buffer);
buffer = -1;
}
}
return new Impl(ionFd, alignedSize, bufferFd, buffer, id, ret);
}
c2_status_t map(size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence, void **addr) {
(void)fence; // TODO: wait for fence
*addr = nullptr;
if (!mMappings.empty()) {
ALOGV("multiple map");
// TODO: technically we should return DUPLICATE here, but our block views don't
// actually unmap, so we end up remapping an ion buffer multiple times.
//
// return C2_DUPLICATE;
}
if (size == 0) {
return C2_BAD_VALUE;
}
int prot = PROT_NONE;
int flags = MAP_SHARED;
if (usage.expected & C2MemoryUsage::CPU_READ) {
prot |= PROT_READ;
}
if (usage.expected & C2MemoryUsage::CPU_WRITE) {
prot |= PROT_WRITE;
}
size_t alignmentBytes = offset % PAGE_SIZE;
size_t mapOffset = offset - alignmentBytes;
size_t mapSize = size + alignmentBytes;
Mapping map = { nullptr, alignmentBytes, mapSize };
c2_status_t err = C2_OK;
if (mMapFd == -1) {
int ret = ion_map(mIonFd, mBuffer, mapSize, prot,
flags, mapOffset, (unsigned char**)&map.addr, &mMapFd);
ALOGV("ion_map(ionFd = %d, handle = %d, size = %zu, prot = %d, flags = %d, "
"offset = %zu) returned (%d)",
mIonFd, mBuffer, mapSize, prot, flags, mapOffset, ret);
if (ret) {
mMapFd = -1;
map.addr = *addr = nullptr;
err = c2_map_errno<EINVAL>(-ret);
} else {
*addr = (uint8_t *)map.addr + alignmentBytes;
}
} else {
map.addr = mmap(nullptr, mapSize, prot, flags, mMapFd, mapOffset);
ALOGV("mmap(size = %zu, prot = %d, flags = %d, mapFd = %d, offset = %zu) "
"returned (%d)",
mapSize, prot, flags, mMapFd, mapOffset, errno);
if (map.addr == MAP_FAILED) {
map.addr = *addr = nullptr;
err = c2_map_errno<EINVAL>(errno);
} else {
*addr = (uint8_t *)map.addr + alignmentBytes;
}
}
if (map.addr) {
mMappings.push_back(map);
}
return err;
}
c2_status_t unmap(void *addr, size_t size, C2Fence *fence) {
if (mMapFd < 0 || mMappings.empty()) {
ALOGD("tried to unmap unmapped buffer");
return C2_NOT_FOUND;
}
for (auto it = mMappings.begin(); it != mMappings.end(); ++it) {
if (addr != (uint8_t *)it->addr + it->alignmentBytes ||
size + it->alignmentBytes != it->size) {
continue;
}
int err = munmap(it->addr, it->size);
if (err != 0) {
ALOGD("munmap failed");
return c2_map_errno<EINVAL>(errno);
}
if (fence) {
*fence = C2Fence(); // not using fences
}
(void)mMappings.erase(it);
ALOGV("successfully unmapped: %d", mBuffer);
return C2_OK;
}
ALOGD("unmap failed to find specified map");
return C2_BAD_VALUE;
}
~Impl() {
if (!mMappings.empty()) {
ALOGD("Dangling mappings!");
for (const Mapping &map : mMappings) {
(void)munmap(map.addr, map.size);
}
}
if (mMapFd >= 0) {
close(mMapFd);
mMapFd = -1;
}
if (mInit == C2_OK) {
(void)ion_free(mIonFd, mBuffer);
native_handle_close(&mHandle);
}
if (mIonFd >= 0) {
close(mIonFd);
}
}
c2_status_t status() const {
return mInit;
}
const C2Handle *handle() const {
return &mHandle;
}
C2Allocator::id_t getAllocatorId() const {
return mId;
}
ion_user_handle_t ionHandle() const {
return mBuffer;
}
private:
int mIonFd;
C2HandleIon mHandle;
ion_user_handle_t mBuffer;
C2Allocator::id_t mId;
c2_status_t mInit;
int mMapFd; // only one for now
struct Mapping {
void *addr;
size_t alignmentBytes;
size_t size;
};
std::list<Mapping> mMappings;
};
c2_status_t C2AllocationIon::map(
size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence, void **addr) {
return mImpl->map(offset, size, usage, fence, addr);
}
c2_status_t C2AllocationIon::unmap(void *addr, size_t size, C2Fence *fence) {
return mImpl->unmap(addr, size, fence);
}
c2_status_t C2AllocationIon::status() const {
return mImpl->status();
}
C2Allocator::id_t C2AllocationIon::getAllocatorId() const {
return mImpl->getAllocatorId();
}
bool C2AllocationIon::equals(const std::shared_ptr<C2LinearAllocation> &other) const {
if (!other || other->getAllocatorId() != getAllocatorId()) {
return false;
}
// get user handle to compare objects
std::shared_ptr<C2AllocationIon> otherAsIon = std::static_pointer_cast<C2AllocationIon>(other);
return mImpl->ionHandle() == otherAsIon->mImpl->ionHandle();
}
const C2Handle *C2AllocationIon::handle() const {
return mImpl->handle();
}
C2AllocationIon::~C2AllocationIon() {
delete mImpl;
}
C2AllocationIon::C2AllocationIon(int ionFd, size_t size, size_t align,
unsigned heapMask, unsigned flags, C2Allocator::id_t id)
: C2LinearAllocation(size),
mImpl(Impl::Alloc(ionFd, size, align, heapMask, flags, id)) { }
C2AllocationIon::C2AllocationIon(int ionFd, size_t size, int shareFd, C2Allocator::id_t id)
: C2LinearAllocation(size),
mImpl(Impl::Import(ionFd, size, shareFd, id)) { }
/* ======================================= ION ALLOCATOR ====================================== */
C2AllocatorIon::C2AllocatorIon(id_t id)
: mInit(C2_OK),
mIonFd(ion_open()) {
if (mIonFd < 0) {
switch (errno) {
case ENOENT: mInit = C2_OMITTED; break;
default: mInit = c2_map_errno<EACCES>(errno); break;
}
} else {
C2MemoryUsage minUsage = { 0, 0 };
C2MemoryUsage maxUsage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE };
Traits traits = { "android.allocator.ion", id, LINEAR, minUsage, maxUsage };
mTraits = std::make_shared<Traits>(traits);
mBlockSize = ::getpagesize();
}
}
C2AllocatorIon::~C2AllocatorIon() {
if (mInit == C2_OK) {
ion_close(mIonFd);
}
}
C2Allocator::id_t C2AllocatorIon::getId() const {
std::lock_guard<std::mutex> lock(mUsageMapperLock);
return mTraits->id;
}
C2String C2AllocatorIon::getName() const {
std::lock_guard<std::mutex> lock(mUsageMapperLock);
return mTraits->name;
}
std::shared_ptr<const C2Allocator::Traits> C2AllocatorIon::getTraits() const {
std::lock_guard<std::mutex> lock(mUsageMapperLock);
return mTraits;
}
void C2AllocatorIon::setUsageMapper(
const UsageMapperFn &mapper, uint64_t minUsage, uint64_t maxUsage, uint64_t blockSize) {
std::lock_guard<std::mutex> lock(mUsageMapperLock);
mUsageMapperCache.clear();
mUsageMapperLru.clear();
mUsageMapper = mapper;
Traits traits = {
mTraits->name, mTraits->id, LINEAR,
C2MemoryUsage(minUsage), C2MemoryUsage(maxUsage)
};
mTraits = std::make_shared<Traits>(traits);
mBlockSize = blockSize;
}
std::size_t C2AllocatorIon::MapperKeyHash::operator()(const MapperKey &k) const {
return std::hash<uint64_t>{}(k.first) ^ std::hash<size_t>{}(k.second);
}
c2_status_t C2AllocatorIon::mapUsage(
C2MemoryUsage usage, size_t capacity, size_t *align, unsigned *heapMask, unsigned *flags) {
std::lock_guard<std::mutex> lock(mUsageMapperLock);
c2_status_t res = C2_OK;
// align capacity
capacity = (capacity + mBlockSize - 1) & ~(mBlockSize - 1);
MapperKey key = std::make_pair(usage.expected, capacity);
auto entry = mUsageMapperCache.find(key);
if (entry == mUsageMapperCache.end()) {
if (mUsageMapper) {
res = mUsageMapper(usage, capacity, align, heapMask, flags);
} else {
*align = 0; // TODO make this 1
*heapMask = ~0; // default mask
*flags = 0; // default flags
res = C2_NO_INIT;
}
// add usage to cache
MapperValue value = std::make_tuple(*align, *heapMask, *flags, res);
mUsageMapperLru.emplace_front(key, value);
mUsageMapperCache.emplace(std::make_pair(key, mUsageMapperLru.begin()));
if (mUsageMapperCache.size() > USAGE_LRU_CACHE_SIZE) {
// remove LRU entry
MapperKey lruKey = mUsageMapperLru.front().first;
mUsageMapperCache.erase(lruKey);
mUsageMapperLru.pop_back();
}
} else {
// move entry to MRU
mUsageMapperLru.splice(mUsageMapperLru.begin(), mUsageMapperLru, entry->second);
const MapperValue &value = entry->second->second;
std::tie(*align, *heapMask, *flags, res) = value;
}
return res;
}
c2_status_t C2AllocatorIon::newLinearAllocation(
uint32_t capacity, C2MemoryUsage usage, std::shared_ptr<C2LinearAllocation> *allocation) {
if (allocation == nullptr) {
return C2_BAD_VALUE;
}
allocation->reset();
if (mInit != C2_OK) {
return mInit;
}
size_t align = 0;
unsigned heapMask = ~0;
unsigned flags = 0;
c2_status_t ret = mapUsage(usage, capacity, &align, &heapMask, &flags);
if (ret && ret != C2_NO_INIT) {
return ret;
}
std::shared_ptr<C2AllocationIon> alloc
= std::make_shared<C2AllocationIon>(dup(mIonFd), capacity, align, heapMask, flags, mTraits->id);
ret = alloc->status();
if (ret == C2_OK) {
*allocation = alloc;
}
return ret;
}
c2_status_t C2AllocatorIon::priorLinearAllocation(
const C2Handle *handle, std::shared_ptr<C2LinearAllocation> *allocation) {
*allocation = nullptr;
if (mInit != C2_OK) {
return mInit;
}
if (!C2HandleIon::isValid(handle)) {
return C2_BAD_VALUE;
}
// TODO: get capacity and validate it
const C2HandleIon *h = static_cast<const C2HandleIon*>(handle);
std::shared_ptr<C2AllocationIon> alloc
= std::make_shared<C2AllocationIon>(dup(mIonFd), h->size(), h->bufferFd(), mTraits->id);
c2_status_t ret = alloc->status();
if (ret == C2_OK) {
*allocation = alloc;
native_handle_delete(const_cast<native_handle_t*>(
reinterpret_cast<const native_handle_t*>(handle)));
}
return ret;
}
bool C2AllocatorIon::isValid(const C2Handle* const o) {
return C2HandleIon::isValid(o);
}
} // namespace android