blob: dd05056b0ea208ff97c692cae1a42b9a3912d0e5 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "Codec2-types"
#include <log/log.h>
#include <codec2/hidl/1.0/types.h>
#include <C2AllocatorIon.h>
#include <C2AllocatorGralloc.h>
#include <C2BlockInternal.h>
#include <C2Buffer.h>
#include <C2Component.h>
#include <C2Param.h>
#include <C2ParamInternal.h>
#include <C2PlatformSupport.h>
#include <C2Work.h>
#include <util/C2ParamUtils.h>
#include <unordered_map>
#include <algorithm>
#include <media/stagefright/foundation/AUtils.h>
namespace hardware {
namespace google {
namespace media {
namespace c2 {
namespace V1_0 {
namespace utils {
using namespace ::android;
using ::android::hardware::Return;
using ::android::hardware::media::bufferpool::BufferPoolData;
using ::android::hardware::media::bufferpool::V1_0::BufferStatusMessage;
using ::android::hardware::media::bufferpool::V1_0::ResultStatus;
using ::android::hardware::media::bufferpool::V1_0::implementation::
ClientManager;
using ::android::hardware::media::bufferpool::V1_0::implementation::
TransactionId;
namespace /* unnamed */ {
template <typename Common, typename DstVector, typename SrcVector>
void copyVector(DstVector* d, const SrcVector& s) {
static_assert(sizeof(Common) == sizeof(decltype((*d)[0])),
"DstVector's component size does not match Common");
static_assert(sizeof(Common) == sizeof(decltype(s[0])),
"SrcVector's component size does not match Common");
d->resize(s.size());
std::copy(
reinterpret_cast<const Common*>(&s[0]),
reinterpret_cast<const Common*>(&s[0] + s.size()),
reinterpret_cast<Common*>(&(*d)[0]));
}
// C2ParamField -> ParamField
void objcpy(ParamField *d, const C2ParamField &s) {
d->index = static_cast<ParamIndex>(_C2ParamInspector::GetIndex(s));
d->fieldId.offset = static_cast<uint32_t>(_C2ParamInspector::GetOffset(s));
d->fieldId.size = static_cast<uint32_t>(_C2ParamInspector::GetSize(s));
}
struct C2ParamFieldBuilder : public C2ParamField {
C2ParamFieldBuilder() : C2ParamField(
static_cast<C2Param::Index>(static_cast<uint32_t>(0)), 0, 0) {
}
// ParamField -> C2ParamField
C2ParamFieldBuilder(const ParamField& s) : C2ParamField(
static_cast<C2Param::Index>(static_cast<uint32_t>(s.index)),
static_cast<uint32_t>(s.fieldId.offset),
static_cast<uint32_t>(s.fieldId.size)) {
}
};
// C2WorkOrdinalStruct -> WorkOrdinal
void objcpy(WorkOrdinal *d, const C2WorkOrdinalStruct &s) {
d->frameIndex = static_cast<uint64_t>(s.frameIndex.peeku());
d->timestampUs = static_cast<uint64_t>(s.timestamp.peeku());
d->customOrdinal = static_cast<uint64_t>(s.customOrdinal.peeku());
}
// WorkOrdinal -> C2WorkOrdinalStruct
void objcpy(C2WorkOrdinalStruct *d, const WorkOrdinal &s) {
d->frameIndex = c2_cntr64_t(s.frameIndex);
d->timestamp = c2_cntr64_t(s.timestampUs);
d->customOrdinal = c2_cntr64_t(s.customOrdinal);
}
// C2FieldSupportedValues::range's type -> FieldSupportedValues::Range
void objcpy(
FieldSupportedValues::Range* d,
const decltype(C2FieldSupportedValues::range)& s) {
d->min = static_cast<PrimitiveValue>(s.min.u64);
d->max = static_cast<PrimitiveValue>(s.max.u64);
d->step = static_cast<PrimitiveValue>(s.step.u64);
d->num = static_cast<PrimitiveValue>(s.num.u64);
d->denom = static_cast<PrimitiveValue>(s.denom.u64);
}
// C2FieldSupportedValues -> FieldSupportedValues
Status objcpy(FieldSupportedValues *d, const C2FieldSupportedValues &s) {
d->typeOther = static_cast<int32_t>(s.type);
switch (s.type) {
case C2FieldSupportedValues::EMPTY:
d->type = FieldSupportedValues::Type::EMPTY;
d->values.resize(0);
return Status::OK;
case C2FieldSupportedValues::RANGE:
d->type = FieldSupportedValues::Type::RANGE;
objcpy(&d->range, s.range);
d->values.resize(0);
return Status::OK;
default:
switch (s.type) {
case C2FieldSupportedValues::VALUES:
d->type = FieldSupportedValues::Type::VALUES;
break;
case C2FieldSupportedValues::FLAGS:
d->type = FieldSupportedValues::Type::FLAGS;
break;
default:
d->type = FieldSupportedValues::Type::OTHER;
// Copy all fields in this case
objcpy(&d->range, s.range);
}
d->values.resize(s.values.size());
copyVector<uint64_t>(&d->values, s.values);
return Status::OK;
}
}
// FieldSupportedValues::Range -> C2FieldSupportedValues::range's type
void objcpy(
decltype(C2FieldSupportedValues::range)* d,
const FieldSupportedValues::Range& s) {
d->min.u64 = static_cast<uint64_t>(s.min);
d->max.u64 = static_cast<uint64_t>(s.max);
d->step.u64 = static_cast<uint64_t>(s.step);
d->num.u64 = static_cast<uint64_t>(s.num);
d->denom.u64 = static_cast<uint64_t>(s.denom);
}
// FieldSupportedValues -> C2FieldSupportedValues
c2_status_t objcpy(C2FieldSupportedValues *d, const FieldSupportedValues &s) {
switch (s.type) {
case FieldSupportedValues::Type::EMPTY:
d->type = C2FieldSupportedValues::EMPTY;
return C2_OK;
case FieldSupportedValues::Type::RANGE:
d->type = C2FieldSupportedValues::RANGE;
objcpy(&d->range, s.range);
d->values.resize(0);
return C2_OK;
default:
switch (s.type) {
case FieldSupportedValues::Type::VALUES:
d->type = C2FieldSupportedValues::VALUES;
break;
case FieldSupportedValues::Type::FLAGS:
d->type = C2FieldSupportedValues::FLAGS;
break;
default:
d->type = static_cast<C2FieldSupportedValues::type_t>(s.typeOther);
// Copy all fields in this case
objcpy(&d->range, s.range);
}
copyVector<uint64_t>(&d->values, s.values);
return C2_OK;
}
}
} // unnamed namespace
// C2FieldSupportedValuesQuery -> FieldSupportedValuesQuery
Status objcpy(
FieldSupportedValuesQuery* d,
const C2FieldSupportedValuesQuery& s) {
objcpy(&d->field, s.field());
switch (s.type()) {
case C2FieldSupportedValuesQuery::POSSIBLE:
d->type = FieldSupportedValuesQuery::Type::POSSIBLE;
break;
case C2FieldSupportedValuesQuery::CURRENT:
d->type = FieldSupportedValuesQuery::Type::CURRENT;
break;
default:
ALOGE("Unknown type of C2FieldSupportedValuesQuery: %u",
static_cast<unsigned>(s.type()));
return Status::BAD_VALUE;
}
return Status::OK;
}
// FieldSupportedValuesQuery -> C2FieldSupportedValuesQuery
c2_status_t objcpy(
C2FieldSupportedValuesQuery* d,
const FieldSupportedValuesQuery& s) {
C2FieldSupportedValuesQuery::type_t dType;
switch (s.type) {
case FieldSupportedValuesQuery::Type::POSSIBLE:
dType = C2FieldSupportedValuesQuery::POSSIBLE;
break;
case FieldSupportedValuesQuery::Type::CURRENT:
dType = C2FieldSupportedValuesQuery::CURRENT;
break;
default:
ALOGE("Unknown type of FieldSupportedValuesQuery: %u",
static_cast<unsigned>(s.type));
return C2_BAD_VALUE;
}
*d = C2FieldSupportedValuesQuery(C2ParamFieldBuilder(s.field), dType);
return C2_OK;
}
// C2FieldSupportedValuesQuery -> FieldSupportedValuesQueryResult
Status objcpy(
FieldSupportedValuesQueryResult* d,
const C2FieldSupportedValuesQuery& s) {
d->status = static_cast<Status>(s.status);
return objcpy(&d->values, s.values);
}
// FieldSupportedValuesQuery, FieldSupportedValuesQueryResult ->
// C2FieldSupportedValuesQuery
c2_status_t objcpy(
C2FieldSupportedValuesQuery* d,
const FieldSupportedValuesQuery& sq,
const FieldSupportedValuesQueryResult& sr) {
c2_status_t status = objcpy(d, sq);
if (status != C2_OK) {
return status;
}
d->status = static_cast<c2_status_t>(sr.status);
return objcpy(&d->values, sr.values);
}
// C2Component::Traits -> IComponentStore::ComponentTraits
Status objcpy(
IComponentStore::ComponentTraits *d,
const C2Component::Traits &s) {
d->name = s.name;
switch (s.domain) {
case C2Component::DOMAIN_VIDEO:
d->domain = IComponentStore::ComponentTraits::Domain::VIDEO;
break;
case C2Component::DOMAIN_AUDIO:
d->domain = IComponentStore::ComponentTraits::Domain::AUDIO;
break;
default:
d->domain = IComponentStore::ComponentTraits::Domain::OTHER;
}
d->domainOther = static_cast<uint32_t>(s.domain);
switch (s.kind) {
case C2Component::KIND_DECODER:
d->kind = IComponentStore::ComponentTraits::Kind::DECODER;
break;
case C2Component::KIND_ENCODER:
d->kind = IComponentStore::ComponentTraits::Kind::ENCODER;
break;
default:
d->kind = IComponentStore::ComponentTraits::Kind::OTHER;
}
d->kindOther = static_cast<uint32_t>(s.kind);
d->rank = static_cast<uint32_t>(s.rank);
d->mediaType = s.mediaType;
d->aliases.resize(s.aliases.size());
for (size_t ix = s.aliases.size(); ix > 0; ) {
--ix;
d->aliases[ix] = s.aliases[ix];
}
return Status::OK;
}
// ComponentTraits -> C2Component::Traits, std::unique_ptr<std::vector<std::string>>
c2_status_t objcpy(
C2Component::Traits* d,
std::unique_ptr<std::vector<std::string>>* aliasesBuffer,
const IComponentStore::ComponentTraits& s) {
d->name = s.name.c_str();
switch (s.domain) {
case IComponentStore::ComponentTraits::Domain::VIDEO:
d->domain = C2Component::DOMAIN_VIDEO;
break;
case IComponentStore::ComponentTraits::Domain::AUDIO:
d->domain = C2Component::DOMAIN_AUDIO;
break;
default:
d->domain = static_cast<C2Component::domain_t>(s.domainOther);
}
switch (s.kind) {
case IComponentStore::ComponentTraits::Kind::DECODER:
d->kind = C2Component::KIND_DECODER;
break;
case IComponentStore::ComponentTraits::Kind::ENCODER:
d->kind = C2Component::KIND_ENCODER;
break;
default:
d->kind = static_cast<C2Component::kind_t>(s.kindOther);
}
d->rank = static_cast<C2Component::rank_t>(s.rank);
d->mediaType = s.mediaType.c_str();
// aliasesBuffer must not be resized after this.
*aliasesBuffer = std::make_unique<std::vector<std::string>>(
s.aliases.size());
(*aliasesBuffer)->resize(s.aliases.size());
std::vector<C2StringLiteral> dAliases(s.aliases.size());
for (size_t i = 0; i < s.aliases.size(); ++i) {
(**aliasesBuffer)[i] = s.aliases[i].c_str();
d->aliases[i] = (**aliasesBuffer)[i].c_str();
}
return C2_OK;
}
namespace /* unnamed */ {
// C2ParamFieldValues -> ParamFieldValues
Status objcpy(ParamFieldValues *d, const C2ParamFieldValues &s) {
objcpy(&d->paramOrField, s.paramOrField);
if (s.values) {
d->values.resize(1);
return objcpy(&d->values[0], *s.values);
}
d->values.resize(0);
return Status::OK;
}
// ParamFieldValues -> C2ParamFieldValues
c2_status_t objcpy(C2ParamFieldValues *d, const ParamFieldValues &s) {
d->paramOrField = C2ParamFieldBuilder(s.paramOrField);
if (s.values.size() == 1) {
d->values = std::make_unique<C2FieldSupportedValues>();
return objcpy(d->values.get(), s.values[0]);
} else if (s.values.size() == 0) {
d->values.reset();
return C2_OK;
}
ALOGE("Multiple FieldSupportedValues objects. "
"(Only one is allowed.)");
return C2_BAD_VALUE;
}
} // unnamed namespace
// C2SettingResult -> SettingResult
Status objcpy(SettingResult *d, const C2SettingResult &s) {
d->failureOther = static_cast<uint32_t>(s.failure);
switch (s.failure) {
case C2SettingResult::READ_ONLY:
d->failure = SettingResult::Failure::READ_ONLY;
break;
case C2SettingResult::MISMATCH:
d->failure = SettingResult::Failure::MISMATCH;
break;
case C2SettingResult::BAD_VALUE:
d->failure = SettingResult::Failure::BAD_VALUE;
break;
case C2SettingResult::BAD_TYPE:
d->failure = SettingResult::Failure::BAD_TYPE;
break;
case C2SettingResult::BAD_PORT:
d->failure = SettingResult::Failure::BAD_PORT;
break;
case C2SettingResult::BAD_INDEX:
d->failure = SettingResult::Failure::BAD_INDEX;
break;
case C2SettingResult::CONFLICT:
d->failure = SettingResult::Failure::CONFLICT;
break;
case C2SettingResult::UNSUPPORTED:
d->failure = SettingResult::Failure::UNSUPPORTED;
break;
case C2SettingResult::INFO_CONFLICT:
d->failure = SettingResult::Failure::INFO_CONFLICT;
break;
default:
d->failure = SettingResult::Failure::OTHER;
}
Status status = objcpy(&d->field, s.field);
if (status != Status::OK) {
return status;
}
d->conflicts.resize(s.conflicts.size());
size_t i = 0;
for (const C2ParamFieldValues& sConflict : s.conflicts) {
ParamFieldValues &dConflict = d->conflicts[i++];
status = objcpy(&dConflict, sConflict);
if (status != Status::OK) {
return status;
}
}
return Status::OK;
}
// SettingResult -> std::unique_ptr<C2SettingResult>
c2_status_t objcpy(std::unique_ptr<C2SettingResult> *d, const SettingResult &s) {
*d = std::unique_ptr<C2SettingResult>(new C2SettingResult {
.field = C2ParamFieldValues(C2ParamFieldBuilder()) });
if (!*d) {
return C2_NO_MEMORY;
}
// failure
switch (s.failure) {
case SettingResult::Failure::READ_ONLY:
(*d)->failure = C2SettingResult::READ_ONLY;
break;
case SettingResult::Failure::MISMATCH:
(*d)->failure = C2SettingResult::MISMATCH;
break;
case SettingResult::Failure::BAD_VALUE:
(*d)->failure = C2SettingResult::BAD_VALUE;
break;
case SettingResult::Failure::BAD_TYPE:
(*d)->failure = C2SettingResult::BAD_TYPE;
break;
case SettingResult::Failure::BAD_PORT:
(*d)->failure = C2SettingResult::BAD_PORT;
break;
case SettingResult::Failure::BAD_INDEX:
(*d)->failure = C2SettingResult::BAD_INDEX;
break;
case SettingResult::Failure::CONFLICT:
(*d)->failure = C2SettingResult::CONFLICT;
break;
case SettingResult::Failure::UNSUPPORTED:
(*d)->failure = C2SettingResult::UNSUPPORTED;
break;
case SettingResult::Failure::INFO_CONFLICT:
(*d)->failure = C2SettingResult::INFO_CONFLICT;
break;
default:
(*d)->failure = static_cast<C2SettingResult::Failure>(s.failureOther);
}
// field
c2_status_t status = objcpy(&(*d)->field, s.field);
if (status != C2_OK) {
return status;
}
// conflicts
(*d)->conflicts.clear();
(*d)->conflicts.reserve(s.conflicts.size());
for (const ParamFieldValues& sConflict : s.conflicts) {
(*d)->conflicts.emplace_back(
C2ParamFieldValues{ C2ParamFieldBuilder(), nullptr });
status = objcpy(&(*d)->conflicts.back(), sConflict);
if (status != C2_OK) {
return status;
}
}
return C2_OK;
}
// C2ParamDescriptor -> ParamDescriptor
Status objcpy(ParamDescriptor *d, const C2ParamDescriptor &s) {
d->index = static_cast<ParamIndex>(s.index());
d->attrib = static_cast<hidl_bitfield<ParamDescriptor::Attrib>>(
_C2ParamInspector::GetAttrib(s));
d->name = s.name();
copyVector<uint32_t>(&d->dependencies, s.dependencies());
return Status::OK;
}
// ParamDescriptor -> C2ParamDescriptor
c2_status_t objcpy(std::shared_ptr<C2ParamDescriptor> *d, const ParamDescriptor &s) {
std::vector<C2Param::Index> dDependencies;
dDependencies.reserve(s.dependencies.size());
for (const ParamIndex& sDependency : s.dependencies) {
dDependencies.emplace_back(static_cast<uint32_t>(sDependency));
}
*d = std::make_shared<C2ParamDescriptor>(
C2Param::Index(static_cast<uint32_t>(s.index)),
static_cast<C2ParamDescriptor::attrib_t>(s.attrib),
C2String(s.name.c_str()),
std::move(dDependencies));
return C2_OK;
}
// C2StructDescriptor -> StructDescriptor
Status objcpy(StructDescriptor *d, const C2StructDescriptor &s) {
d->type = static_cast<ParamIndex>(s.coreIndex().coreIndex());
d->fields.resize(s.numFields());
size_t i = 0;
for (const auto& sField : s) {
FieldDescriptor& dField = d->fields[i++];
dField.fieldId.offset = static_cast<uint32_t>(
_C2ParamInspector::GetOffset(sField));
dField.fieldId.size = static_cast<uint32_t>(
_C2ParamInspector::GetSize(sField));
dField.type = static_cast<hidl_bitfield<FieldDescriptor::Type>>(
sField.type());
dField.length = static_cast<uint32_t>(sField.extent());
dField.name = static_cast<hidl_string>(sField.name());
const auto& sNamedValues = sField.namedValues();
dField.namedValues.resize(sNamedValues.size());
size_t j = 0;
for (const auto& sNamedValue : sNamedValues) {
FieldDescriptor::NamedValue& dNamedValue = dField.namedValues[j++];
dNamedValue.name = static_cast<hidl_string>(sNamedValue.first);
dNamedValue.value = static_cast<PrimitiveValue>(
sNamedValue.second.u64);
}
}
return Status::OK;
}
// StructDescriptor -> C2StructDescriptor
c2_status_t objcpy(std::unique_ptr<C2StructDescriptor> *d, const StructDescriptor &s) {
C2Param::CoreIndex dIndex = C2Param::CoreIndex(static_cast<uint32_t>(s.type));
std::vector<C2FieldDescriptor> dFields;
dFields.reserve(s.fields.size());
for (const auto &sField : s.fields) {
C2FieldDescriptor dField = {
static_cast<uint32_t>(sField.type),
sField.length,
sField.name,
sField.fieldId.offset,
sField.fieldId.size };
C2FieldDescriptor::NamedValuesType namedValues;
namedValues.reserve(sField.namedValues.size());
for (const auto& sNamedValue : sField.namedValues) {
namedValues.emplace_back(
sNamedValue.name,
C2Value::Primitive(static_cast<uint64_t>(sNamedValue.value)));
}
_C2ParamInspector::AddNamedValues(dField, std::move(namedValues));
dFields.emplace_back(dField);
}
*d = std::make_unique<C2StructDescriptor>(
_C2ParamInspector::CreateStructDescriptor(dIndex, std::move(dFields)));
return C2_OK;
}
namespace /* unnamed */ {
// Find or add a hidl BaseBlock object from a given C2Handle* to a list and an
// associated map.
// Note: The handle is not cloned.
Status _addBaseBlock(
uint32_t* index,
const C2Handle* handle,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
if (!handle) {
ALOGE("addBaseBlock called on a null C2Handle.");
return Status::BAD_VALUE;
}
auto it = baseBlockIndices->find(handle);
if (it != baseBlockIndices->end()) {
*index = it->second;
} else {
*index = baseBlocks->size();
baseBlockIndices->emplace(handle, *index);
baseBlocks->emplace_back();
BaseBlock &dBaseBlock = baseBlocks->back();
dBaseBlock.type = BaseBlock::Type::NATIVE;
// This does not clone the handle.
dBaseBlock.nativeBlock =
reinterpret_cast<const native_handle_t*>(handle);
}
return Status::OK;
}
// Find or add a hidl BaseBlock object from a given BufferPoolData to a list and
// an associated map.
Status _addBaseBlock(
uint32_t* index,
const std::shared_ptr<BufferPoolData> bpData,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
if (!bpData) {
ALOGE("addBaseBlock called on a null BufferPoolData.");
return Status::BAD_VALUE;
}
auto it = baseBlockIndices->find(bpData.get());
if (it != baseBlockIndices->end()) {
*index = it->second;
} else if (!bufferPoolSender) {
ALOGE("No access to the receiver's BufferPool.");
return Status::BAD_VALUE;
} else {
*index = baseBlocks->size();
baseBlockIndices->emplace(bpData.get(), *index);
baseBlocks->emplace_back();
BaseBlock &dBaseBlock = baseBlocks->back();
dBaseBlock.type = BaseBlock::Type::POOLED;
ResultStatus bpStatus = bufferPoolSender->send(
bpData,
&dBaseBlock.pooledBlock);
if (bpStatus != ResultStatus::OK) {
ALOGE("Failed to send buffer with BufferPool. Error: %d.",
static_cast<int>(bpStatus));
return Status::BAD_VALUE;
}
}
return Status::OK;
}
Status addBaseBlock(
uint32_t* index,
const C2Handle* handle,
const std::shared_ptr<const _C2BlockPoolData>& blockPoolData,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
if (!blockPoolData) {
// No BufferPoolData ==> NATIVE block.
return _addBaseBlock(
index, handle,
baseBlocks, baseBlockIndices);
}
switch (blockPoolData->getType()) {
case _C2BlockPoolData::TYPE_BUFFERPOOL: {
// BufferPoolData
std::shared_ptr<BufferPoolData> bpData;
if (!_C2BlockFactory::GetBufferPoolData(blockPoolData, &bpData)
|| !bpData) {
ALOGE("BufferPoolData unavailable in a block.");
return Status::BAD_VALUE;
}
return _addBaseBlock(
index, bpData,
bufferPoolSender, baseBlocks, baseBlockIndices);
}
case _C2BlockPoolData::TYPE_BUFFERQUEUE:
// Do the same thing as a NATIVE block.
return _addBaseBlock(
index, handle,
baseBlocks, baseBlockIndices);
default:
ALOGE("Unknown C2BlockPoolData type.");
return Status::BAD_VALUE;
}
}
// C2Fence -> hidl_handle
// Note: File descriptors are not duplicated. The original file descriptor must
// not be closed before the transaction is complete.
Status objcpy(hidl_handle* d, const C2Fence& s) {
(void)s; // TODO: implement s.fd()
int fenceFd = -1;
d->setTo(nullptr);
if (fenceFd >= 0) {
native_handle_t *handle = native_handle_create(1, 0);
if (!handle) {
return Status::NO_MEMORY;
}
handle->data[0] = fenceFd;
d->setTo(handle, true /* owns */);
}
return Status::OK;
}
// C2ConstLinearBlock -> Block
// Note: Native handles are not duplicated. The original handles must not be
// closed before the transaction is complete.
Status objcpy(Block* d, const C2ConstLinearBlock& s,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
std::shared_ptr<const _C2BlockPoolData> bpData =
_C2BlockFactory::GetLinearBlockPoolData(s);
Status status = addBaseBlock(&d->index, s.handle(), bpData,
bufferPoolSender, baseBlocks, baseBlockIndices);
if (status != Status::OK) {
return status;
}
// Create the metadata.
C2Hidl_RangeInfo dRangeInfo;
dRangeInfo.offset = static_cast<uint32_t>(s.offset());
dRangeInfo.length = static_cast<uint32_t>(s.size());
status = createParamsBlob(&d->meta,
std::vector<C2Param*>{ &dRangeInfo });
if (status != Status::OK) {
return Status::BAD_VALUE;
}
// Copy the fence
return objcpy(&d->fence, s.fence());
}
// C2ConstGraphicBlock -> Block
// Note: Native handles are not duplicated. The original handles must not be
// closed before the transaction is complete.
Status objcpy(Block* d, const C2ConstGraphicBlock& s,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
std::shared_ptr<const _C2BlockPoolData> bpData =
_C2BlockFactory::GetGraphicBlockPoolData(s);
Status status = addBaseBlock(&d->index, s.handle(), bpData,
bufferPoolSender, baseBlocks, baseBlockIndices);
// Create the metadata.
C2Hidl_RectInfo dRectInfo;
C2Rect sRect = s.crop();
dRectInfo.left = static_cast<uint32_t>(sRect.left);
dRectInfo.top = static_cast<uint32_t>(sRect.top);
dRectInfo.width = static_cast<uint32_t>(sRect.width);
dRectInfo.height = static_cast<uint32_t>(sRect.height);
status = createParamsBlob(&d->meta,
std::vector<C2Param*>{ &dRectInfo });
if (status != Status::OK) {
return Status::BAD_VALUE;
}
// Copy the fence
return objcpy(&d->fence, s.fence());
}
// C2BufferData -> Buffer
// This function only fills in d->blocks.
Status objcpy(Buffer* d, const C2BufferData& s,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
Status status;
d->blocks.resize(
s.linearBlocks().size() +
s.graphicBlocks().size());
size_t i = 0;
for (const C2ConstLinearBlock& linearBlock : s.linearBlocks()) {
Block& dBlock = d->blocks[i++];
status = objcpy(
&dBlock, linearBlock,
bufferPoolSender, baseBlocks, baseBlockIndices);
if (status != Status::OK) {
return status;
}
}
for (const C2ConstGraphicBlock& graphicBlock : s.graphicBlocks()) {
Block& dBlock = d->blocks[i++];
status = objcpy(
&dBlock, graphicBlock,
bufferPoolSender, baseBlocks, baseBlockIndices);
if (status != Status::OK) {
return status;
}
}
return Status::OK;
}
// C2Buffer -> Buffer
Status objcpy(Buffer* d, const C2Buffer& s,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
Status status = createParamsBlob(&d->info, s.info());
if (status != Status::OK) {
return status;
}
return objcpy(d, s.data(), bufferPoolSender, baseBlocks, baseBlockIndices);
}
// C2InfoBuffer -> InfoBuffer
Status objcpy(InfoBuffer* d, const C2InfoBuffer& s,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
// TODO: C2InfoBuffer is not implemented.
(void)d;
(void)s;
(void)bufferPoolSender;
(void)baseBlocks;
(void)baseBlockIndices;
return Status::OK;
/*
// Stub implementation that may work in the future.
d->index = static_cast<uint32_t>(s.index());
d->buffer.info.resize(0);
return objcpy(&d->buffer, s.data(), baseBlocks, baseBlockIndices);
*/
}
// C2FrameData -> FrameData
Status objcpy(FrameData* d, const C2FrameData& s,
BufferPoolSender* bufferPoolSender,
std::list<BaseBlock>* baseBlocks,
std::map<const void*, uint32_t>* baseBlockIndices) {
d->flags = static_cast<hidl_bitfield<FrameData::Flags>>(s.flags);
objcpy(&d->ordinal, s.ordinal);
Status status;
d->buffers.resize(s.buffers.size());
size_t i = 0;
for (const std::shared_ptr<C2Buffer>& sBuffer : s.buffers) {
Buffer& dBuffer = d->buffers[i++];
if (!sBuffer) {
// A null (pointer to) C2Buffer corresponds to a Buffer with empty
// info and blocks.
dBuffer.info.resize(0);
dBuffer.blocks.resize(0);
continue;
}
status = objcpy(
&dBuffer, *sBuffer,
bufferPoolSender, baseBlocks, baseBlockIndices);
if (status != Status::OK) {
return status;
}
}
status = createParamsBlob(&d->configUpdate, s.configUpdate);
if (status != Status::OK) {
return status;
}
d->infoBuffers.resize(s.infoBuffers.size());
i = 0;
for (const std::shared_ptr<C2InfoBuffer>& sInfoBuffer : s.infoBuffers) {
InfoBuffer& dInfoBuffer = d->infoBuffers[i++];
if (!sInfoBuffer) {
ALOGE("Null C2InfoBuffer");
return Status::BAD_VALUE;
}
status = objcpy(&dInfoBuffer, *sInfoBuffer,
bufferPoolSender, baseBlocks, baseBlockIndices);
if (status != Status::OK) {
return status;
}
}
return status;
}
} // unnamed namespace
// DefaultBufferPoolSender's implementation
DefaultBufferPoolSender::DefaultBufferPoolSender(
const sp<IClientManager>& receiverManager) :
mReceiverManager(receiverManager), mSourceConnectionId(0) {
}
void DefaultBufferPoolSender::setReceiver(const sp<IClientManager>& receiverManager) {
std::lock_guard<std::mutex> lock(mMutex);
if (mReceiverManager != receiverManager) {
mReceiverManager = receiverManager;
}
}
ResultStatus DefaultBufferPoolSender::send(
const std::shared_ptr<BufferPoolData>& bpData,
BufferStatusMessage* bpMessage) {
if (!mReceiverManager) {
ALOGE("No access to receiver's BufferPool.");
return ResultStatus::NOT_FOUND;
}
ResultStatus rs;
std::lock_guard<std::mutex> lock(mMutex);
if (!mSenderManager) {
mSenderManager = ClientManager::getInstance();
if (!mSenderManager) {
ALOGE("Failed to retrieve local BufferPool ClientManager.");
return ResultStatus::CRITICAL_ERROR;
}
}
int64_t connectionId = bpData->mConnectionId;
if (mSourceConnectionId == 0 || mSourceConnectionId != connectionId) {
// Initialize the bufferpool connection.
mSourceConnectionId = connectionId;
if (mSourceConnectionId == 0) {
return ResultStatus::CRITICAL_ERROR;
}
int64_t receiverConnectionId;
rs = mSenderManager->registerSender(mReceiverManager, connectionId, &receiverConnectionId);
if ((rs != ResultStatus::OK) && (rs != ResultStatus::ALREADY_EXISTS)) {
ALOGW("registerSender -- returned error: %d.",
static_cast<int>(rs));
return rs;
} else {
mReceiverConnectionId = receiverConnectionId;
}
}
uint64_t transactionId;
int64_t timestampUs;
rs = mSenderManager->postSend(
mReceiverConnectionId, bpData, &transactionId, &timestampUs);
if (rs != ResultStatus::OK) {
ALOGE("ClientManager::postSend -- returned error: %d.",
static_cast<int>(rs));
return rs;
}
if (!bpMessage) {
ALOGE("Null output parameter for BufferStatusMessage.");
return ResultStatus::CRITICAL_ERROR;
}
bpMessage->connectionId = mReceiverConnectionId;
bpMessage->bufferId = bpData->mId;
bpMessage->transactionId = transactionId;
bpMessage->timestampUs = timestampUs;
return rs;
}
// std::list<std::unique_ptr<C2Work>> -> WorkBundle
Status objcpy(WorkBundle* d, const std::list<std::unique_ptr<C2Work>>& s,
BufferPoolSender* bufferPoolSender) {
Status status = Status::OK;
// baseBlocks holds a list of BaseBlock objects that Blocks can refer to.
std::list<BaseBlock> baseBlocks;
// baseBlockIndices maps a raw pointer to native_handle_t or BufferPoolData
// inside baseBlocks to the corresponding index into baseBlocks. The keys
// (pointers) are used to identify blocks that have the same "base block" in
// s, a list of C2Work objects. Because baseBlocks will be copied into a
// hidl_vec eventually, the values of baseBlockIndices are zero-based
// integer indices instead of list iterators.
//
// Note that the pointers can be raw because baseBlockIndices has a shorter
// lifespan than all of base blocks.
std::map<const void*, uint32_t> baseBlockIndices;
d->works.resize(s.size());
size_t i = 0;
for (const std::unique_ptr<C2Work>& sWork : s) {
Work &dWork = d->works[i++];
if (!sWork) {
ALOGW("Null C2Work encountered.");
continue;
}
status = objcpy(&dWork.input, sWork->input,
bufferPoolSender, &baseBlocks, &baseBlockIndices);
if (status != Status::OK) {
return status;
}
if (sWork->worklets.size() == 0) {
ALOGW("Work with no worklets.");
} else {
if (sWork->worklets.size() > 1) {
ALOGW("Work with multiple worklets. "
"Only the first worklet will be marshalled.");
}
if (!sWork->worklets.front()) {
ALOGE("Null worklet encountered.");
return Status::BAD_VALUE;
}
// Parcel the first worklet.
const C2Worklet &sWorklet = *sWork->worklets.front();
Worklet &dWorklet = dWork.worklet;
dWorklet.tunings.resize(sWorklet.tunings.size());
size_t j = 0;
for (const std::unique_ptr<C2Tuning>& sTuning : sWorklet.tunings) {
status = createParamsBlob(
&dWorklet.tunings[j++],
std::vector<C2Param*>
{ reinterpret_cast<C2Param*>(sTuning.get()) });
if (status != Status::OK) {
return status;
}
}
dWorklet.failures.resize(sWorklet.failures.size());
j = 0;
for (const std::unique_ptr<C2SettingResult>& sFailure :
sWorklet.failures) {
if (!sFailure) {
ALOGE("Null C2SettingResult");
return Status::BAD_VALUE;
}
status = objcpy(&dWorklet.failures[j++], *sFailure);
if (status != Status::OK) {
return status;
}
}
status = objcpy(&dWorklet.output, sWorklet.output,
bufferPoolSender, &baseBlocks, &baseBlockIndices);
if (status != Status::OK) {
return status;
}
}
dWork.workletProcessed = sWork->workletsProcessed > 0;
dWork.result = static_cast<Status>(sWork->result);
}
// Copy std::list<BaseBlock> to hidl_vec<BaseBlock>.
{
d->baseBlocks.resize(baseBlocks.size());
size_t i = 0;
for (const BaseBlock& baseBlock : baseBlocks) {
d->baseBlocks[i++] = baseBlock;
}
}
return Status::OK;
}
namespace /* unnamed */ {
struct C2BaseBlock {
enum type_t {
LINEAR,
GRAPHIC,
};
type_t type;
std::shared_ptr<C2LinearBlock> linear;
std::shared_ptr<C2GraphicBlock> graphic;
};
// hidl_handle -> C2Fence
// Note: File descriptors are not duplicated. The original file descriptor must
// not be closed before the transaction is complete.
c2_status_t objcpy(C2Fence* d, const hidl_handle& s) {
// TODO: Implement.
(void)s;
*d = C2Fence();
return C2_OK;
}
// C2LinearBlock, vector<C2Param*>, C2Fence -> C2Buffer
c2_status_t createLinearBuffer(
std::shared_ptr<C2Buffer>* buffer,
const std::shared_ptr<C2LinearBlock>& block,
const std::vector<C2Param*>& meta,
const C2Fence& fence) {
// Check the block meta. It should have exactly 1 C2Info:
// C2Hidl_RangeInfo.
if ((meta.size() != 1) || !meta[0]) {
ALOGE("Invalid block metadata for ion block.");
return C2_BAD_VALUE;
}
if (meta[0]->size() != sizeof(C2Hidl_RangeInfo)) {
ALOGE("Invalid block metadata for ion block: range.");
return C2_BAD_VALUE;
}
C2Hidl_RangeInfo *rangeInfo =
reinterpret_cast<C2Hidl_RangeInfo*>(meta[0]);
// Create C2Buffer from C2LinearBlock.
*buffer = C2Buffer::CreateLinearBuffer(block->share(
rangeInfo->offset, rangeInfo->length,
fence));
if (!(*buffer)) {
ALOGE("Cannot create a linear buffer.");
return C2_BAD_VALUE;
}
return C2_OK;
}
// C2GraphicBlock, vector<C2Param*>, C2Fence -> C2Buffer
c2_status_t createGraphicBuffer(
std::shared_ptr<C2Buffer>* buffer,
const std::shared_ptr<C2GraphicBlock>& block,
const std::vector<C2Param*>& meta,
const C2Fence& fence) {
// Check the block meta. It should have exactly 1 C2Info:
// C2Hidl_RectInfo.
if ((meta.size() != 1) || !meta[0]) {
ALOGE("Invalid block metadata for graphic block.");
return C2_BAD_VALUE;
}
if (meta[0]->size() != sizeof(C2Hidl_RectInfo)) {
ALOGE("Invalid block metadata for graphic block: crop rect.");
return C2_BAD_VALUE;
}
C2Hidl_RectInfo *rectInfo =
reinterpret_cast<C2Hidl_RectInfo*>(meta[0]);
// Create C2Buffer from C2GraphicBlock.
*buffer = C2Buffer::CreateGraphicBuffer(block->share(
C2Rect(rectInfo->width, rectInfo->height).
at(rectInfo->left, rectInfo->top),
fence));
if (!(*buffer)) {
ALOGE("Cannot create a graphic buffer.");
return C2_BAD_VALUE;
}
return C2_OK;
}
// Buffer -> C2Buffer
// Note: The native handles will be cloned.
c2_status_t objcpy(std::shared_ptr<C2Buffer>* d, const Buffer& s,
const std::vector<C2BaseBlock>& baseBlocks) {
c2_status_t status;
*d = nullptr;
// Currently, a non-null C2Buffer must contain exactly 1 block.
if (s.blocks.size() == 0) {
return C2_OK;
} else if (s.blocks.size() != 1) {
ALOGE("Currently, a C2Buffer must contain exactly 1 block.");
return C2_BAD_VALUE;
}
const Block &sBlock = s.blocks[0];
if (sBlock.index >= baseBlocks.size()) {
ALOGE("Index into baseBlocks is out of range.");
return C2_BAD_VALUE;
}
const C2BaseBlock &baseBlock = baseBlocks[sBlock.index];
// Parse meta.
std::vector<C2Param*> sBlockMeta;
status = parseParamsBlob(&sBlockMeta, sBlock.meta);
if (status != C2_OK) {
ALOGE("Invalid block params blob.");
return C2_BAD_VALUE;
}
// Copy fence.
C2Fence dFence;
status = objcpy(&dFence, sBlock.fence);
// Construct a block.
switch (baseBlock.type) {
case C2BaseBlock::LINEAR:
status = createLinearBuffer(d, baseBlock.linear, sBlockMeta, dFence);
break;
case C2BaseBlock::GRAPHIC:
status = createGraphicBuffer(d, baseBlock.graphic, sBlockMeta, dFence);
break;
default:
ALOGE("Invalid BaseBlock type.");
return C2_BAD_VALUE;
}
if (status != C2_OK) {
return status;
}
// Parse info
std::vector<C2Param*> params;
status = parseParamsBlob(&params, s.info);
if (status != C2_OK) {
ALOGE("Invalid buffer params blob.");
return status;
}
for (C2Param* param : params) {
if (param == nullptr) {
ALOGE("Null buffer param encountered.");
return C2_BAD_VALUE;
}
std::shared_ptr<C2Param> c2param(
C2Param::Copy(*param).release());
if (!c2param) {
ALOGE("Invalid buffer param inside a blob.");
return C2_BAD_VALUE;
}
status = (*d)->setInfo(std::static_pointer_cast<C2Info>(c2param));
if (status != C2_OK) {
ALOGE("C2Buffer::setInfo failed().");
return C2_BAD_VALUE;
}
}
return C2_OK;
}
// FrameData -> C2FrameData
c2_status_t objcpy(C2FrameData* d, const FrameData& s,
const std::vector<C2BaseBlock>& baseBlocks) {
c2_status_t status;
d->flags = static_cast<C2FrameData::flags_t>(s.flags);
objcpy(&d->ordinal, s.ordinal);
d->buffers.clear();
d->buffers.reserve(s.buffers.size());
for (const Buffer& sBuffer : s.buffers) {
std::shared_ptr<C2Buffer> dBuffer;
status = objcpy(&dBuffer, sBuffer, baseBlocks);
if (status != C2_OK) {
return status;
}
d->buffers.emplace_back(dBuffer);
}
std::vector<C2Param*> params;
status = parseParamsBlob(&params, s.configUpdate);
if (status != C2_OK) {
ALOGE("Failed to parse frame data params.");
return status;
}
d->configUpdate.clear();
for (C2Param* param : params) {
d->configUpdate.emplace_back(C2Param::Copy(*param));
if (!d->configUpdate.back()) {
ALOGE("Unexpected error while parsing frame data params.");
return C2_BAD_VALUE;
}
}
// TODO: Implement this once C2InfoBuffer has constructors.
d->infoBuffers.clear();
return C2_OK;
}
// BaseBlock -> C2BaseBlock
c2_status_t objcpy(C2BaseBlock* d, const BaseBlock& s) {
switch (s.type) {
case BaseBlock::Type::NATIVE: {
native_handle_t* sHandle =
native_handle_clone(s.nativeBlock);
if (sHandle == nullptr) {
ALOGE("Null native handle in a block.");
return C2_BAD_VALUE;
}
const C2Handle *sC2Handle =
reinterpret_cast<const C2Handle*>(sHandle);
d->linear = _C2BlockFactory::CreateLinearBlock(sC2Handle);
if (d->linear) {
d->type = C2BaseBlock::LINEAR;
return C2_OK;
}
d->graphic = _C2BlockFactory::CreateGraphicBlock(sC2Handle);
if (d->graphic) {
d->type = C2BaseBlock::GRAPHIC;
return C2_OK;
}
ALOGE("Unknown handle type in native BaseBlock.");
if (sHandle) {
native_handle_close(sHandle);
native_handle_delete(sHandle);
}
return C2_BAD_VALUE;
}
case BaseBlock::Type::POOLED: {
const BufferStatusMessage &bpMessage =
s.pooledBlock;
sp<ClientManager> bp = ClientManager::getInstance();
std::shared_ptr<BufferPoolData> bpData;
native_handle_t *cHandle;
ResultStatus bpStatus = bp->receive(
bpMessage.connectionId,
bpMessage.transactionId,
bpMessage.bufferId,
bpMessage.timestampUs,
&cHandle,
&bpData);
if (bpStatus != ResultStatus::OK) {
ALOGE("Failed to receive buffer from bufferpool -- "
"resultStatus = %d",
static_cast<int>(bpStatus));
return toC2Status(bpStatus);
} else if (!bpData) {
ALOGE("No data in bufferpool transaction.");
return C2_BAD_VALUE;
}
d->linear = _C2BlockFactory::CreateLinearBlock(cHandle, bpData);
if (d->linear) {
d->type = C2BaseBlock::LINEAR;
return C2_OK;
}
d->graphic = _C2BlockFactory::CreateGraphicBlock(cHandle, bpData);
if (d->graphic) {
d->type = C2BaseBlock::GRAPHIC;
return C2_OK;
}
ALOGE("Unknown handle type in pooled BaseBlock.");
return C2_BAD_VALUE;
}
default:
ALOGE("Corrupted BaseBlock type: %d", static_cast<int>(s.type));
return C2_BAD_VALUE;
}
}
} // unnamed namespace
// WorkBundle -> std::list<std::unique_ptr<C2Work>>
c2_status_t objcpy(std::list<std::unique_ptr<C2Work>>* d, const WorkBundle& s) {
c2_status_t status;
// Convert BaseBlocks to C2BaseBlocks.
std::vector<C2BaseBlock> dBaseBlocks(s.baseBlocks.size());
for (size_t i = 0; i < s.baseBlocks.size(); ++i) {
status = objcpy(&dBaseBlocks[i], s.baseBlocks[i]);
if (status != C2_OK) {
return status;
}
}
d->clear();
for (const Work& sWork : s.works) {
d->emplace_back(std::make_unique<C2Work>());
C2Work& dWork = *d->back();
// input
status = objcpy(&dWork.input, sWork.input, dBaseBlocks);
if (status != C2_OK) {
ALOGE("Error constructing C2Work's input.");
return C2_BAD_VALUE;
}
// worklet(s)
dWork.worklets.clear();
// TODO: Currently, tunneling is not supported.
if (sWork.workletProcessed) {
dWork.workletsProcessed = 1;
const Worklet &sWorklet = sWork.worklet;
std::unique_ptr<C2Worklet> dWorklet = std::make_unique<C2Worklet>();
// tunings
dWorklet->tunings.clear();
dWorklet->tunings.reserve(sWorklet.tunings.size());
for (const Params& sTuning : sWorklet.tunings) {
std::vector<C2Param*> dParams;
status = parseParamsBlob(&dParams, sTuning);
if (status != C2_OK) {
ALOGE("Failed to parse C2Tuning in C2Worklet.");
return C2_BAD_VALUE;
}
for (C2Param* param : dParams) {
std::unique_ptr<C2Param> dParam = C2Param::Copy(*param);
if (!dParam) {
ALOGE("Null C2Tuning encountered while "
"parsing C2Worklet.");
return C2_BAD_VALUE;
}
dWorklet->tunings.emplace_back(
std::unique_ptr<C2Tuning>(
reinterpret_cast<C2Tuning*>(
dParam.release())));
}
}
// failures
dWorklet->failures.clear();
dWorklet->failures.reserve(sWorklet.failures.size());
for (const SettingResult& sFailure : sWorklet.failures) {
std::unique_ptr<C2SettingResult> dFailure;
status = objcpy(&dFailure, sFailure);
if (status != C2_OK) {
ALOGE("Failed to create C2SettingResult in C2Worklet.");
return C2_BAD_VALUE;
}
dWorklet->failures.emplace_back(std::move(dFailure));
}
// output
status = objcpy(&dWorklet->output, sWorklet.output, dBaseBlocks);
if (status != C2_OK) {
ALOGE("Failed to create output C2FrameData.");
return C2_BAD_VALUE;
}
dWork.worklets.emplace_back(std::move(dWorklet));
} else {
dWork.worklets.emplace_back(std::make_unique<C2Worklet>());
dWork.workletsProcessed = 0;
}
// result
dWork.result = static_cast<c2_status_t>(sWork.result);
}
return C2_OK;
}
constexpr size_t PARAMS_ALIGNMENT = 8; // 64-bit alignment
static_assert(PARAMS_ALIGNMENT % alignof(C2Param) == 0, "C2Param alignment mismatch");
static_assert(PARAMS_ALIGNMENT % alignof(C2Info) == 0, "C2Param alignment mismatch");
static_assert(PARAMS_ALIGNMENT % alignof(C2Tuning) == 0, "C2Param alignment mismatch");
// Params -> std::vector<C2Param*>
c2_status_t parseParamsBlob(std::vector<C2Param*> *params, const hidl_vec<uint8_t> &blob) {
// assuming blob is const here
size_t size = blob.size();
size_t ix = 0;
const uint8_t *data = blob.data();
C2Param *p = nullptr;
do {
p = C2ParamUtils::ParseFirst(data + ix, size - ix);
if (p) {
params->emplace_back(p);
ix += p->size();
ix = align(ix, PARAMS_ALIGNMENT);
}
} while (p);
return ix == size ? C2_OK : C2_BAD_VALUE;
}
namespace /* unnamed */ {
/**
* Concatenates a list of C2Params into a params blob.
* \param[out] blob target blob
* \param[in] params parameters to concatenate
* \retval C2_OK if the blob was successfully created
* \retval C2_BAD_VALUE if the blob was not successful (this only happens if the parameters were
* not const)
*/
template<typename T>
Status _createParamsBlob(hidl_vec<uint8_t> *blob, const T &params) {
// assuming the parameter values are const
size_t size = 0;
for (const auto &p : params) {
if (!p) {
continue;
}
size += p->size();
size = align(size, PARAMS_ALIGNMENT);
}
blob->resize(size);
size_t ix = 0;
for (const auto &p : params) {
if (!p) {
continue;
}
// NEVER overwrite even if param values (e.g. size) changed
size_t paramSize = std::min(p->size(), size - ix);
std::copy(
reinterpret_cast<const uint8_t*>(&*p),
reinterpret_cast<const uint8_t*>(&*p) + paramSize,
&(*blob)[ix]);
ix += paramSize;
ix = align(ix, PARAMS_ALIGNMENT);
}
blob->resize(ix);
return ix == size ? Status::OK : Status::CORRUPTED;
}
} // unnamed namespace
// std::vector<const C2Param*> -> Params
Status createParamsBlob(
hidl_vec<uint8_t> *blob,
const std::vector<const C2Param*> &params) {
return _createParamsBlob(blob, params);
}
// std::vector<C2Param*> -> Params
Status createParamsBlob(
hidl_vec<uint8_t> *blob,
const std::vector<C2Param*> &params) {
return _createParamsBlob(blob, params);
}
// std::vector<std::unique_ptr<C2Param>> -> Params
Status createParamsBlob(
hidl_vec<uint8_t> *blob,
const std::vector<std::unique_ptr<C2Param>> &params) {
return _createParamsBlob(blob, params);
}
// std::vector<std::unique_ptr<C2Tuning>> -> Params
Status createParamsBlob(
hidl_vec<uint8_t> *blob,
const std::vector<std::unique_ptr<C2Tuning>> &params) {
return _createParamsBlob(blob, params);
}
// std::vector<std::shared_ptr<const C2Info>> -> Params
Status createParamsBlob(
hidl_vec<uint8_t> *blob,
const std::vector<std::shared_ptr<const C2Info>> &params) {
return _createParamsBlob(blob, params);
}
// Params -> std::vector<std::unique_ptr<C2Param>>
c2_status_t copyParamsFromBlob(
std::vector<std::unique_ptr<C2Param>>* params,
Params blob) {
std::vector<C2Param*> paramPointers;
c2_status_t status = parseParamsBlob(&paramPointers, blob);
if (status != C2_OK) {
ALOGE("copyParamsFromBlob -- blob parsing failed.");
return status;
}
params->resize(paramPointers.size());
size_t i = 0;
for (C2Param* const& paramPointer : paramPointers) {
if (!paramPointer) {
ALOGE("copyParamsFromBlob -- corrupted params blob.");
return C2_BAD_VALUE;
}
(*params)[i++] = C2Param::Copy(*paramPointer);
}
return C2_OK;
}
// Params -> update std::vector<std::unique_ptr<C2Param>>
c2_status_t updateParamsFromBlob(
const std::vector<C2Param*>& params,
const Params& blob) {
std::unordered_map<uint32_t, C2Param*> index2param;
for (C2Param* const& param : params) {
if (!param) {
ALOGE("updateParamsFromBlob -- corrupted input params.");
return C2_BAD_VALUE;
}
if (index2param.find(param->index()) == index2param.end()) {
index2param.emplace(param->index(), param);
}
}
std::vector<C2Param*> paramPointers;
c2_status_t status = parseParamsBlob(&paramPointers, blob);
if (status != C2_OK) {
ALOGE("updateParamsFromBlob -- blob parsing failed.");
return status;
}
for (C2Param* const& paramPointer : paramPointers) {
if (!paramPointer) {
ALOGE("updateParamsFromBlob -- corrupted param in blob.");
return C2_BAD_VALUE;
}
decltype(index2param)::iterator i = index2param.find(
paramPointer->index());
if (i == index2param.end()) {
ALOGW("updateParamsFromBlob -- unseen param index.");
continue;
}
if (!i->second->updateFrom(*paramPointer)) {
ALOGE("updateParamsFromBlob -- mismatching sizes: "
"%u vs %u (index = %u).",
static_cast<unsigned>(params.size()),
static_cast<unsigned>(paramPointer->size()),
static_cast<unsigned>(i->first));
return C2_BAD_VALUE;
}
}
return C2_OK;
}
// Convert BufferPool ResultStatus to c2_status_t.
c2_status_t toC2Status(ResultStatus rs) {
switch (rs) {
case ResultStatus::OK:
return C2_OK;
case ResultStatus::NO_MEMORY:
return C2_NO_MEMORY;
case ResultStatus::ALREADY_EXISTS:
return C2_DUPLICATE;
case ResultStatus::NOT_FOUND:
return C2_NOT_FOUND;
case ResultStatus::CRITICAL_ERROR:
return C2_CORRUPTED;
default:
ALOGW("Unrecognized BufferPool ResultStatus: %d", static_cast<int>(rs));
return C2_CORRUPTED;
}
}
} // namespace utils
} // namespace V1_0
} // namespace c2
} // namespace media
} // namespace google
} // namespace hardware