blob: 65c74630f15e37d1bab8eaf70efe62c4db89317b [file] [log] [blame]
// Copyright (C) 2019 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "host-common/MediaH264DecoderCuvid.h"
#include "host-common/H264NaluParser.h"
#include "host-common/YuvConverter.h"
#include "android/main-emugl.h"
// MediaH264DecoderCuvid.h
#include <cstdint>
#include <string>
#include <vector>
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN 1
#include <windows.h>
#include <winioctl.h>
#endif
#include <stdio.h>
#include <string.h>
extern "C" {
#define INIT_CUDA_GL 1
#include "host-common/dynlink_cuda.h"
#include "host-common/dynlink_cudaGL.h"
#include "host-common/dynlink_nvcuvid.h"
}
#define MEDIA_H264_DEBUG 0
#if MEDIA_H264_DEBUG
#define H264_DPRINT(fmt, ...) \
fprintf(stderr, "h264-cuvid-dec: %s:%d " fmt "\n", __func__, __LINE__, \
##__VA_ARGS__);
#else
#define H264_DPRINT(fmt, ...)
#endif
#define NVDEC_API_CALL(cuvidAPI) \
do { \
CUresult errorCode = cuvidAPI; \
if (errorCode != CUDA_SUCCESS) { \
H264_DPRINT("%s failed with error code %d\n", #cuvidAPI, \
(int)errorCode); \
} \
} while (0)
namespace android {
namespace emulation {
using InitContextParam = H264PingInfoParser::InitContextParam;
using DecodeFrameParam = H264PingInfoParser::DecodeFrameParam;
using ResetParam = H264PingInfoParser::ResetParam;
using GetImageParam = H264PingInfoParser::GetImageParam;
using TextureFrame = MediaHostRenderer::TextureFrame;
MediaH264DecoderCuvid::MediaH264DecoderCuvid(uint64_t id,
H264PingInfoParser parser)
: mId(id), mParser(parser) {
auto useGpuTextureEnv = android::base::System::getEnvironmentVariable(
"ANDROID_EMU_CODEC_USE_GPU_TEXTURE");
if (useGpuTextureEnv != "") {
if (mParser.version() == 200) {
if (emuglConfig_get_current_renderer() == SELECTED_RENDERER_HOST) {
mUseGpuTexture = true;
} else {
H264_DPRINT(
"cannot use gpu texture to save decoded frame in "
"non-host gpu mode");
if (emuglConfig_get_current_renderer() ==
SELECTED_RENDERER_SWIFTSHADER_INDIRECT) {
H264_DPRINT("your gpu mode is: swiftshader_indirect");
}
}
}
}
};
MediaH264DecoderPlugin* MediaH264DecoderCuvid::clone() {
return new MediaH264DecoderCuvid(mId, mParser);
};
MediaH264DecoderCuvid::~MediaH264DecoderCuvid() {
destroyH264Context();
}
void MediaH264DecoderCuvid::reset(void* ptr) {
destroyH264Context();
ResetParam param{};
mParser.parseResetParams(ptr, param);
initH264ContextInternal(param.width, param.height, param.outputWidth,
param.outputHeight, param.outputPixelFormat);
}
void MediaH264DecoderCuvid::initH264Context(void* ptr) {
InitContextParam param{};
mParser.parseInitContextParams(ptr, param);
initH264ContextInternal(param.width, param.height, param.outputWidth,
param.outputHeight, param.outputPixelFormat);
}
void MediaH264DecoderCuvid::initH264ContextInternal(unsigned int width,
unsigned int height,
unsigned int outWidth,
unsigned int outHeight,
PixelFormat outPixFmt) {
if (!initCudaDrivers()) {
H264_DPRINT("Failed to initH264Context because driver is not working");
return;
}
if (mCudaContext != nullptr) {
destroyH264Context();
}
H264_DPRINT("%s(w=%u h=%u out_w=%u out_h=%u pixfmt=%u)", __func__, width,
height, outWidth, outHeight, (uint8_t)outPixFmt);
mWidth = width;
mHeight = height;
mOutputWidth = outWidth;
mOutputHeight = outHeight;
mOutPixFmt = outPixFmt;
mOutBufferSize = outWidth * outHeight * 3 / 2;
// cudat stuff
const int gpuIndex = 0;
const int cudaFlags = 0;
CUdevice cudaDevice = 0;
CUresult myres = cuDeviceGet(&cudaDevice, gpuIndex);
if (myres != CUDA_SUCCESS) {
H264_DPRINT("Failed to get cuda device, error code %d", (int)myres);
return;
}
char buf[1024];
myres = cuDeviceGetName(buf, sizeof(buf), cudaDevice);
if (myres != CUDA_SUCCESS) {
H264_DPRINT("Failed to get gpu device name, error code %d", (int)myres);
return;
}
H264_DPRINT("using gpu device %s", buf);
myres = cuCtxCreate(&mCudaContext, cudaFlags, cudaDevice);
if (myres != CUDA_SUCCESS) {
H264_DPRINT("Failed to create cuda context, error code %d", (int)myres);
}
NVDEC_API_CALL(cuvidCtxLockCreate(&mCtxLock, mCudaContext));
CUVIDPARSERPARAMS videoParserParameters = {};
videoParserParameters.CodecType = cudaVideoCodec_H264;
videoParserParameters.ulMaxNumDecodeSurfaces = 1;
videoParserParameters.ulMaxDisplayDelay = 1;
videoParserParameters.pUserData = this;
videoParserParameters.pfnSequenceCallback = HandleVideoSequenceProc;
videoParserParameters.pfnDecodePicture = HandlePictureDecodeProc;
videoParserParameters.pfnDisplayPicture = HandlePictureDisplayProc;
NVDEC_API_CALL(
cuvidCreateVideoParser(&mCudaParser, &videoParserParameters));
H264_DPRINT("Successfully created cuda context %p", mCudaContext);
}
void MediaH264DecoderCuvid::destroyH264Context() {
H264_DPRINT("destroyH264Context calling");
for (auto texFrame : mSavedTexFrames) {
mRenderer.putTextureFrame(texFrame);
}
mRenderer.cleanUpTextures();
mSavedTexFrames.clear();
if (mCudaContext != nullptr) {
NVDEC_API_CALL(cuCtxPushCurrent(mCudaContext));
if (mCudaParser != nullptr) {
NVDEC_API_CALL(cuvidDestroyVideoParser(mCudaParser));
mCudaParser = nullptr;
}
if (mCudaDecoder != nullptr) {
NVDEC_API_CALL(cuvidDestroyDecoder(mCudaDecoder));
mCudaDecoder = nullptr;
}
NVDEC_API_CALL(cuCtxPopCurrent(NULL));
NVDEC_API_CALL(cuvidCtxLockDestroy(mCtxLock));
}
if (mCudaContext != nullptr) {
CUresult myres = cuCtxDestroy(mCudaContext);
if (myres != CUDA_SUCCESS) {
H264_DPRINT("Failed to destroy cuda context; error code %d",
(int)myres);
}
mCudaContext = nullptr;
}
}
void MediaH264DecoderCuvid::decodeFrame(void* ptr) {
DecodeFrameParam param{};
mParser.parseDecodeFrameParams(ptr, param);
const uint8_t* frame = param.pData;
size_t szBytes = param.size;
uint64_t inputPts = param.pts;
const bool enableSnapshot = true;
if (enableSnapshot) {
std::vector<uint8_t> v;
v.assign(frame, frame + szBytes);
bool hasSps = H264NaluParser::checkSpsFrame(frame, szBytes);
if (hasSps) {
mSnapshotState = SnapshotState{};
mSnapshotState.saveSps(v);
} else {
bool hasPps = H264NaluParser::checkPpsFrame(frame, szBytes);
if (hasPps) {
mSnapshotState.savePps(v);
mSnapshotState.savedPackets.clear();
mSnapshotState.savedDecodedFrame.data.clear();
} else {
bool isIFrame = H264NaluParser::checkIFrame(frame, szBytes);
if (isIFrame) {
mSnapshotState.savedPackets.clear();
}
mSnapshotState.savePacket(std::move(v), inputPts);
H264_DPRINT("saving packet; total is %d",
(int)(mSnapshotState.savedPackets.size()));
}
}
}
decodeFrameInternal(param.pConsumedBytes, param.pDecoderErrorCode, frame,
szBytes, inputPts);
}
void MediaH264DecoderCuvid::decodeFrameInternal(uint64_t* pRetSzBytes,
int32_t* pRetErr,
const uint8_t* frame,
size_t szBytes,
uint64_t inputPts) {
mIsInFlush = false;
H264_DPRINT("%s(frame=%p, sz=%zu)", __func__, frame, szBytes);
Err h264Err = Err::NoErr;
CUVIDSOURCEDATAPACKET packet = {0};
packet.payload = frame;
packet.payload_size = szBytes;
packet.flags = CUVID_PKT_TIMESTAMP;
packet.timestamp = inputPts;
if (!frame || szBytes == 0) {
packet.flags |= CUVID_PKT_ENDOFSTREAM;
}
NVDEC_API_CALL(cuvidParseVideoData(mCudaParser, &packet));
if (pRetSzBytes) {
*pRetSzBytes = szBytes;
}
if (pRetErr) {
*pRetErr = (int32_t)h264Err;
}
}
void MediaH264DecoderCuvid::doFlush() {
if (!mIsInFlush) {
return;
}
H264_DPRINT("started flushing");
CUVIDSOURCEDATAPACKET packet = {0};
packet.payload = NULL;
packet.payload_size = 0;
packet.flags |= CUVID_PKT_ENDOFSTREAM;
NVDEC_API_CALL(cuvidParseVideoData(mCudaParser, &packet));
H264_DPRINT("done one flushing");
}
void MediaH264DecoderCuvid::flush(void* ptr) {
mIsInFlush = true;
doFlush();
}
void MediaH264DecoderCuvid::getImage(void* ptr) {
H264_DPRINT("getImage %p", ptr);
GetImageParam param{};
mParser.parseGetImageParams(ptr, param);
int* retErr = param.pDecoderErrorCode;
uint32_t* retWidth = param.pRetWidth;
uint32_t* retHeight = param.pRetHeight;
uint64_t* retPts = param.pRetPts;
uint32_t* retColorPrimaries = param.pRetColorPrimaries;
uint32_t* retColorRange = param.pRetColorRange;
uint32_t* retColorTransfer = param.pRetColorTransfer;
uint32_t* retColorSpace = param.pRetColorSpace;
static int numbers = 0;
H264_DPRINT("calling getImage %d colorbuffer %d", numbers++,
(int)param.hostColorBufferId);
doFlush();
uint8_t* dst = param.pDecodedFrame;
int myOutputWidth = mOutputWidth;
int myOutputHeight = mOutputHeight;
std::vector<uint8_t> decodedFrame;
TextureFrame decodedTexFrame;
{
std::lock_guard<std::mutex> g(mFrameLock);
mImageReady = !mSavedFrames.empty();
if (!mImageReady) {
H264_DPRINT("%s: no new frame yet", __func__);
*retErr = static_cast<int>(Err::NoDecodedFrame);
return;
}
std::vector<uint8_t>& myFrame = mSavedFrames.front();
std::swap(decodedFrame, myFrame);
decodedTexFrame = mSavedTexFrames.front();
mOutputPts = mSavedPts.front();
myOutputWidth = mSavedW.front();
myOutputHeight = mSavedH.front();
*retWidth = myOutputWidth;
*retHeight = myOutputHeight;
mSavedFrames.pop_front();
mSavedTexFrames.pop_front();
mSavedPts.pop_front();
mSavedW.pop_front();
mSavedH.pop_front();
}
bool needToCopyToGuest = true;
if (mUseGpuTexture) {
needToCopyToGuest = false;
} else {
YuvConverter<uint8_t> convert8(myOutputWidth, myOutputHeight);
convert8.UVInterleavedToPlanar(decodedFrame.data());
}
if (mParser.version() == 200) {
if (param.hostColorBufferId >= 0) {
needToCopyToGuest = false;
if (mUseGpuTexture) {
mRenderer.renderToHostColorBufferWithTextures(
param.hostColorBufferId, myOutputWidth, myOutputHeight,
decodedTexFrame);
} else {
mRenderer.renderToHostColorBuffer(param.hostColorBufferId,
myOutputWidth, myOutputHeight,
decodedFrame.data());
}
} else {
if (mUseGpuTexture) {
// no colorbuffer to send the textures to, just recycle
// them back to Renderer
mRenderer.putTextureFrame(decodedTexFrame);
}
}
}
if (needToCopyToGuest) {
memcpy(dst, decodedFrame.data(),
myOutputHeight * myOutputWidth * 3 / 2);
}
mImageReady = false;
*retErr = myOutputHeight * myOutputWidth * 3 / 2;
*retPts = mOutputPts;
*retColorPrimaries = mColorPrimaries;
*retColorRange = mColorRange;
*retColorTransfer = mColorTransfer;
*retColorSpace = mColorSpace;
H264_DPRINT("Frame primary %d range %d transfer %d space %d",
(int)mColorPrimaries, (int)mColorRange, (int)mColorTransfer,
(int)mColorSpace);
H264_DPRINT("Copying completed pts %lld", (long long)mOutputPts);
}
bool MediaH264DecoderCuvid::initCudaDrivers() {
if (s_isCudaInitialized) {
return true;
}
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
typedef HMODULE CUDADRIVER;
#else
typedef void* CUDADRIVER;
#endif
CUDADRIVER hHandleDriver = 0;
if (CUDA_SUCCESS != cuInit(0, __CUDA_API_VERSION, hHandleDriver)) {
fprintf(stderr,
"Failed to call cuInit, cannot use nvidia cuvid decoder for "
"h264 stream\n");
return false;
}
if (CUDA_SUCCESS != cuvidInit(0)) {
fprintf(stderr,
"Failed to call cuvidInit, cannot use nvidia cuvid decoder for "
"h264 stream\n");
return false;
}
int numGpuCards = 0;
CUresult myres = cuDeviceGetCount(&numGpuCards);
if (myres != CUDA_SUCCESS) {
H264_DPRINT(
"Failed to get number of GPU cards installed on host; error "
"code %d",
(int)myres);
return false;
}
if (numGpuCards <= 0) {
H264_DPRINT("There are no nvidia GPU cards on this host.");
return false;
}
// lukily, we get cuda initialized.
s_isCudaInitialized = true;
return true;
}
int MediaH264DecoderCuvid::HandleVideoSequence(CUVIDEOFORMAT* pVideoFormat) {
int nDecodeSurface = 8; // need 8 for 4K video
CUVIDDECODECAPS decodecaps;
memset(&decodecaps, 0, sizeof(decodecaps));
decodecaps.eCodecType = pVideoFormat->codec;
decodecaps.eChromaFormat = pVideoFormat->chroma_format;
decodecaps.nBitDepthMinus8 = pVideoFormat->bit_depth_luma_minus8;
NVDEC_API_CALL(cuCtxPushCurrent(mCudaContext));
NVDEC_API_CALL(cuvidGetDecoderCaps(&decodecaps));
NVDEC_API_CALL(cuCtxPopCurrent(NULL));
if (!decodecaps.bIsSupported) {
H264_DPRINT("Codec not supported on this GPU.");
return nDecodeSurface;
}
if ((pVideoFormat->coded_width > decodecaps.nMaxWidth) ||
(pVideoFormat->coded_height > decodecaps.nMaxHeight)) {
H264_DPRINT("Resolution not supported on this GPU");
return nDecodeSurface;
}
if ((pVideoFormat->coded_width >> 4) * (pVideoFormat->coded_height >> 4) >
decodecaps.nMaxMBCount) {
H264_DPRINT("MBCount not supported on this GPU");
return nDecodeSurface;
}
mLumaWidth =
pVideoFormat->display_area.right - pVideoFormat->display_area.left;
mLumaHeight =
pVideoFormat->display_area.bottom - pVideoFormat->display_area.top;
mChromaHeight = mLumaHeight * 0.5; // NV12
mBPP = pVideoFormat->bit_depth_luma_minus8 > 0 ? 2 : 1;
if (pVideoFormat->video_signal_description.video_full_range_flag)
mColorRange = 2;
else
mColorRange = 0;
mColorPrimaries = pVideoFormat->video_signal_description.color_primaries;
mColorTransfer =
pVideoFormat->video_signal_description.transfer_characteristics;
mColorSpace = pVideoFormat->video_signal_description.matrix_coefficients;
CUVIDDECODECREATEINFO videoDecodeCreateInfo = {0};
videoDecodeCreateInfo.CodecType = pVideoFormat->codec;
videoDecodeCreateInfo.ChromaFormat = pVideoFormat->chroma_format;
videoDecodeCreateInfo.OutputFormat = cudaVideoSurfaceFormat_NV12;
H264_DPRINT("output format is %d", videoDecodeCreateInfo.OutputFormat);
videoDecodeCreateInfo.bitDepthMinus8 = pVideoFormat->bit_depth_luma_minus8;
if (pVideoFormat->progressive_sequence)
videoDecodeCreateInfo.DeinterlaceMode = cudaVideoDeinterlaceMode_Weave;
else
videoDecodeCreateInfo.DeinterlaceMode =
cudaVideoDeinterlaceMode_Adaptive;
videoDecodeCreateInfo.ulNumOutputSurfaces = 1;
// With PreferCUVID, JPEG is still decoded by CUDA while video is decoded by
// NVDEC hardware
videoDecodeCreateInfo.ulCreationFlags = cudaVideoCreate_PreferCUVID;
videoDecodeCreateInfo.ulNumDecodeSurfaces = nDecodeSurface;
videoDecodeCreateInfo.vidLock = mCtxLock;
videoDecodeCreateInfo.ulWidth = pVideoFormat->coded_width;
videoDecodeCreateInfo.ulHeight = pVideoFormat->coded_height;
if (mOutputHeight != mLumaHeight || mOutputWidth != mLumaWidth) {
H264_DPRINT("old width %d old height %d", mOutputWidth, mOutputHeight);
mOutputWidth = mLumaWidth;
mOutputHeight = mLumaHeight;
H264_DPRINT("new width %d new height %d", mOutputWidth, mOutputHeight);
unsigned int newOutBufferSize = mOutputWidth * mOutputHeight * 3 / 2;
if (mOutBufferSize < newOutBufferSize) {
mOutBufferSize = newOutBufferSize;
}
}
videoDecodeCreateInfo.ulTargetWidth = pVideoFormat->coded_width;
videoDecodeCreateInfo.ulTargetHeight = pVideoFormat->coded_height;
mSurfaceWidth = videoDecodeCreateInfo.ulTargetWidth;
mSurfaceHeight = videoDecodeCreateInfo.ulTargetHeight;
NVDEC_API_CALL(cuCtxPushCurrent(mCudaContext));
if (mCudaDecoder != nullptr) {
NVDEC_API_CALL(cuvidDestroyDecoder(mCudaDecoder));
mCudaDecoder = nullptr;
}
{
size_t free, total;
cuMemGetInfo(&free, &total);
H264_DPRINT("free memory %g M, total %g M", free / 1048576.0,
total / 1048576.0);
}
NVDEC_API_CALL(cuCtxPopCurrent(NULL));
NVDEC_API_CALL(cuCtxPushCurrent(mCudaContext));
NVDEC_API_CALL(cuvidCreateDecoder(&mCudaDecoder, &videoDecodeCreateInfo));
NVDEC_API_CALL(cuCtxPopCurrent(NULL));
H264_DPRINT("successfully called. decoder %p", mCudaDecoder);
return nDecodeSurface;
}
int MediaH264DecoderCuvid::HandlePictureDecode(CUVIDPICPARAMS* pPicParams) {
NVDEC_API_CALL(cuvidDecodePicture(mCudaDecoder, pPicParams));
H264_DPRINT("successfully called.");
return 1;
}
extern "C" {
#define MEDIA_H264_COPY_Y_TEXTURE 1
#define MEDIA_H264_COPY_UV_TEXTURE 2
struct h264_cuvid_copy_context {
CUdeviceptr src_frame;
unsigned int src_pitch;
// this usually >= dest_height due to padding, e.g.
// src_surface_height: 1088, dest_height: 1080
// so, when copying UV data, the src has to start at
// offset = src_pitch * src_surface_height
unsigned int src_surface_height;
unsigned int dest_width;
unsigned int dest_height;
};
void cuda_copy_decoded_frame(void* privData,
int mode,
uint32_t dest_texture_handle) {
h264_cuvid_copy_context* copy_context =
static_cast<h264_cuvid_copy_context*>(privData);
const unsigned int GL_TEXTURE_2D = 0x0DE1;
const unsigned int cudaGraphicsMapFlagsNone = 0x0;
CUgraphicsResource CudaRes{0};
H264_DPRINT("cuda copy decoded frame testure %d", (int)dest_texture_handle);
NVDEC_API_CALL(cuGraphicsGLRegisterImage(&CudaRes, dest_texture_handle,
GL_TEXTURE_2D, 0x0));
CUarray texture_ptr;
NVDEC_API_CALL(cuGraphicsMapResources(1, &CudaRes, 0));
NVDEC_API_CALL(
cuGraphicsSubResourceGetMappedArray(&texture_ptr, CudaRes, 0, 0));
CUdeviceptr dpSrcFrame = copy_context->src_frame;
CUDA_MEMCPY2D m = {0};
m.srcMemoryType = CU_MEMORYTYPE_DEVICE;
m.srcDevice = dpSrcFrame;
m.srcPitch = copy_context->src_pitch;
m.dstMemoryType = CU_MEMORYTYPE_ARRAY;
m.dstArray = texture_ptr;
m.dstPitch = copy_context->dest_width * 1;
m.WidthInBytes = copy_context->dest_width * 1;
m.Height = copy_context->dest_height;
H264_DPRINT("dstPitch %d, WidthInBytes %d Height %d surface-height %d",
(int)m.dstPitch, (int)m.WidthInBytes, (int)m.Height,
(int)copy_context->src_surface_height);
if (mode == MEDIA_H264_COPY_Y_TEXTURE) { // copy Y data
NVDEC_API_CALL(cuMemcpy2D(&m));
} else if (mode == MEDIA_H264_COPY_UV_TEXTURE) { // copy UV data
m.srcDevice =
(CUdeviceptr)((uint8_t*)dpSrcFrame +
m.srcPitch * copy_context->src_surface_height);
m.Height = m.Height / 2;
NVDEC_API_CALL(cuMemcpy2D(&m));
}
NVDEC_API_CALL(cuGraphicsUnmapResources(1, &CudaRes, 0));
NVDEC_API_CALL(cuGraphicsUnregisterResource(CudaRes));
}
void cuda_nv12_updater(void* privData,
uint32_t type,
uint32_t* textures,
void* callerData) {
constexpr uint32_t kFRAMEWORK_FORMAT_NV12 = 3;
if (type != kFRAMEWORK_FORMAT_NV12) {
return;
}
H264_DPRINT("copyiong Ytex %d", textures[0]);
H264_DPRINT("copyiong UVtex %d", textures[1]);
cuda_copy_decoded_frame(privData, MEDIA_H264_COPY_Y_TEXTURE, textures[0]);
cuda_copy_decoded_frame(privData, MEDIA_H264_COPY_UV_TEXTURE, textures[1]);
}
} // end extern C
int MediaH264DecoderCuvid::HandlePictureDisplay(
CUVIDPARSERDISPINFO* pDispInfo) {
if (mIsLoadingFromSnapshot) {
return 1;
}
CUVIDPROCPARAMS videoProcessingParameters = {};
videoProcessingParameters.progressive_frame = pDispInfo->progressive_frame;
videoProcessingParameters.second_field = pDispInfo->repeat_first_field + 1;
videoProcessingParameters.top_field_first = pDispInfo->top_field_first;
videoProcessingParameters.unpaired_field =
pDispInfo->repeat_first_field < 0;
videoProcessingParameters.output_stream = 0;
uint64_t myOutputPts = pDispInfo->timestamp;
CUdeviceptr dpSrcFrame = 0;
unsigned int nSrcPitch = 0;
NVDEC_API_CALL(cuvidMapVideoFrame(mCudaDecoder, pDispInfo->picture_index,
&dpSrcFrame, &nSrcPitch,
&videoProcessingParameters));
NVDEC_API_CALL(cuCtxPushCurrent(mCudaContext));
unsigned int newOutBufferSize = mOutputWidth * mOutputHeight * 3 / 2;
std::vector<uint8_t> myFrame;
TextureFrame texFrame;
if (mUseGpuTexture) {
h264_cuvid_copy_context my_copy_context{
.src_frame = dpSrcFrame,
.src_pitch = nSrcPitch,
.src_surface_height = mSurfaceHeight,
.dest_width = mOutputWidth,
.dest_height = mOutputHeight,
};
texFrame = mRenderer.getTextureFrame(mOutputWidth, mOutputHeight);
mRenderer.saveDecodedFrameToTexture(texFrame, &my_copy_context,
(void*)cuda_nv12_updater);
} else {
myFrame.resize(newOutBufferSize);
uint8_t* pDecodedFrame = &(myFrame[0]);
CUDA_MEMCPY2D m = {0};
m.srcMemoryType = CU_MEMORYTYPE_DEVICE;
m.srcDevice = dpSrcFrame;
m.srcPitch = nSrcPitch;
m.dstMemoryType = CU_MEMORYTYPE_HOST;
m.dstDevice = (CUdeviceptr)(m.dstHost = pDecodedFrame);
m.dstPitch = mOutputWidth * mBPP;
m.WidthInBytes = mOutputWidth * mBPP;
m.Height = mLumaHeight;
H264_DPRINT("dstDevice %p, dstPitch %d, WidthInBytes %d Height %d",
m.dstHost, (int)m.dstPitch, (int)m.WidthInBytes,
(int)m.Height);
NVDEC_API_CALL(cuMemcpy2DAsync(&m, 0));
m.srcDevice = (CUdeviceptr)((uint8_t*)dpSrcFrame +
m.srcPitch * mSurfaceHeight);
m.dstDevice = (CUdeviceptr)(m.dstHost = pDecodedFrame +
m.dstPitch * mLumaHeight);
m.Height = mChromaHeight;
NVDEC_API_CALL(cuMemcpy2DAsync(&m, 0));
}
NVDEC_API_CALL(cuStreamSynchronize(0));
NVDEC_API_CALL(cuCtxPopCurrent(NULL));
NVDEC_API_CALL(cuvidUnmapVideoFrame(mCudaDecoder, dpSrcFrame));
if (!mIsLoadingFromSnapshot) {
std::lock_guard<std::mutex> g(mFrameLock);
mSavedFrames.push_back(myFrame);
mSavedTexFrames.push_back(texFrame);
mSavedPts.push_back(myOutputPts);
mSavedW.push_back(mOutputWidth);
mSavedH.push_back(mOutputHeight);
}
mImageReady = true;
H264_DPRINT("successfully called.");
return 1;
}
void MediaH264DecoderCuvid::oneShotDecode(std::vector<uint8_t>& data,
uint64_t pts) {
H264_DPRINT("decoding pts %lld", (long long)pts);
decodeFrameInternal(nullptr, nullptr, data.data(), data.size(), pts);
}
void MediaH264DecoderCuvid::save(base::Stream* stream) const {
stream->putBe32(mParser.version());
const int useGpuTexture = mUseGpuTexture ? 1 : 0;
stream->putBe32(useGpuTexture);
stream->putBe32(mWidth);
stream->putBe32(mHeight);
stream->putBe32(mOutputWidth);
stream->putBe32(mOutputHeight);
stream->putBe32((int)mOutPixFmt);
const int hasContext = mCudaContext == nullptr ? 0 : 1;
stream->putBe32(hasContext);
mSnapshotState.savedFrames.clear();
mSnapshotState.savedDecodedFrame.data.clear();
for (size_t i = 0; i < mSavedFrames.size(); ++i) {
const std::vector<uint8_t>& myFrame = mSavedFrames.front();
int myOutputWidth = mSavedW.front();
int myOutputHeight = mSavedH.front();
int myOutputPts = mSavedPts.front();
mSnapshotState.saveDecodedFrame(
myFrame, myOutputWidth, myOutputHeight,
ColorAspects{mColorPrimaries, mColorRange, mColorTransfer,
mColorSpace},
myOutputPts);
mSavedFrames.pop_front();
mSavedTexFrames.pop_front();
mSavedW.pop_front();
mSavedH.pop_front();
mSavedPts.pop_front();
}
H264_DPRINT("saving packets now %d",
(int)(mSnapshotState.savedPackets.size()));
mSnapshotState.save(stream);
}
bool MediaH264DecoderCuvid::load(base::Stream* stream) {
mIsLoadingFromSnapshot = true;
uint32_t version = stream->getBe32();
mParser = H264PingInfoParser{version};
const int useGpuTexture = stream->getBe32();
mUseGpuTexture = useGpuTexture ? true : false;
mWidth = stream->getBe32();
mHeight = stream->getBe32();
mOutputWidth = stream->getBe32();
mOutputHeight = stream->getBe32();
mOutPixFmt = (PixelFormat)stream->getBe32();
const int hasContext = stream->getBe32();
if (hasContext) {
initH264ContextInternal(mWidth, mHeight, mWidth, mHeight, mOutPixFmt);
}
mSnapshotState.load(stream);
H264_DPRINT("loaded packets %d, now restore decoder",
(int)(mSnapshotState.savedPackets.size()));
if (hasContext && mSnapshotState.sps.size() > 0) {
oneShotDecode(mSnapshotState.sps, 0);
if (mSnapshotState.pps.size() > 0) {
oneShotDecode(mSnapshotState.pps, 0);
if (mSnapshotState.savedPackets.size() > 0) {
for (int i = 0; i < mSnapshotState.savedPackets.size(); ++i) {
PacketInfo& pkt = mSnapshotState.savedPackets[i];
oneShotDecode(pkt.data, pkt.pts);
}
}
}
}
mImageReady = false;
for (size_t i = 0; i < mSnapshotState.savedFrames.size(); ++i) {
auto& frame = mSnapshotState.savedFrames[i];
mOutBufferSize = frame.data.size();
mOutputWidth = frame.width;
mOutputHeight = frame.height;
mColorPrimaries = frame.color.primaries;
mColorRange = frame.color.range;
mColorTransfer = frame.color.transfer;
mColorSpace = frame.color.space;
mOutputPts = frame.pts;
mSavedFrames.push_back(frame.data);
TextureFrame texFrame =
mRenderer.getTextureFrame(mOutputWidth, mOutputHeight);
mSavedTexFrames.push_back(texFrame);
mSavedW.push_back(mOutputWidth);
mSavedH.push_back(mOutputHeight);
mSavedPts.push_back(mOutputPts);
mImageReady = true;
}
mIsLoadingFromSnapshot = false;
return true;
}
bool MediaH264DecoderCuvid::s_isCudaInitialized = false;
// static
} // namespace emulation
} // namespace android