blob: 11dfd3f3a2255f878c6557cdc9f918892c28c938 [file] [log] [blame]
config ARM64
def_bool y
select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
select ARCH_USE_CMPXCHG_LOCKREF
select ARCH_SUPPORTS_ATOMIC_RMW
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
select ARCH_WANT_OPTIONAL_GPIOLIB
select ARCH_WANT_COMPAT_IPC_PARSE_VERSION
select ARCH_WANT_FRAME_POINTERS
select ARM_AMBA
select ARM_ARCH_TIMER
select ARM_GIC
select BUILDTIME_EXTABLE_SORT
select CLONE_BACKWARDS
select COMMON_CLK
select CPU_PM if (SUSPEND || CPU_IDLE)
select DCACHE_WORD_ACCESS
select GENERIC_ALLOCATOR
select GENERIC_CLOCKEVENTS
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
select GENERIC_IDLE_POLL_SETUP
select GENERIC_IOMAP
select GENERIC_IRQ_PROBE
select GENERIC_IRQ_SHOW
select GENERIC_SCHED_CLOCK
select GENERIC_SMP_IDLE_THREAD
select GENERIC_STRNCPY_FROM_USER
select GENERIC_STRNLEN_USER
select GENERIC_TIME_VSYSCALL
select HARDIRQS_SW_RESEND
select HAVE_ARCH_JUMP_LABEL
select HAVE_ARCH_TRACEHOOK
select HAVE_DEBUG_BUGVERBOSE
select HAVE_DEBUG_KMEMLEAK
select HAVE_DMA_API_DEBUG
select HAVE_DMA_ATTRS
select HAVE_DMA_CONTIGUOUS
select HAVE_EFFICIENT_UNALIGNED_ACCESS
select HAVE_GENERIC_DMA_COHERENT
select HAVE_HW_BREAKPOINT if PERF_EVENTS
select HAVE_MEMBLOCK
select HAVE_PATA_PLATFORM
select HAVE_PERF_EVENTS
select IRQ_DOMAIN
select MODULES_USE_ELF_RELA
select NO_BOOTMEM
select OF
select OF_EARLY_FLATTREE
select PERF_USE_VMALLOC
select POWER_RESET
select POWER_SUPPLY
select RTC_LIB
select SPARSE_IRQ
select SYSCTL_EXCEPTION_TRACE
select CORESIGHT_SUPPORT
select CORESIGHT_TRACE_SUPPORT
help
ARM 64-bit (AArch64) Linux support.
config 64BIT
def_bool y
config ARCH_PHYS_ADDR_T_64BIT
def_bool y
config MMU
def_bool y
config NO_IOPORT
def_bool y
config STACKTRACE_SUPPORT
def_bool y
config LOCKDEP_SUPPORT
def_bool y
config TRACE_IRQFLAGS_SUPPORT
def_bool y
config RWSEM_GENERIC_SPINLOCK
def_bool y
config GENERIC_HWEIGHT
def_bool y
config GENERIC_CSUM
def_bool y
config GENERIC_CALIBRATE_DELAY
def_bool y
config ZONE_DMA32
def_bool y
config ARCH_DMA_ADDR_T_64BIT
def_bool y
config NEED_DMA_MAP_STATE
def_bool y
config NEED_SG_DMA_LENGTH
def_bool y
config SWIOTLB
def_bool y
config IOMMU_HELPER
def_bool SWIOTLB
config KERNEL_MODE_NEON
def_bool y
source "init/Kconfig"
source "kernel/Kconfig.freezer"
menu "Platform selection"
config ARCH_VEXPRESS
bool "ARMv8 software model (Versatile Express)"
select ARCH_REQUIRE_GPIOLIB
select COMMON_CLK_VERSATILE
select POWER_RESET_VEXPRESS
select VEXPRESS_CONFIG
help
This enables support for the ARMv8 software model (Versatile
Express).
config ARCH_XGENE
bool "AppliedMicro X-Gene SOC Family"
help
This enables support for AppliedMicro X-Gene SOC Family
config ARCH_MMP
bool "Marvell MMP"
select ARCH_HAS_OPP
select ARCH_HAS_CPUFREQ
select ARCH_REQUIRE_GPIOLIB
select PINCTRL
select PINCTRL_SINGLE
select PM_GENERIC_DOMAINS
help
This enables support for the Marvell MMP platforms.
endmenu
menu "Bus support"
config ARM_AMBA
bool
endmenu
menu "Kernel Features"
menu "ARM errata workarounds via the alternatives framework"
config ARM64_ERRATUM_826319
bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
AXI master interface and an L2 cache.
If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
and is unable to accept a certain write via this interface, it will
not progress on read data presented on the read data channel and the
system can deadlock.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_827319
bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
master interface and an L2 cache.
Under certain conditions this erratum can cause a clean line eviction
to occur at the same time as another transaction to the same address
on the AMBA 5 CHI interface, which can cause data corruption if the
interconnect reorders the two transactions.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this does not necessarily enable the workaround,
as it depends on the alternative framework, which will only patch
the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_824069
bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
default y
help
This option adds an alternative code sequence to work around ARM
erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
to a coherent interconnect.
If a Cortex-A53 processor is executing a store or prefetch for
write instruction at the same time as a processor in another
cluster is executing a cache maintenance operation to the same
address, then this erratum might cause a clean cache line to be
incorrectly marked as dirty.
The workaround promotes data cache clean instructions to
data cache clean-and-invalidate.
Please note that this option does not necessarily enable the
workaround, as it depends on the alternative framework, which will
only patch the kernel if an affected CPU is detected.
If unsure, say Y.
config ARM64_ERRATUM_845719
bool "Cortex-A53: 845719: a load might read incorrect data"
depends on COMPAT
default y
help
This option adds an alternative code sequence to avoid ARM
erratum 845719 on Cortex-A53 parts up to r0p4.
When running a compat (AArch32) userspace on an affected Cortex-A53
part, a load at EL0 from a virtual address that matches the bottom 32
bits of the virtual address used by a recent load at (AArch64) EL1
might return incorrect data.
The fix is to write the contextidr_el1 register on exception
return to a 32-bit task.
If unsure, say Y.
endmenu
config ARM64_64K_PAGES
bool "Enable 64KB pages support"
help
This feature enables 64KB pages support (4KB by default)
allowing only two levels of page tables and faster TLB
look-up. AArch32 emulation is not available when this feature
is enabled.
config CPU_BIG_ENDIAN
bool "Build big-endian kernel"
help
Say Y if you plan on running a kernel in big-endian mode.
config SMP
bool "Symmetric Multi-Processing"
help
This enables support for systems with more than one CPU. If
you say N here, the kernel will run on single and
multiprocessor machines, but will use only one CPU of a
multiprocessor machine. If you say Y here, the kernel will run
on many, but not all, single processor machines. On a single
processor machine, the kernel will run faster if you say N
here.
If you don't know what to do here, say N.
config SCHED_MC
bool "Multi-core scheduler support"
depends on SMP
help
Multi-core scheduler support improves the CPU scheduler's decision
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
config SCHED_SMT
bool "SMT scheduler support"
depends on SMP
help
Improves the CPU scheduler's decision making when dealing with
MultiThreading at a cost of slightly increased overhead in some
places. If unsure say N here.
config DISABLE_CPU_SCHED_DOMAIN_BALANCE
bool "(EXPERIMENTAL) Disable CPU level scheduler load-balancing"
help
Disables scheduler load-balancing at CPU sched domain level.
config SCHED_HMP
bool "(EXPERIMENTAL) Heterogenous multiprocessor scheduling"
depends on DISABLE_CPU_SCHED_DOMAIN_BALANCE && SCHED_MC && FAIR_GROUP_SCHED && !SCHED_AUTOGROUP
help
Experimental scheduler optimizations for heterogeneous platforms.
Attempts to introspectively select task affinity to optimize power
and performance. Basic support for multiple (>2) cpu types is in place,
but it has only been tested with two types of cpus.
There is currently no support for migration of task groups, hence
!SCHED_AUTOGROUP. Furthermore, normal load-balancing must be disabled
between cpus of different type (DISABLE_CPU_SCHED_DOMAIN_BALANCE).
When turned on, this option adds sys/kernel/hmp directory which
contains the following files:
up_threshold - the load average threshold used for up migration
(0 - 1023)
down_threshold - the load average threshold used for down migration
(0 - 1023)
hmp_domains - a list of cpumasks for the present HMP domains,
starting with the 'biggest' and ending with the
'smallest'.
Note that both the threshold files can be written at runtime to
control scheduler behaviour.
config SCHED_HMP_PRIO_FILTER
bool "(EXPERIMENTAL) Filter HMP migrations by task priority"
depends on SCHED_HMP
help
Enables task priority based HMP migration filter. Any task with
a NICE value above the threshold will always be on low-power cpus
with less compute capacity.
config SCHED_HMP_PRIO_FILTER_VAL
int "NICE priority threshold"
default 5
depends on SCHED_HMP_PRIO_FILTER
config HMP_FAST_CPU_MASK
string "HMP scheduler fast CPU mask"
depends on SCHED_HMP
help
Leave empty to use device tree information.
Specify the cpuids of the fast CPUs in the system as a list string,
e.g. cpuid 0+1 should be specified as 0-1.
config HMP_SLOW_CPU_MASK
string "HMP scheduler slow CPU mask"
depends on SCHED_HMP
help
Leave empty to use device tree information.
Specify the cpuids of the slow CPUs in the system as a list string,
e.g. cpuid 0+1 should be specified as 0-1.
config HMP_VARIABLE_SCALE
bool "Allows changing the load tracking scale through sysfs"
depends on SCHED_HMP
help
When turned on, this option exports the load average period value
for the load tracking patches through sysfs.
The values can be modified to change the rate of load accumulation
used for HMP migration. 'load_avg_period_ms' is the time in ms to
reach a load average of 0.5 for an idle task of 0 load average
ratio which becomes 100% busy.
For example, with load_avg_period_ms = 128 and up_threshold = 512,
a running task with a load of 0 will be migrated to a bigger CPU after
128ms, because after 128ms its load_avg_ratio is 0.5 and the real
up_threshold is 0.5.
This patch has the same behavior as changing the Y of the load
average computation to
(1002/1024)^(LOAD_AVG_PERIOD/load_avg_period_ms)
but removes intermediate overflows in computation.
config HMP_FREQUENCY_INVARIANT_SCALE
bool "(EXPERIMENTAL) Frequency-Invariant Tracked Load for HMP"
depends on SCHED_HMP && CPU_FREQ
help
Scales the current load contribution in line with the frequency
of the CPU that the task was executed on.
In this version, we use a simple linear scale derived from the
maximum frequency reported by CPUFreq.
Restricting tracked load to be scaled by the CPU's frequency
represents the consumption of possible compute capacity
(rather than consumption of actual instantaneous capacity as
normal) and allows the HMP migration's simple threshold
migration strategy to interact more predictably with CPUFreq's
asynchronous compute capacity changes.
config SCHED_HMP_LITTLE_PACKING
bool "Small task packing for HMP"
depends on SCHED_HMP
default n
help
Allows the HMP Scheduler to pack small tasks into CPUs in the
smallest HMP domain.
Controlled by two sysfs files in sys/kernel/hmp.
packing_enable: 1 to enable, 0 to disable packing. Default 1.
packing_limit: runqueue load ratio where a RQ is considered
to be full. Default is NICE_0_LOAD * 9/8.
config NR_CPUS
int "Maximum number of CPUs (2-32)"
range 2 32
depends on SMP
# These have to remain sorted largest to smallest
default "8"
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
depends on SMP
help
Say Y here to experiment with turning CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu.
source kernel/Kconfig.preempt
config HZ
int
default 100
config ARCH_HAS_HOLES_MEMORYMODEL
def_bool y if SPARSEMEM
config ARCH_SPARSEMEM_ENABLE
bool
config SPARSEMEM_VMEMMAP_ENABLE
def_bool ARCH_SPARSEMEM_ENABLE
config ARCH_SPARSEMEM_DEFAULT
def_bool ARCH_SPARSEMEM_ENABLE
config ARCH_SELECT_MEMORY_MODEL
def_bool ARCH_SPARSEMEM_ENABLE
config HAVE_ARCH_PFN_VALID
def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM
config HW_PERF_EVENTS
bool "Enable hardware performance counter support for perf events"
depends on PERF_EVENTS
default y
help
Enable hardware performance counter support for perf events. If
disabled, perf events will use software events only.
config SYS_SUPPORTS_HUGETLBFS
def_bool y
config ARCH_WANT_GENERAL_HUGETLB
def_bool y
config ARCH_WANT_HUGE_PMD_SHARE
def_bool y if !ARM64_64K_PAGES
config HAVE_ARCH_TRANSPARENT_HUGEPAGE
def_bool y
source "mm/Kconfig"
config KEXEC
bool "kexec system call"
---help---
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
config XEN_DOM0
def_bool y
depends on XEN
config XEN
bool "Xen guest support on ARM64 (EXPERIMENTAL)"
depends on ARM64 && OF
select SWIOTLB_XEN
help
Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
config FORCE_MAX_ZONEORDER
int
default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
default "11"
config ARM64_FLUSH_CONSOLE_ON_RESTART
bool "Force flush the console on restart"
help
If the console is locked while the system is rebooted, the messages
in the temporary logbuffer would not have propogated to all the
console drivers. This option forces the console lock to be
released if it failed to be acquired, which will cause all the
pending messages to be flushed.
endmenu
menu "Boot options"
config CMDLINE
string "Default kernel command string"
default ""
help
Provide a set of default command-line options at build time by
entering them here. As a minimum, you should specify the the
root device (e.g. root=/dev/nfs).
choice
prompt "Kernel command line type" if CMDLINE != ""
default CMDLINE_FROM_BOOTLOADER
config CMDLINE_FROM_BOOTLOADER
bool "Use bootloader kernel arguments if available"
help
Uses the command-line options passed by the boot loader. If
the boot loader doesn't provide any, the default kernel command
string provided in CMDLINE will be used.
config CMDLINE_EXTEND
bool "Extend bootloader kernel arguments"
help
The command-line arguments provided by the boot loader will be
appended to the default kernel command string.
config CMDLINE_FORCE
bool "Always use the default kernel command string"
help
Always use the default kernel command string, even if the boot
loader passes other arguments to the kernel.
This is useful if you cannot or don't want to change the
command-line options your boot loader passes to the kernel.
endchoice
config BUILD_ARM64_APPENDED_DTB_IMAGE
bool "Build a concatenated Image.gz/dtb by default"
depends on OF
help
Enabling this option will cause a concatenated Image.gz and list of
DTBs to be built by default (instead of a standalone Image.gz.)
The image will built in arch/arm64/boot/Image.gz-dtb
config BUILD_ARM64_APPENDED_DTB_IMAGE_NAMES
string "Default dtb names"
depends on BUILD_ARM64_APPENDED_DTB_IMAGE
help
Space separated list of names of dtbs to append when
building a concatenated Image.gz-dtb.
endmenu
menu "Userspace binary formats"
source "fs/Kconfig.binfmt"
config COMPAT
bool "Kernel support for 32-bit EL0"
depends on !ARM64_64K_PAGES
select COMPAT_BINFMT_ELF
select HAVE_UID16
select OLD_SIGSUSPEND3
select COMPAT_OLD_SIGACTION
help
This option enables support for a 32-bit EL0 running under a 64-bit
kernel at EL1. AArch32-specific components such as system calls,
the user helper functions, VFP support and the ptrace interface are
handled appropriately by the kernel.
If you want to execute 32-bit userspace applications, say Y.
config SYSVIPC_COMPAT
def_bool y
depends on COMPAT && SYSVIPC
endmenu
menu "Power management options"
source "kernel/power/Kconfig"
config ARCH_SUSPEND_POSSIBLE
def_bool y
config ARM64_CPU_SUSPEND
def_bool PM_SLEEP
endmenu
menu "CPU Power Management"
source "drivers/cpufreq/Kconfig"
source "drivers/cpuidle/Kconfig"
source "drivers/cpuhotplug/Kconfig"
endmenu
source "net/Kconfig"
source "drivers/Kconfig"
source "fs/Kconfig"
source "arch/arm64/kvm/Kconfig"
source "arch/arm64/Kconfig.debug"
source "security/Kconfig"
source "crypto/Kconfig"
if CRYPTO
source "arch/arm64/crypto/Kconfig"
endif
source "lib/Kconfig"