blob: b0274ce768f68a0f56b5417ec3851a9530eea6c4 [file] [log] [blame]
/*
* intel_mid_dma.c - Intel Langwell DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* The driver design is based on dw_dmac driver
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/intel_mid_dma.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include "dmaengine.h"
#define MAX_CHAN 8 /*max ch across controllers*/
#include "intel_mid_dma_regs.h"
#define INTEL_MID_DMAC1_ID 0x0814
#define INTEL_MID_DMAC2_ID 0x0813
#define INTEL_MID_GP_DMAC2_ID 0x0827
#define INTEL_MFLD_DMAC1_ID 0x0830
#define INTEL_CLV_GP_DMAC2_ID 0x08EF
#define INTEL_CLV_DMAC1_ID 0x08F0
#define INTEL_MRFLD_GP_DMAC2_ID 0x11A2
#define INTEL_MRFLD_DMAC0_ID 0x119B
#define INTEL_BYT_LPIO1_DMAC_ID 0x0F06
#define INTEL_BYT_LPIO2_DMAC_ID 0x0F40
#define INTEL_BYT_DMAC0_ID 0x0F28
#define PCI_DEVICE_ID_INTEL_GP_DMAC2_MOOR 0x1497
#define MRFL_INSTANCE_SPI3 3
#define MRFL_INSTANCE_SPI5 5
#define MRFL_INSTANCE_SPI6 6
#define LNW_PERIPHRAL_MASK_SIZE 0x20
#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask, \
_pimr_base, _dword_trf, _pimr_offset, _pci_id, \
_pdma_ops) \
((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
.max_chan = (_max_chan), \
.ch_base = (_ch_base), \
.block_size = (_block_size), \
.pimr_mask = (_pimr_mask), \
.pimr_base = (_pimr_base), \
.dword_trf = (_dword_trf), \
.pimr_offset = (_pimr_offset), \
.pci_id = (_pci_id), \
.pdma_ops = (_pdma_ops) \
})
/*****************************************************************************
Utility Functions*/
/**
* get_ch_index - convert status to channel
* @status: status mask
* @base: dma ch base value
*
* Returns the channel index by checking the status bits.
* If none of the bits in status are set, then returns -1.
*/
static int get_ch_index(int status, unsigned int base)
{
int i;
for (i = 0; i < MAX_CHAN; i++) {
if (status & (1 << (i + base)))
return i;
}
return -1;
}
static inline bool is_byt_lpio_dmac(struct middma_device *mid)
{
return (mid->pci_id == INTEL_BYT_LPIO1_DMAC_ID ||
mid->pci_id == INTEL_BYT_LPIO2_DMAC_ID);
}
static void dump_dma_reg(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
if (!mid->pimr_base)
return;
pr_debug("<<<<<<<<<<<< DMA Dump Start >>>>>>>>>>>>");
pr_debug("DMA Dump for Channel id:%d & Chnl Base:%p",
midc->ch_id, midc->ch_regs);
/* dump common DMA registers */
pr_debug("PIMR:\t%#x", readl(mid->mask_reg) - 8);
pr_debug("ISRX:\t%#x", readl(mid->mask_reg));
pr_debug("ISRD:\t%#x", readl(mid->mask_reg + 0x8));
pr_debug("IMRX:\t%#x", readl(mid->mask_reg + 0x10));
pr_debug("IMRD:\t%#x", readl(mid->mask_reg + 0x18));
pr_debug("DMA_CHAN_EN:\t%#x", readl(midc->dma_base + DMA_CHAN_EN));
pr_debug("DMA_CFG:\t%#x", readl(midc->dma_base + DMA_CFG));
pr_debug("INTR_STATUS:\t%#x", readl(midc->dma_base + INTR_STATUS));
pr_debug("MASK_TFR:\t%#x", readl(midc->dma_base + MASK_TFR));
pr_debug("MASK_BLOCK:\t%#x", readl(midc->dma_base + MASK_BLOCK));
pr_debug("MASK_ERR:\t%#x", readl(midc->dma_base + MASK_ERR));
pr_debug("RAW_TFR:\t%#x", readl(midc->dma_base + RAW_TFR));
pr_debug("RAW_BLOCK:\t%#x", readl(midc->dma_base + RAW_BLOCK));
pr_debug("RAW_ERR:\t%#x", readl(midc->dma_base + RAW_ERR));
pr_debug("STATUS_TFR:\t%#x", readl(midc->dma_base + STATUS_TFR));
pr_debug("STATUS_BLOCK:\t%#x", readl(midc->dma_base + STATUS_BLOCK));
pr_debug("STATUS_ERR:\t%#x", readl(midc->dma_base + STATUS_ERR));
if (!mid->dword_trf) {
pr_debug("FIFO_PARTITION0_LO:\t%#x",
readl(midc->dma_base + FIFO_PARTITION0_LO));
pr_debug("FIFO_PARTITION0_HI:\t%#x",
readl(midc->dma_base + FIFO_PARTITION0_HI));
pr_debug("FIFO_PARTITION1_LO:\t%#x",
readl(midc->dma_base + FIFO_PARTITION1_LO));
pr_debug("FIFO_PARTITION1_HI:\t%#x",
readl(midc->dma_base + FIFO_PARTITION1_HI));
pr_debug("CH_SAI_ERR:\t%#x", readl(midc->dma_base + CH_SAI_ERR));
}
/* dump channel specific registers */
pr_debug("SAR:\t%#x", readl(midc->ch_regs + SAR));
pr_debug("DAR:\t%#x", readl(midc->ch_regs + DAR));
pr_debug("LLP:\t%#x", readl(midc->ch_regs + LLP));
pr_debug("CTL_LOW:\t%#x", readl(midc->ch_regs + CTL_LOW));
pr_debug("CTL_HIGH:\t%#x", readl(midc->ch_regs + CTL_HIGH));
pr_debug("CFG_LOW:\t%#x", readl(midc->ch_regs + CFG_LOW));
pr_debug("CFG_HIGH:\t%#x", readl(midc->ch_regs + CFG_HIGH));
pr_debug("<<<<<<<<<<<< DMA Dump ends >>>>>>>>>>>>");
}
/**
* get_block_ts - calculates dma transaction length
* @len: dma transfer length
* @tx_width: dma transfer src width
* @block_size: dma controller max block size
* @dword_trf: is transfer dword size aligned and needs the data transfer to
* be in terms of data items and not bytes
*
* Based on src width calculate the DMA trsaction length in data items
* return data items or FFFF if exceeds max length for block
*/
static unsigned int get_block_ts(int len, int tx_width,
int block_size, int dword_trf)
{
int byte_width = 0, block_ts = 0;
switch (tx_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
byte_width = 1;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
byte_width = 2;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
default:
byte_width = 4;
break;
}
if (dword_trf)
block_ts = len/byte_width;
else
block_ts = len;
if (block_ts > block_size)
block_ts = 0xFFFF;
return block_ts;
}
/**
* get_reg_width - computes the DMA sample width
* @kernel_width: Kernel DMA slave bus width
*
* converts the DMA kernel slave bus width in the Intel DMA
* bus width
*/
static int get_reg_width(enum dma_slave_buswidth kernel_width)
{
int reg_width = -1;
switch (kernel_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
reg_width = 0;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
reg_width = 1;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
reg_width = 2;
break;
case DMA_SLAVE_BUSWIDTH_UNDEFINED:
case DMA_SLAVE_BUSWIDTH_8_BYTES:
default:
pr_err("ERR_MDMA: get_reg_width unsupported reg width\n");
break;
}
return reg_width;
}
/*****************************************************************************
DMAC1 interrupt Functions*/
/**
* dmac1_mask_periphral_intr - mask the periphral interrupt
* @mid: dma device for which masking is required
*
* Masks the DMA periphral interrupt
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_mask_periphral_intr(struct middma_device *mid)
{
u32 pimr;
if (mid->pimr_mask) {
pimr = readl(mid->mask_reg + mid->pimr_offset);
pimr |= mid->pimr_mask;
writel(pimr, mid->mask_reg + mid->pimr_offset);
}
return;
}
/**
* dmac1_unmask_periphral_intr - unmask the periphral interrupt
* @midc: dma channel for which masking is required
*
* UnMasks the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
{
u32 pimr;
struct middma_device *mid = to_middma_device(midc->chan.device);
if (mid->pimr_mask && mid->dword_trf) {
pimr = readl(mid->mask_reg + mid->pimr_offset);
pimr &= ~mid->pimr_mask;
writel(pimr, mid->mask_reg + mid->pimr_offset);
}
if (mid->pimr_mask && !mid->dword_trf) {
pimr = readl(mid->mask_reg + mid->pimr_offset);
pimr &= ~(1 << (midc->ch_id + 16));
writel(pimr, mid->mask_reg + mid->pimr_offset);
}
return;
}
/*
* Some consumer may need to know how many bytes have been
* really transfered for one specific dma channel
*/
inline dma_addr_t intel_dma_get_src_addr(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
return readl(midc->ch_regs + SAR);
}
EXPORT_SYMBOL(intel_dma_get_src_addr);
inline dma_addr_t intel_dma_get_dst_addr(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
return readl(midc->ch_regs + DAR);
}
EXPORT_SYMBOL(intel_dma_get_dst_addr);
/**
* enable_dma_interrupt - enable the periphral interrupt
* @midc: dma channel for which enable interrupt is required
*
* Enable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
struct middma_device *mid = to_middma_device(midc->chan.device);
dmac1_unmask_periphral_intr(midc);
/*en ch interrupts*/
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
set_bit(midc->ch_id, &mid->tfr_intr_mask);
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
return;
}
/**
* disable_dma_interrupt - disable the periphral interrupt
* @midc: dma channel for which disable interrupt is required
*
* Disable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
struct middma_device *mid = to_middma_device(midc->chan.device);
u32 pimr;
/*Check LPE PISR, make sure fwd is disabled*/
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
clear_bit(midc->ch_id, &mid->block_intr_mask);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
clear_bit(midc->ch_id, &mid->tfr_intr_mask);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
if (mid->pimr_mask && !mid->dword_trf) {
pimr = readl(mid->mask_reg + mid->pimr_offset);
pimr |= (1 << (midc->ch_id + 16));
writel(pimr, mid->mask_reg + mid->pimr_offset);
}
return;
}
/**
* clear_dma_channel_interrupt - clear channel interrupt
* @midc: dma channel for which clear interrupt is required
*
*/
static void clear_dma_channel_interrupt(struct intel_mid_dma_chan *midc)
{
struct middma_device *mid = to_middma_device(midc->chan.device);
/*clearing this interrupts first*/
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_BLOCK);
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
return;
}
/*****************************************************************************
DMA channel helper Functions*/
/**
* mid_desc_get - get a descriptor
* @midc: dma channel for which descriptor is required
*
* Obtain a descriptor for the channel. Returns NULL if none are free.
* Once the descriptor is returned it is private until put on another
* list or freed
*/
static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc, *_desc;
struct intel_mid_dma_desc *ret = NULL;
spin_lock_bh(&midc->lock);
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
if (async_tx_test_ack(&desc->txd)) {
list_del(&desc->desc_node);
ret = desc;
break;
}
}
spin_unlock_bh(&midc->lock);
return ret;
}
/**
* mid_desc_put - put a descriptor
* @midc: dma channel for which descriptor is required
* @desc: descriptor to put
*
* Return a descriptor from lwn_desc_get back to the free pool
*/
static void midc_desc_put(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
{
if (desc) {
spin_lock_bh(&midc->lock);
list_add_tail(&desc->desc_node, &midc->free_list);
spin_unlock_bh(&midc->lock);
}
}
/**
* midc_dostart - begin a DMA transaction
* @midc: channel for which txn is to be started
* @first: first descriptor of series
*
* Load a transaction into the engine. This must be called with midc->lock
* held and bh disabled.
*/
static int midc_dostart(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *first)
{
struct middma_device *mid = to_middma_device(midc->chan.device);
/* channel is idle */
if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
/*error*/
pr_err("ERR_MDMA: channel is busy in start\n");
/* The tasklet will hopefully advance the queue... */
return -EBUSY;
}
midc->busy = true;
/*write registers and en*/
iowrite32(first->sar, midc->ch_regs + SAR);
iowrite32(first->dar, midc->ch_regs + DAR);
iowrite32(first->lli_phys, midc->ch_regs + LLP);
iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
pr_debug("MDMA:TX SAR %x,DAR %x,CFGH %x,CFGL %x,CTLH %x, CTLL %x LLI %x",
(int)first->sar, (int)first->dar, first->cfg_hi,
first->cfg_lo, first->ctl_hi, first->ctl_lo, (int)first->lli_phys);
first->status = DMA_IN_PROGRESS;
iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
return 0;
}
/**
* midc_descriptor_complete - process completed descriptor
* @midc: channel owning the descriptor
* @desc: the descriptor itself
*
* Process a completed descriptor and perform any callbacks upon
* the completion. The completion handling drops the lock during the
* callbacks but must be called with the lock held.
*/
static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
__releases(&midc->lock) __acquires(&midc->lock)
{
struct dma_async_tx_descriptor *txd = &desc->txd;
dma_async_tx_callback callback_txd = NULL;
struct intel_mid_dma_lli *llitem;
void *param_txd = NULL;
dma_cookie_complete(txd);
callback_txd = txd->callback;
param_txd = txd->callback_param;
if (desc->lli != NULL) {
/*clear the DONE bit of completed LLI in memory*/
llitem = desc->lli + desc->current_lli;
llitem->ctl_hi &= CLEAR_DONE;
if (desc->current_lli < desc->lli_length-1)
(desc->current_lli)++;
else
desc->current_lli = 0;
}
if (midc->raw_tfr) {
list_del(&desc->desc_node);
desc->status = DMA_SUCCESS;
if (desc->lli != NULL && desc->lli->llp != 0)
dma_pool_free(desc->lli_pool, desc->lli,
desc->lli_phys);
list_add(&desc->desc_node, &midc->free_list);
midc->busy = false;
midc->raw_tfr = 0;
spin_unlock_bh(&midc->lock);
} else {
spin_unlock_bh(&midc->lock);
}
if (callback_txd) {
pr_debug("MDMA: TXD callback set ... calling\n");
callback_txd(param_txd);
}
spin_lock_bh(&midc->lock);
}
static struct
intel_mid_dma_desc *midc_first_queued(struct intel_mid_dma_chan *midc)
{
return list_entry(midc->queue.next, struct intel_mid_dma_desc, desc_node);
}
static void midc_collect_descriptors(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
/*tx is complete*/
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
if (desc->status == DMA_IN_PROGRESS)
midc_descriptor_complete(midc, desc);
}
}
/**
* midc_start_descriptors - start the descriptors in queue
*
* @mid: device
* @midc: channel to scan
*
*/
static void midc_start_descriptors(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
if (!list_empty(&midc->queue)) {
pr_debug("MDMA: submitting txn in queue\n");
if (0 == midc_dostart(midc, midc_first_queued(midc)))
list_splice_init(&midc->queue, &midc->active_list);
else
pr_warn("Submit failed as ch is busy\n");
}
return;
}
/**
* midc_lli_fill_sg - Helper function to convert
* SG list to Linked List Items.
*@midc: Channel
*@desc: DMA descriptor
*@sglist: Pointer to SG list
*@sglen: SG list length
*@flags: DMA transaction flags
*
* Walk through the SG list and convert the SG list into Linked
* List Items (LLI).
*/
static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc,
struct scatterlist *src_sglist,
struct scatterlist *dst_sglist,
unsigned int sglen,
unsigned int flags)
{
struct intel_mid_dma_slave *mids;
struct scatterlist *sg;
dma_addr_t lli_next, sg_phy_addr;
struct intel_mid_dma_lli *lli_bloc_desc;
union intel_mid_dma_ctl_lo ctl_lo;
u32 ctl_hi;
int i;
pr_debug("MDMA: Entered %s\n", __func__);
mids = midc->mid_slave;
lli_bloc_desc = desc->lli;
lli_next = desc->lli_phys;
ctl_lo.ctl_lo = desc->ctl_lo;
ctl_hi = desc->ctl_hi;
for_each_sg(src_sglist, sg, sglen, i) {
/*Populate CTL_LOW and LLI values*/
if (i != sglen - 1) {
lli_next = lli_next +
sizeof(struct intel_mid_dma_lli);
} else {
/*Check for circular list, otherwise terminate LLI to ZERO*/
if (flags & DMA_PREP_CIRCULAR_LIST) {
pr_debug("MDMA: LLI is configured in circular mode\n");
lli_next = desc->lli_phys;
} else {
lli_next = 0;
/* llp_dst_en = 0 llp_src_en = 0 */
ctl_lo.ctl_lo &= ~(1 << CTL_LO_BIT_LLP_DST_EN);
ctl_lo.ctl_lo &= ~(1 << CTL_LO_BIT_LLP_SRC_EN);
}
}
/*Populate CTL_HI values*/
ctl_hi = get_block_ts(sg->length, desc->width,
midc->dma->block_size, midc->dma->dword_trf);
/*Populate SAR and DAR values*/
sg_phy_addr = sg_phys(sg);
if (desc->dirn == DMA_MEM_TO_DEV) {
lli_bloc_desc->sar = sg_phy_addr;
lli_bloc_desc->dar = mids->dma_slave.dst_addr;
} else if (desc->dirn == DMA_DEV_TO_MEM) {
lli_bloc_desc->sar = mids->dma_slave.src_addr;
lli_bloc_desc->dar = sg_phy_addr;
} else if (desc->dirn == DMA_MEM_TO_MEM && dst_sglist) {
lli_bloc_desc->sar = sg_phy_addr;
lli_bloc_desc->dar = sg_phys(dst_sglist);
}
/*Copy values into block descriptor in system memroy*/
lli_bloc_desc->llp = lli_next;
lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
lli_bloc_desc->ctl_hi = ctl_hi;
pr_debug("MDMA:Calc CTL LO %x, CTL HI %x src: %x dest: %x sg->l:%x\n",
ctl_lo.ctl_lo, lli_bloc_desc->ctl_hi,
lli_bloc_desc->sar, lli_bloc_desc->dar, sg->length);
lli_bloc_desc++;
if (dst_sglist)
dst_sglist = sg_next(dst_sglist);
}
/*Copy very first LLI values to descriptor*/
desc->ctl_lo = desc->lli->ctl_lo;
desc->ctl_hi = desc->lli->ctl_hi;
desc->sar = desc->lli->sar;
desc->dar = desc->lli->dar;
return 0;
}
/*****************************************************************************
DMA engine callback Functions*/
/**
* intel_mid_dma_tx_submit - callback to submit DMA transaction
* @tx: dma engine descriptor
*
* Submit the DMA trasaction for this descriptor, start if ch idle
*/
static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
dma_cookie_t cookie;
spin_lock_bh(&midc->lock);
if (unlikely(!midc->in_use)) {
spin_unlock_bh(&midc->lock);
WARN(1, "chan[%d] gets new request after close",
tx->chan->chan_id);
return -EIO;
}
cookie = dma_cookie_assign(tx);
if (list_empty(&midc->active_list))
list_add_tail(&desc->desc_node, &midc->active_list);
else
list_add_tail(&desc->desc_node, &midc->queue);
midc_dostart(midc, desc);
spin_unlock_bh(&midc->lock);
return cookie;
}
/**
* intel_mid_dma_issue_pending - callback to issue pending txn
* @chan: chan where pending trascation needs to be checked and submitted
*
* Call for scan to issue pending descriptors
*/
static void intel_mid_dma_issue_pending(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
spin_lock_bh(&midc->lock);
if (!list_empty(&midc->queue))
midc_start_descriptors(to_middma_device(chan->device), midc);
spin_unlock_bh(&midc->lock);
}
/**
* dma_wait_for_suspend - performs following functionality
* 1. Suspends channel using mask bits
* 2. Wait till FIFO to get empty
* 3. Disable channel
* 4. restore the previous masked bits
*
* @chan: chan where pending trascation needs to be checked and submitted
* @mask: mask bits to be used for suspend operation
*
*/
static inline void dma_wait_for_suspend(struct dma_chan *chan, unsigned int mask)
{
union intel_mid_dma_cfg_lo cfg_lo;
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
int i;
/* Suspend channel */
cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
cfg_lo.cfg_lo |= mask;
iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
/* wait till FIFO gets empty */
/* FIFO should be cleared in couple of milli secs */
for (i = 0; i < 10; i++) {
cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
if (cfg_lo.cfgx.fifo_empty)
break;
/* use delay since this might called from atomic context */
mdelay(1);
}
pr_debug("waited for %d ms for FIFO to get empty", i);
iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
cfg_lo.cfg_lo &= ~mask;
iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
}
/**
* intel_mid_dma_chan_suspend_v1 - suspends the given channel, waits
* till FIFO is cleared and disables channel.
* @chan: chan where pending trascation needs to be checked and submitted
*
*/
static void intel_mid_dma_chan_suspend_v1(struct dma_chan *chan)
{
pr_debug("%s", __func__);
dma_wait_for_suspend(chan, CH_SUSPEND);
}
/**
* intel_mid_dma_chan_suspend_v2 - suspends the given channel, waits
* till FIFO is cleared and disables channel.
* @chan: chan where pending trascation needs to be checked and submitted
*
*/
static void intel_mid_dma_chan_suspend_v2(struct dma_chan *chan)
{
pr_debug("%s", __func__);
dma_wait_for_suspend(chan, CH_SUSPEND | CH_DRAIN);
}
/**
* intel_mid_dma_tx_status - Return status of txn
* @chan: chan for where status needs to be checked
* @cookie: cookie for txn
* @txstate: DMA txn state
*
* Return status of DMA txn
*/
static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
enum dma_status ret;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret != DMA_SUCCESS) {
spin_lock_bh(&midc->lock);
midc_start_descriptors(to_middma_device(chan->device), midc);
spin_unlock_bh(&midc->lock);
ret = dma_cookie_status(chan, cookie, txstate);
}
return ret;
}
static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct dma_slave_config *slave = (struct dma_slave_config *)arg;
struct intel_mid_dma_slave *mid_slave;
BUG_ON(!midc);
BUG_ON(!slave);
pr_debug("MDMA: slave control called\n");
mid_slave = to_intel_mid_dma_slave(slave);
BUG_ON(!mid_slave);
midc->mid_slave = mid_slave;
return 0;
}
/**
* intel_mid_dma_device_control - DMA device control
* @chan: chan for DMA control
* @cmd: control cmd
* @arg: cmd arg value
*
* Perform DMA control command
*/
static int intel_mid_dma_device_control(struct dma_chan *chan,
enum dma_ctrl_cmd cmd, unsigned long arg)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
pr_debug("%s:CMD:%d for channel:%d\n", __func__, cmd, midc->ch_id);
if (cmd == DMA_SLAVE_CONFIG)
return dma_slave_control(chan, arg);
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
spin_lock_bh(&midc->lock);
if (midc->busy == false) {
spin_unlock_bh(&midc->lock);
return 0;
}
/* Disable CH interrupts */
disable_dma_interrupt(midc);
/* clear channel interrupts */
clear_dma_channel_interrupt(midc);
mid->dma_ops.dma_chan_suspend(chan);
midc->busy = false;
midc->descs_allocated = 0;
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
list_del(&desc->desc_node);
if (desc->lli != NULL)
dma_pool_free(desc->lli_pool, desc->lli,
desc->lli_phys);
list_add(&desc->desc_node, &midc->free_list);
}
spin_unlock_bh(&midc->lock);
return 0;
}
/**
* intel_mid_dma_prep_memcpy - Prep memcpy txn
* @chan: chan for DMA transfer
* @dest: destn address
* @src: src address
* @len: DMA transfer len
* @flags: DMA flags
*
* Perform a DMA memcpy. Note we support slave periphral DMA transfers only
* The periphral txn details should be filled in slave structure properly
* Returns the descriptor for this txn
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct intel_mid_dma_chan *midc;
struct intel_mid_dma_desc *desc = NULL;
struct intel_mid_dma_slave *mids;
union intel_mid_dma_ctl_lo ctl_lo;
u32 ctl_hi;
union intel_mid_dma_cfg_lo cfg_lo;
union intel_mid_dma_cfg_hi cfg_hi;
enum dma_slave_buswidth width;
int dst_reg_width = 0;
int src_reg_width = 0;
pr_debug("MDMA: Prep for memcpy\n");
BUG_ON(!chan);
if (!len)
return NULL;
midc = to_intel_mid_dma_chan(chan);
BUG_ON(!midc);
mids = midc->mid_slave;
BUG_ON(!mids);
if (unlikely(!midc->in_use)) {
pr_err("ERR_MDMA: %s: channel not in use", __func__);
return NULL;
}
pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
midc->dma->pci_id, midc->ch_id, len);
pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
mids->cfg_mode, mids->dma_slave.direction,
mids->hs_mode, mids->dma_slave.src_addr_width);
/*calculate CFG_LO*/
if (mids->hs_mode == LNW_DMA_SW_HS) {
cfg_lo.cfg_lo = 0;
cfg_lo.cfgx.hs_sel_dst = 1;
cfg_lo.cfgx.hs_sel_src = 1;
} else if (mids->hs_mode == LNW_DMA_HW_HS)
cfg_lo.cfg_lo = 0x00000;
/*calculate CFG_HI*/
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
/*SW HS only*/
cfg_hi.cfg_hi = 0;
} else {
cfg_hi.cfg_hi = 0;
if (midc->dma->pimr_mask) {
cfg_hi.cfgx.protctl = 0x0; /*default value*/
cfg_hi.cfgx.fifo_mode = 1;
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
cfg_hi.cfgx.src_per = 0;
if (mids->device_instance == 0)
cfg_hi.cfgx.dst_per = 3;
if (mids->device_instance == 1)
cfg_hi.cfgx.dst_per = 1;
} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
if (mids->device_instance == 0)
cfg_hi.cfgx.src_per = 2;
if (mids->device_instance == 1)
cfg_hi.cfgx.src_per = 0;
cfg_hi.cfgx.dst_per = 0;
}
} else {
cfg_hi.cfgx.protctl = 0x1; /*default value*/
/* Baytrail DMAC uses dynamic device instance */
if (is_byt_lpio_dmac(midc->dma))
cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
mids->device_instance;
else
cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
midc->ch_id - midc->dma->chan_base;
}
}
/*calculate CTL_HI*/
width = mids->dma_slave.src_addr_width;
ctl_hi = get_block_ts(len, width, midc->dma->block_size, midc->dma->dword_trf);
pr_debug("MDMA:calc len %d for block size %d\n",
ctl_hi, midc->dma->block_size);
/*calculate CTL_LO*/
ctl_lo.ctl_lo = 0;
ctl_lo.ctlx.int_en = 1;
dst_reg_width = get_reg_width(mids->dma_slave.dst_addr_width);
if (dst_reg_width < 0) {
pr_err("ERR_MDMA: Failed to get DST reg width\n");
return NULL;
}
ctl_lo.ctlx.dst_tr_width = dst_reg_width;
src_reg_width = get_reg_width(mids->dma_slave.src_addr_width);
if (src_reg_width < 0) {
pr_err("ERR_MDMA: Failed to get SRC reg width\n");
return NULL;
}
ctl_lo.ctlx.src_tr_width = src_reg_width;
ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
ctl_lo.ctlx.tt_fc = 0;
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 0;
} else {
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 2;
ctl_lo.ctlx.tt_fc = 1;
} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
ctl_lo.ctlx.sinc = 2;
ctl_lo.ctlx.dinc = 0;
ctl_lo.ctlx.tt_fc = 2;
}
}
pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
ctl_lo.ctl_lo, ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
enable_dma_interrupt(midc);
desc = midc_desc_get(midc);
if (desc == NULL)
goto err_desc_get;
desc->sar = src;
desc->dar = dest ;
desc->len = len;
desc->cfg_hi = cfg_hi.cfg_hi;
desc->cfg_lo = cfg_lo.cfg_lo;
desc->ctl_lo = ctl_lo.ctl_lo;
desc->ctl_hi = ctl_hi;
desc->width = width;
desc->dirn = mids->dma_slave.direction;
desc->lli_phys = 0;
desc->lli = NULL;
desc->lli_pool = NULL;
return &desc->txd;
err_desc_get:
pr_err("ERR_MDMA: Failed to get desc\n");
midc_desc_put(midc, desc);
return NULL;
}
/**
* intel_mid_dma_prep_memcpy_v2 - Prep memcpy txn
* @chan: chan for DMA transfer
* @dest: destn address
* @src: src address
* @len: DMA transfer len
* @flags: DMA flags
*
* Perform a DMA memcpy. Note we support slave periphral DMA transfers only
* The periphral txn details should be filled in slave structure properly
* Returns the descriptor for this txn
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy_v2(
struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct intel_mid_dma_chan *midc;
struct intel_mid_dma_desc *desc = NULL;
struct intel_mid_dma_slave *mids;
union intel_mid_dma_ctl_lo ctl_lo;
u32 ctl_hi;
union intel_mid_dma_cfg_lo cfg_lo;
union intel_mid_dma_cfg_hi cfg_hi;
enum dma_slave_buswidth width;
int dst_reg_width = 0;
int src_reg_width = 0;
pr_debug("MDMA:%s\n", __func__);
BUG_ON(!chan);
if (!len)
return NULL;
midc = to_intel_mid_dma_chan(chan);
BUG_ON(!midc);
mids = midc->mid_slave;
BUG_ON(!mids);
if (unlikely(!midc->in_use)) {
pr_err("ERR_MDMA: %s: channel not in use", __func__);
return NULL;
}
pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
midc->dma->pci_id, midc->ch_id, len);
pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
mids->cfg_mode, mids->dma_slave.direction,
mids->hs_mode, mids->dma_slave.src_addr_width);
/*calculate CFG_LO*/
cfg_lo.cfgx_v2.dst_burst_align = 1;
cfg_lo.cfgx_v2.src_burst_align = 1;
/* For mem to mem transfer, it's SW HS only*/
cfg_hi.cfg_hi = 0;
/*calculate CFG_HI for mem to/from dev scenario */
if (mids->cfg_mode != LNW_DMA_MEM_TO_MEM) {
if (midc->dma->pimr_mask) {
/* device_instace => SSP0 = 0, SSP1 = 1, SSP2 = 2*/
if (mids->device_instance > 2) {
pr_err("Invalid SSP identifier\n");
return NULL;
}
cfg_hi.cfgx_v2.src_per = 0;
cfg_hi.cfgx_v2.dst_per = 0;
if (mids->dma_slave.direction == DMA_MEM_TO_DEV)
/* SSP DMA in Tx direction */
cfg_hi.cfgx_v2.dst_per = (2 * mids->device_instance) + 1;
else if (mids->dma_slave.direction == DMA_DEV_TO_MEM)
/* SSP DMA in Rx direction */
cfg_hi.cfgx_v2.src_per = (2 * mids->device_instance);
else
return NULL;
} else if ((midc->dma->pci_id == INTEL_MRFLD_GP_DMAC2_ID) ||
(midc->dma->pci_id == PCI_DEVICE_ID_INTEL_GP_DMAC2_MOOR)) {
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
cfg_hi.cfgx_v2.src_per = 0;
if (mids->device_instance ==
MRFL_INSTANCE_SPI3)
cfg_hi.cfgx_v2.dst_per = 0xF;
else if (mids->device_instance ==
MRFL_INSTANCE_SPI5)
cfg_hi.cfgx_v2.dst_per = 0xD;
else if (mids->device_instance ==
MRFL_INSTANCE_SPI6)
cfg_hi.cfgx_v2.dst_per = 0xB;
else
cfg_hi.cfgx_v2.dst_per = midc->ch_id
- midc->dma->chan_base;
} else if (mids->dma_slave.direction
== DMA_DEV_TO_MEM) {
if (mids->device_instance ==
MRFL_INSTANCE_SPI3)
cfg_hi.cfgx_v2.src_per = 0xE;
else if (mids->device_instance ==
MRFL_INSTANCE_SPI5)
cfg_hi.cfgx_v2.src_per = 0xC;
else if (mids->device_instance ==
MRFL_INSTANCE_SPI6)
cfg_hi.cfgx_v2.src_per = 0xA;
else
cfg_hi.cfgx_v2.src_per = midc->ch_id
- midc->dma->chan_base;
cfg_hi.cfgx_v2.dst_per = 0;
} else {
cfg_hi.cfgx_v2.dst_per =
cfg_hi.cfgx_v2.src_per = 0;
}
} else {
cfg_hi.cfgx_v2.src_per =
cfg_hi.cfgx_v2.dst_per =
midc->ch_id - midc->dma->chan_base;
}
}
/*calculate CTL_HI*/
width = mids->dma_slave.src_addr_width;
ctl_hi = get_block_ts(len, width, midc->dma->block_size, midc->dma->dword_trf);
pr_debug("MDMA:calc len %d for block size %d\n",
ctl_hi, midc->dma->block_size);
/*calculate CTL_LO*/
ctl_lo.ctl_lo = 0;
ctl_lo.ctlx_v2.int_en = 1;
dst_reg_width = get_reg_width(mids->dma_slave.dst_addr_width);
if (dst_reg_width < 0) {
pr_err("ERR_MDMA: Failed to get DST reg width\n");
return NULL;
}
ctl_lo.ctlx_v2.dst_tr_width = dst_reg_width;
src_reg_width = get_reg_width(mids->dma_slave.src_addr_width);
if (src_reg_width < 0) {
pr_err("ERR_MDMA: Failed to get SRC reg width\n");
return NULL;
}
ctl_lo.ctlx_v2.src_tr_width = src_reg_width;
ctl_lo.ctlx_v2.dst_msize = mids->dma_slave.src_maxburst;
ctl_lo.ctlx_v2.src_msize = mids->dma_slave.dst_maxburst;
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
ctl_lo.ctlx_v2.tt_fc = 0;
ctl_lo.ctlx_v2.sinc = 0;
ctl_lo.ctlx_v2.dinc = 0;
} else {
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
ctl_lo.ctlx_v2.sinc = 0;
ctl_lo.ctlx_v2.dinc = 1;
ctl_lo.ctlx_v2.tt_fc = 1;
} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
ctl_lo.ctlx_v2.sinc = 1;
ctl_lo.ctlx_v2.dinc = 0;
ctl_lo.ctlx_v2.tt_fc = 2;
}
}
pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
ctl_lo.ctl_lo, ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
enable_dma_interrupt(midc);
desc = midc_desc_get(midc);
if (desc == NULL)
goto err_desc_get;
desc->sar = src;
desc->dar = dest ;
desc->len = len;
desc->cfg_hi = cfg_hi.cfg_hi;
desc->cfg_lo = cfg_lo.cfg_lo;
desc->ctl_lo = ctl_lo.ctl_lo;
desc->ctl_hi = ctl_hi;
desc->width = width;
desc->dirn = mids->dma_slave.direction;
desc->lli_phys = 0;
desc->lli = NULL;
desc->lli_pool = NULL;
return &desc->txd;
err_desc_get:
pr_err("ERR_MDMA: Failed to get desc\n");
midc_desc_put(midc, desc);
return NULL;
}
/**
* intel_mid_dma_chan_prep_desc
* @chan: chan for DMA transfer
* @src_sg: destination scatter gather list
* @dst_sg: source scatter gather list
* @flags: DMA flags
* @src_sg_len: length of src sg list
* @direction DMA transfer dirtn
*
* Prepares LLI based periphral transfer
*/
static struct dma_async_tx_descriptor *intel_mid_dma_chan_prep_desc(
struct dma_chan *chan, struct scatterlist *src_sg,
struct scatterlist *dst_sg, unsigned long flags,
unsigned long src_sg_len,
enum dma_transfer_direction direction)
{
struct middma_device *mid = NULL;
struct intel_mid_dma_chan *midc = NULL;
struct intel_mid_dma_slave *mids = NULL;
struct intel_mid_dma_desc *desc = NULL;
struct dma_async_tx_descriptor *txd = NULL;
union intel_mid_dma_ctl_lo ctl_lo;
pr_debug("MDMA:intel_mid_dma_chan_prep_desc\n");
midc = to_intel_mid_dma_chan(chan);
BUG_ON(!midc);
mid = to_middma_device(midc->chan.device);
mids = midc->mid_slave;
BUG_ON(!mids);
if (!midc->dma->pimr_mask) {
pr_err("MDMA: SG list is not supported by this controller\n");
return NULL;
}
txd = midc->dma->dma_ops.device_prep_dma_memcpy(chan, 0, 0, src_sg->length, flags);
if (NULL == txd) {
pr_err("MDMA: Prep memcpy failed\n");
return NULL;
}
desc = to_intel_mid_dma_desc(txd);
desc->dirn = direction;
ctl_lo.ctl_lo = desc->ctl_lo;
ctl_lo.ctl_lo |= (1 << CTL_LO_BIT_LLP_DST_EN);
ctl_lo.ctl_lo |= (1 << CTL_LO_BIT_LLP_SRC_EN);
desc->ctl_lo = ctl_lo.ctl_lo;
desc->lli_length = src_sg_len;
desc->current_lli = 0;
/* DMA coherent memory pool for LLI descriptors*/
desc->lli_pool = dma_pool_create("intel_mid_dma_lli_pool",
midc->dma->dev,
(sizeof(struct intel_mid_dma_lli)*src_sg_len),
32, 0);
if (NULL == desc->lli_pool) {
pr_err("MID_DMA:LLI pool create failed\n");
return NULL;
}
midc->lli_pool = desc->lli_pool;
desc->lli = dma_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
if (!desc->lli) {
pr_err("MID_DMA: LLI alloc failed\n");
dma_pool_destroy(desc->lli_pool);
return NULL;
}
midc_lli_fill_sg(midc, desc, src_sg, dst_sg, src_sg_len, flags);
if (flags & DMA_PREP_INTERRUPT) {
/* Enable Block intr, disable TFR intr.
* It's not required to enable TFR, when Block intr is enabled
* Otherwise, for last block we will end up in invoking calltxd
* two times */
iowrite32(MASK_INTR_REG(midc->ch_id),
midc->dma_base + MASK_TFR);
clear_bit(midc->ch_id, &mid->tfr_intr_mask);
iowrite32(UNMASK_INTR_REG(midc->ch_id),
midc->dma_base + MASK_BLOCK);
set_bit(midc->ch_id, &mid->block_intr_mask);
midc->block_intr_status = true;
pr_debug("MDMA: Enabled Block Interrupt\n");
}
return &desc->txd;
}
/**
* intel_mid_dma_prep_sg - Prep sg txn
* @chan: chan for DMA transfer
* @dst_sg: destination scatter gather list
* @dst_sg_len: length of dest sg list
* @src_sg: source scatter gather list
* @src_sg_len: length of src sg list
* @flags: DMA flags
*
* Prepares LLI based periphral transfer
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_sg(
struct dma_chan *chan, struct scatterlist *dst_sg,
unsigned int dst_sg_len, struct scatterlist *src_sg,
unsigned int src_sg_len, unsigned long flags)
{
pr_debug("MDMA: Prep for memcpy SG\n");
if ((dst_sg_len != src_sg_len) || (dst_sg == NULL) ||
(src_sg == NULL)) {
pr_err("MDMA: Invalid SG length\n");
return NULL;
}
pr_debug("MDMA: SG Length = %d, Flags = %#lx, src_sg->length = %d\n",
src_sg_len, flags, src_sg->length);
return intel_mid_dma_chan_prep_desc(chan, src_sg, dst_sg, flags,
src_sg_len, DMA_MEM_TO_MEM);
}
/**
* intel_mid_dma_prep_slave_sg - Prep slave sg txn
* @chan: chan for DMA transfer
* @sgl: scatter gather list
* @sg_len: length of sg txn
* @direction: DMA transfer dirtn
* @flags: DMA flags
* @context: transfer context (ignored)
*
* Prepares LLI based periphral transfer
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sg,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
pr_debug("MDMA: Prep for slave SG\n");
if (!sg_len || sg == NULL) {
pr_err("MDMA: Invalid SG length\n");
return NULL;
}
pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
sg_len, direction, flags);
if (direction != DMA_MEM_TO_MEM) {
return intel_mid_dma_chan_prep_desc(chan, sg, NULL, flags,
sg_len, direction);
} else {
pr_err("MDMA: Invalid Direction\n");
return NULL;
}
}
/**
* intel_mid_dma_free_chan_resources - Frees dma resources
* @chan: chan requiring attention
*
* Frees the allocated resources on this DMA chan
*/
static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
pr_debug("entry:%s\n", __func__);
if (false == midc->in_use) {
pr_err("ERR_MDMA: try to free chnl already freed\n");
return;
}
if (true == midc->busy) {
/*trying to free ch in use!!!!!*/
pr_err("ERR_MDMA: trying to free ch in use\n");
dump_dma_reg(chan);
}
/* Disable CH interrupts */
disable_dma_interrupt(midc);
clear_dma_channel_interrupt(midc);
midc->block_intr_status = false;
midc->in_use = false;
midc->busy = false;
tasklet_unlock_wait(&mid->tasklet);
spin_lock_bh(&midc->lock);
midc->descs_allocated = 0;
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
list_del(&desc->desc_node);
dma_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
list_del(&desc->desc_node);
dma_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
list_del(&desc->desc_node);
dma_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
midc->raw_tfr = 0;
spin_unlock_bh(&midc->lock);
if (midc->lli_pool) {
dma_pool_destroy(midc->lli_pool);
midc->lli_pool = NULL;
}
/* Disable the channel */
iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
pm_runtime_put(mid->dev);
}
/**
* intel_mid_dma_alloc_chan_resources - Allocate dma resources
* @chan: chan requiring attention
*
* Allocates DMA resources on this chan
* Return the descriptors allocated
*/
static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc;
dma_addr_t phys;
int i = 0;
pm_runtime_get_sync(mid->dev);
if (mid->state == SUSPENDED) {
if (dma_resume(mid->dev)) {
pr_err("ERR_MDMA: resume failed");
return -EFAULT;
}
}
/* ASSERT: channel is idle */
if (midc->in_use == true) {
pr_err("ERR_MDMA: ch not idle\n");
pm_runtime_put(mid->dev);
return -EIO;
}
dma_cookie_init(chan);
spin_lock_bh(&midc->lock);
while (midc->descs_allocated < DESCS_PER_CHANNEL) {
spin_unlock_bh(&midc->lock);
desc = dma_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
if (!desc) {
pr_err("ERR_MDMA: desc failed\n");
pm_runtime_put(mid->dev);
return -ENOMEM;
/*check*/
}
dma_async_tx_descriptor_init(&desc->txd, chan);
desc->txd.tx_submit = intel_mid_dma_tx_submit;
desc->txd.flags = DMA_CTRL_ACK;
desc->txd.phys = phys;
spin_lock_bh(&midc->lock);
i = ++midc->descs_allocated;
list_add_tail(&desc->desc_node, &midc->free_list);
}
midc->busy = false;
spin_unlock_bh(&midc->lock);
midc->in_use = true;
midc->block_intr_status = false;
pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
return i;
}
/**
* midc_handle_error - Handle DMA txn error
* @mid: controller where error occurred
* @midc: chan where error occurred
*
* Scan the descriptor for error
*/
static void midc_handle_error(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
midc_collect_descriptors(mid, midc);
midc_start_descriptors(mid, midc);
}
/**
* dma_tasklet - DMA interrupt tasklet
* @data: tasklet arg (the controller structure)
*
* Scan the controller for interrupts for completion/error
* Clear the interrupt and call for handling completion/error
*/
static void dma_tasklet(unsigned long data)
{
struct middma_device *mid = NULL;
struct intel_mid_dma_chan *midc = NULL;
u32 status, raw_tfr, raw_block;
int i;
mid = (struct middma_device *)data;
if (mid == NULL) {
pr_err("ERR_MDMA: tasklet Null param\n");
return;
}
raw_tfr = ioread32(mid->dma_base + RAW_TFR);
status = raw_tfr & mid->tfr_intr_mask;
pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
pr_debug("tfr_mask:%#lx, raw_tfr:%#x, status:%#x\n",
mid->tfr_intr_mask, raw_tfr, status);
while (status) {
/*txn interrupt*/
i = get_ch_index(status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
/* clear the status bit */
status = status & ~(1 << (i + mid->chan_base));
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
spin_lock_bh(&midc->lock);
midc->raw_tfr = raw_tfr;
/*clearing this interrupts first*/
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
if (likely(midc->in_use)) {
midc_collect_descriptors(mid, midc);
midc_start_descriptors(mid, midc);
}
pr_debug("MDMA:Scan of desc... complete, unmasking\n");
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_TFR);
spin_unlock_bh(&midc->lock);
}
raw_block = ioread32(mid->dma_base + RAW_BLOCK);
status = raw_block & mid->block_intr_mask;
pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
pr_debug("block_mask:%#lx, raw_block%#x, status:%#x\n",
mid->block_intr_mask, raw_block, status);
while (status) {
/*txn interrupt*/
i = get_ch_index(status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
/* clear the status bit */
status = status & ~(1 << (i + mid->chan_base));
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt raw block %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
spin_lock_bh(&midc->lock);
/*clearing this interrupts first*/
midc->raw_block = raw_block;
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_BLOCK);
if (midc->block_intr_status) {
midc_collect_descriptors(mid, midc);
midc_start_descriptors(mid, midc);
}
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_BLOCK);
spin_unlock_bh(&midc->lock);
}
status = ioread32(mid->dma_base + RAW_ERR);
pr_debug("MDMA:raw error status:%#x\n", status);
while (status) {
/*err interrupt*/
i = get_ch_index(status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x (raw err)\n", i);
return;
}
status = status & ~(1 << (i + mid->chan_base));
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc (raw err)\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
spin_lock_bh(&midc->lock);
midc_handle_error(mid, midc);
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_ERR);
spin_unlock_bh(&midc->lock);
}
pr_debug("MDMA:Exiting takslet...\n");
return;
}
static void dma_tasklet1(unsigned long data)
{
pr_debug("MDMA:in takslet1...\n");
return dma_tasklet(data);
}
static void dma_tasklet2(unsigned long data)
{
pr_debug("MDMA:in takslet2...\n");
return dma_tasklet(data);
}
/**
* intel_mid_dma_interrupt - DMA ISR
* @irq: IRQ where interrupt occurred
* @data: ISR cllback data (the controller structure)
*
* See if this is our interrupt if so then schedule the tasklet
* otherwise ignore
*/
static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
{
struct middma_device *mid = data;
u32 tfr_status, err_status, block_status;
u32 isr;
/* On Baytrail, the DMAC is sharing IRQ with other devices */
if (is_byt_lpio_dmac(mid) && mid->state == SUSPENDED)
return IRQ_NONE;
/*DMA Interrupt*/
pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
if (!mid) {
pr_err("ERR_MDMA:null pointer mid\n");
return -EINVAL;
}
/* Read the interrupt status registers */
tfr_status = ioread32(mid->dma_base + STATUS_TFR);
err_status = ioread32(mid->dma_base + STATUS_ERR);
block_status = ioread32(mid->dma_base + STATUS_BLOCK);
/* Common case if the IRQ is shared with other devices */
if (!tfr_status && !err_status && !block_status)
return IRQ_NONE;
pr_debug("MDMA: trf_Status %x, Mask %x\n", tfr_status, mid->intr_mask);
if (tfr_status) {
/*need to disable intr*/
iowrite32((tfr_status << INT_MASK_WE),
mid->dma_base + MASK_TFR);
}
if (block_status) {
/*need to disable intr*/
iowrite32((block_status << INT_MASK_WE),
mid->dma_base + MASK_BLOCK);
}
if (err_status) {
iowrite32((err_status << INT_MASK_WE),
mid->dma_base + MASK_ERR);
}
/* in mrlfd we need to clear the pisr bits to stop intr as well
* so read the PISR register, see if we have pisr bits status and clear
* them
*/
if (mid->pimr_mask && !mid->dword_trf) {
isr = readl(mid->mask_reg);
pr_debug("isr says: %x", isr);
if (isr) {
isr &= mid->pimr_mask;
pr_debug("writing isr: %x", isr);
writel(isr, mid->mask_reg);
}
}
tasklet_schedule(&mid->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
static void config_dma_fifo_partition(struct middma_device *dma)
{
/* program FIFO Partition registers - 128 bytes for each ch */
iowrite32(DMA_FIFO_SIZE, dma->dma_base + FIFO_PARTITION0_HI);
iowrite32(DMA_FIFO_SIZE, dma->dma_base + FIFO_PARTITION1_LO);
iowrite32(DMA_FIFO_SIZE, dma->dma_base + FIFO_PARTITION1_HI);
iowrite32(DMA_FIFO_SIZE | BIT(26), dma->dma_base + FIFO_PARTITION0_LO);
}
/* v1 ops will be used for Medfield & CTP platforms */
static struct intel_mid_dma_ops v1_dma_ops = {
.device_alloc_chan_resources = intel_mid_dma_alloc_chan_resources,
.device_free_chan_resources = intel_mid_dma_free_chan_resources,
.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy,
.device_prep_dma_sg = intel_mid_dma_prep_sg,
.device_prep_slave_sg = intel_mid_dma_prep_slave_sg,
.device_control = intel_mid_dma_device_control,
.device_tx_status = intel_mid_dma_tx_status,
.device_issue_pending = intel_mid_dma_issue_pending,
.dma_chan_suspend = intel_mid_dma_chan_suspend_v1,
};
/* v2 ops will be used in Merrifield and beyond plantforms */
static struct intel_mid_dma_ops v2_dma_ops = {
.device_alloc_chan_resources = intel_mid_dma_alloc_chan_resources,
.device_free_chan_resources = intel_mid_dma_free_chan_resources,
.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy_v2,
.device_prep_dma_sg = intel_mid_dma_prep_sg,
.device_prep_slave_sg = intel_mid_dma_prep_slave_sg,
.device_control = intel_mid_dma_device_control,
.device_tx_status = intel_mid_dma_tx_status,
.device_issue_pending = intel_mid_dma_issue_pending,
.dma_chan_suspend = intel_mid_dma_chan_suspend_v2,
};
/**
* mid_setup_dma - Setup the DMA controller
* @pdev: Controller PCI device structure
*
* Initialize the DMA controller, channels, registers with DMA engine,
* ISR. Initialize DMA controller channels.
*/
int mid_setup_dma(struct device *dev)
{
struct middma_device *dma = dev_get_drvdata(dev);
int err, i;
/* DMA coherent memory pool for DMA descriptor allocations */
dma->dma_pool = dma_pool_create("intel_mid_dma_desc_pool", dev,
sizeof(struct intel_mid_dma_desc),
32, 0);
if (NULL == dma->dma_pool) {
pr_err("ERR_MDMA:dma_pool_create failed\n");
err = -ENOMEM;
kfree(dma);
goto err_dma_pool;
}
INIT_LIST_HEAD(&dma->common.channels);
if (dma->pimr_mask) {
dma->mask_reg = devm_ioremap(dma->dev, dma->pimr_base, LNW_PERIPHRAL_MASK_SIZE);
if (dma->mask_reg == NULL) {
pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
err = -ENOMEM;
goto err_setup;
}
} else {
dma->mask_reg = NULL;
}
pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
/*init CH structures*/
dma->intr_mask = 0;
dma->state = RUNNING;
for (i = 0; i < dma->max_chan; i++) {
struct intel_mid_dma_chan *midch = &dma->ch[i];
midch->chan.device = &dma->common;
dma_cookie_init(&midch->chan);
midch->ch_id = dma->chan_base + i;
pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
midch->dma_base = dma->dma_base;
midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
midch->dma = dma;
dma->intr_mask |= 1 << (dma->chan_base + i);
spin_lock_init(&midch->lock);
INIT_LIST_HEAD(&midch->active_list);
INIT_LIST_HEAD(&midch->queue);
INIT_LIST_HEAD(&midch->free_list);
/*mask interrupts*/
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_SRC_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_DST_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_ERR);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_TFR);
disable_dma_interrupt(midch);
list_add_tail(&midch->chan.device_node, &dma->common.channels);
}
pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
/*init dma structure*/
dma_cap_zero(dma->common.cap_mask);
dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
dma->common.dev = dev;
dma->common.device_alloc_chan_resources = dma->dma_ops.device_alloc_chan_resources;
dma->common.device_free_chan_resources = dma->dma_ops.device_free_chan_resources;
dma->common.device_tx_status = dma->dma_ops.device_tx_status;
dma->common.device_prep_dma_memcpy = dma->dma_ops.device_prep_dma_memcpy;
dma->common.device_prep_dma_sg = dma->dma_ops.device_prep_dma_sg;
dma->common.device_issue_pending = dma->dma_ops.device_issue_pending;
dma->common.device_prep_slave_sg = dma->dma_ops.device_prep_slave_sg;
dma->common.device_control = dma->dma_ops.device_control;
/*enable dma cntrl*/
iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
/*register irq */
if (dma->pimr_mask) {
pr_debug("MDMA:Requesting irq shared for DMAC1\n");
err = devm_request_irq(dma->dev, dma->irq, intel_mid_dma_interrupt1,
IRQF_SHARED, "INTEL_MID_DMAC1", dma);
if (0 != err)
goto err_setup;
} else {
dma->intr_mask = 0x03;
pr_debug("MDMA:Requesting irq for DMAC2\n");
err = devm_request_irq(dma->dev, dma->irq, intel_mid_dma_interrupt2,
IRQF_SHARED, "INTEL_MID_DMAC2", dma);
if (0 != err)
goto err_setup;
}
/*register device w/ engine*/
err = dma_async_device_register(&dma->common);
if (0 != err) {
pr_err("ERR_MDMA:device_register failed: %d\n", err);
goto err_dma_pool;
}
if (dma->pimr_mask) {
pr_debug("setting up tasklet1 for DMAC1\n");
tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
} else {
pr_debug("setting up tasklet2 for DMAC2\n");
tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
}
if (!dma->dword_trf) {
config_dma_fifo_partition(dma);
/* Mask all interrupts from DMA controller to IA by default */
dmac1_mask_periphral_intr(dma);
}
return 0;
err_setup:
dma_pool_destroy(dma->dma_pool);
err_dma_pool:
pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
return err;
}
/**
* middma_shutdown - Shutdown the DMA controller
* @dev: Controller device structure
*
* Called by remove
* Unregister DMa controller, clear all structures and free interrupt
*/
void middma_shutdown(struct device *dev)
{
struct middma_device *device = dev_get_drvdata(dev);
dma_async_device_unregister(&device->common);
dma_pool_destroy(device->dma_pool);
return;
}
struct middma_device *mid_dma_setup_context(struct device *dev,
struct intel_mid_dma_probe_info *info)
{
struct middma_device *mid_device;
mid_device = devm_kzalloc(dev, sizeof(*mid_device), GFP_KERNEL);
if (!mid_device) {
pr_err("ERR_MDMA:kzalloc failed probe\n");
return NULL;
}
mid_device->dev = dev;
mid_device->max_chan = info->max_chan;
mid_device->chan_base = info->ch_base;
mid_device->block_size = info->block_size;
mid_device->pimr_mask = info->pimr_mask;
mid_device->pimr_base = info->pimr_base;
mid_device->dword_trf = info->dword_trf;
mid_device->pimr_offset = info->pimr_offset;
mid_device->pci_id = info->pci_id;
memcpy(&mid_device->dma_ops, info->pdma_ops, sizeof(struct intel_mid_dma_ops));
return mid_device;
}
/**
* intel_mid_dma_probe - PCI Probe
* @pdev: Controller PCI device structure
* @id: pci device id structure
*
* Initialize the PCI device, map BARs, query driver data.
* Call setup_dma to complete contoller and chan initilzation
*/
static int intel_mid_dma_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct middma_device *device;
u32 base_addr, bar_size;
struct intel_mid_dma_probe_info *info;
int err;
pr_debug("MDMA: probe for %x\n", pdev->device);
info = (void *)id->driver_data;
pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
info->max_chan, info->ch_base,
info->block_size, info->pimr_mask);
err = pci_enable_device(pdev);
if (err)
goto err_enable_device;
err = pci_request_regions(pdev, "intel_mid_dmac");
if (err)
goto err_request_regions;
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
pci_dev_get(pdev);
device = mid_dma_setup_context(&pdev->dev, info);
if (!device)
goto err_kzalloc;
device->pci_id = pdev->device;
base_addr = pci_resource_start(pdev, 0);
bar_size = pci_resource_len(pdev, 0);
device->dma_base = devm_ioremap_nocache(&pdev->dev, base_addr, DMA_REG_SIZE);
if (!device->dma_base) {
pr_err("ERR_MDMA:ioremap failed\n");
err = -ENOMEM;
goto err_ioremap;
}
device->irq = pdev->irq;
pci_set_drvdata(pdev, device);
pci_set_master(pdev);
#ifdef CONFIG_PRH_TEMP_WA_FOR_SPID
/* PRH uses, ch 4,5,6,7 override the info table data */
pr_info("Device is Bodegabay\n");
device->max_chan = 4;
device->chan_base = 4;
#endif
err = mid_setup_dma(&pdev->dev);
if (err)
goto err_ioremap;
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_forbid(&pdev->dev);
return 0;
err_ioremap:
pci_dev_put(pdev);
err_kzalloc:
err_set_dma_mask:
pci_release_regions(pdev);
pci_disable_device(pdev);
err_request_regions:
err_enable_device:
pr_err("ERR_MDMA:Probe failed %d\n", err);
return err;
}
/**
* intel_mid_dma_remove - PCI remove
* @pdev: Controller PCI device structure
*
* Free up all resources and data
* Call shutdown_dma to complete contoller and chan cleanup
*/
static void intel_mid_dma_remove(struct pci_dev *pdev)
{
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_forbid(&pdev->dev);
middma_shutdown(&pdev->dev);
pci_dev_put(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
/* Power Management */
/*
* dma_suspend - suspend function
*
* @dev: device structure
*
* This function is called by OS when a power event occurs
*/
int dma_suspend(struct device *dev)
{
int i;
struct middma_device *device = dev_get_drvdata(dev);
pr_debug("MDMA: dma_suspend called\n");
#if 0
for (i = 0; i < device->max_chan; i++) {
if (device->ch[i].in_use)
return -EAGAIN;
}
#endif
dmac1_mask_periphral_intr(device);
device->state = SUSPENDED;
return 0;
}
/**
* dma_resume - resume function
*
* @dev: device structure
*
* This function is called by OS when a power event occurs
*/
int dma_resume(struct device *dev)
{
struct middma_device *device = dev_get_drvdata(dev);
pr_debug("MDMA: dma_resume called\n");
device->state = RUNNING;
iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
if (!device->dword_trf)
config_dma_fifo_partition(device);
return 0;
}
static int dma_runtime_suspend(struct device *dev)
{
return dma_suspend(dev);
}
static int dma_runtime_resume(struct device *dev)
{
return dma_resume(dev);
}
static int dma_runtime_idle(struct device *dev)
{
struct middma_device *device = dev_get_drvdata(dev);
int i;
for (i = 0; i < device->max_chan; i++) {
if (device->ch[i].in_use)
return -EAGAIN;
}
return pm_schedule_suspend(dev, 0);;
}
/******************************************************************************
* PCI stuff
*/
static struct pci_device_id intel_mid_dma_ids[] = {
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),
INFO(2, 6, SST_MAX_DMA_LEN, 0x200020, 0xFFAE8008, 1, 0x8, INTEL_MID_DMAC1_ID, &v1_dma_ops)},
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),
INFO(2, 0, 2047, 0, 0, 1, 0, INTEL_MID_DMAC2_ID, &v1_dma_ops)},
{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),
INFO(2, 0, 2047, 0, 0, 1, 0, INTEL_MID_GP_DMAC2_ID, &v1_dma_ops)},
{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),
INFO(4, 0, SST_MAX_DMA_LEN, 0x400040, 0xFFAE8008, 1, 0x8, INTEL_MFLD_DMAC1_ID, &v1_dma_ops)},
/* Cloverview support */
{ PCI_VDEVICE(INTEL, INTEL_CLV_GP_DMAC2_ID),
INFO(2, 0, 2047, 0, 0, 1, 0, INTEL_CLV_GP_DMAC2_ID, &v1_dma_ops)},
{ PCI_VDEVICE(INTEL, INTEL_CLV_DMAC1_ID),
INFO(4, 0, SST_MAX_DMA_LEN, 0x400040, 0xFFAE8008, 1, 0x8, INTEL_CLV_DMAC1_ID, &v1_dma_ops)},
/* Mrfld */
{ PCI_VDEVICE(INTEL, INTEL_MRFLD_GP_DMAC2_ID),
INFO(4, 0, SST_MAX_DMA_LEN_MRFLD, 0, 0, 0, 0, INTEL_MRFLD_GP_DMAC2_ID, &v2_dma_ops)},
{ PCI_VDEVICE(INTEL, INTEL_MRFLD_DMAC0_ID),
INFO(2, 6, SST_MAX_DMA_LEN_MRFLD, 0xFF0000, 0xFF340018, 0, 0x10, INTEL_MRFLD_DMAC0_ID, &v2_dma_ops)},
/* Baytrail Low Speed Peripheral DMA */
{ PCI_VDEVICE(INTEL, INTEL_BYT_LPIO1_DMAC_ID),
INFO(6, 0, 2047, 0, 0, 1, 0, INTEL_BYT_LPIO1_DMAC_ID, &v1_dma_ops)},
{ PCI_VDEVICE(INTEL, INTEL_BYT_LPIO2_DMAC_ID),
INFO(6, 0, 2047, 0, 0, 1, 0, INTEL_BYT_LPIO2_DMAC_ID, &v1_dma_ops)},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
struct intel_mid_dma_probe_info dma_byt_info = {
.max_chan = 4,
.ch_base = 4,
.block_size = 131071,
.pimr_mask = 0x00FF0000,
.pimr_base = 0xDF540018,
.dword_trf = 0,
.pimr_offset = 0x10,
.pci_id = INTEL_BYT_DMAC0_ID,
.pdma_ops = &v2_dma_ops,
};
static const struct dev_pm_ops intel_mid_dma_pm = {
SET_SYSTEM_SLEEP_PM_OPS(dma_suspend,
dma_resume)
SET_RUNTIME_PM_OPS(dma_runtime_suspend,
dma_runtime_resume,
dma_runtime_idle)
};
static struct pci_driver intel_mid_dma_pci_driver = {
.name = "intel_mid_dma",
.id_table = intel_mid_dma_ids,
.probe = intel_mid_dma_probe,
.remove = intel_mid_dma_remove,
#ifdef CONFIG_PM
.driver = {
.pm = &intel_mid_dma_pm,
},
#endif
};
static const struct acpi_device_id dma_acpi_ids[];
struct intel_mid_dma_probe_info *mid_get_acpi_driver_data(const char *hid)
{
const struct acpi_device_id *id;
pr_debug("%s", __func__);
for (id = dma_acpi_ids; id->id[0]; id++)
if (!strncmp(id->id, hid, 16))
return (struct intel_mid_dma_probe_info *)id->driver_data;
return NULL;
}
static const struct acpi_device_id dma_acpi_ids[] = {
{ "DMA0F28", (kernel_ulong_t)&dma_byt_info },
{ },
};
static struct platform_driver intel_dma_acpi_driver = {
.driver = {
.name = "intel_dma_acpi",
.owner = THIS_MODULE,
.acpi_match_table = dma_acpi_ids,
.pm = &intel_mid_dma_pm,
},
.probe = dma_acpi_probe,
.remove = dma_acpi_remove,
};
static int __init intel_mid_dma_init(void)
{
int ret;
pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
INTEL_MID_DMA_DRIVER_VERSION);
ret = pci_register_driver(&intel_mid_dma_pci_driver);
if (ret)
pr_err("PCI dev registration failed");
ret = platform_driver_register(&intel_dma_acpi_driver);
if (ret)
pr_err("Platform dev registration failed");
return ret;
}
module_init(intel_mid_dma_init);
static void __exit intel_mid_dma_exit(void)
{
pci_unregister_driver(&intel_mid_dma_pci_driver);
platform_driver_unregister(&intel_dma_acpi_driver);
}
module_exit(intel_mid_dma_exit);
MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
MODULE_ALIAS("pci:intel_mid_dma");
MODULE_ALIAS("acpi:intel_dma_acpi");