blob: 73ae3e256f89b7799d2db24b5520ac9c4ef5f7c7 [file] [log] [blame]
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <math.h>
#include <iostream>
#include <string>
#include <stdexcept>
#include "hp20x.h"
using namespace upm;
using namespace std;
HP20X::HP20X(int bus, uint8_t address):
m_i2c(bus)
{
m_addr = address;
mraa::Result rv;
if ( (rv = m_i2c.address(m_addr)) != mraa::SUCCESS)
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": I2c.address() failed");
return;
}
}
HP20X::~HP20X()
{
}
bool HP20X::init(DSR_BITS_T dsr)
{
// wait for the device to report ready
waitforDeviceReady();
m_dsr = dsr;
// enable compensation? Datasheet says yes, but a register readback
// says no. Data does seem stable, so....
compensationEnable(true);
return true;
}
bool HP20X::isReady()
{
uint8_t intsrc = readReg(REG_INT_SRC);
if (intsrc & INT_SRC_DEV_RDY)
return true;
return false;
}
bool HP20X::waitforDeviceReady()
{
const int maxRetries = 20;
int retries = 0;
while (retries < maxRetries)
{
if (isReady())
return true;
usleep(20000);
retries++;
}
throw std::runtime_error(std::string(__FUNCTION__) +
": timeout waiting for device to become ready");
return false;
}
bool HP20X::writeCmd(uint8_t cmd)
{
mraa::Result rv;
if ((rv = m_i2c.writeByte(cmd)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeByte() failed");
return false;
}
return true;
}
bool HP20X::writeReg(HP20X_REG_T reg, uint8_t data)
{
waitforDeviceReady();
uint8_t r = CMD_WRITE_REG | reg;
mraa::Result rv;
if ((rv = m_i2c.writeReg(r, data)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
uint8_t HP20X::readReg(HP20X_REG_T reg)
{
uint8_t r = CMD_READ_REG | reg;
return m_i2c.readReg(r);
}
int HP20X::readData()
{
uint8_t buf[3] = {0};
if (!m_i2c.read(buf, 3))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.read() failed");
return 0;
}
// handle 24bit sign extension
int minus = 1;
if (buf[0] & 0x80)
{
// negative
buf[0] &= 0x3f;
minus = -1;
}
return ( minus * ((buf[0] << 16) | (buf[1] << 8) | buf[2]) );
}
float HP20X::getTemperature()
{
// wait for the device to report ready
waitforDeviceReady();
// start conversion, T only
uint8_t cmd = CMD_ADC_CVT | (CHNL_T << CHNL_SHIFT) | (m_dsr << DSR_SHIFT);
writeCmd(cmd);
// wait for the device to report ready
waitforDeviceReady();
// now read the temperature
writeCmd(CMD_READ_T);
return ((float)readData() / 100.0);
}
float HP20X::getPressure()
{
// wait for the device to report ready
waitforDeviceReady();
// start conversion, PT only
uint8_t cmd = CMD_ADC_CVT | (CHNL_PT << CHNL_SHIFT) | (m_dsr << DSR_SHIFT);
writeCmd(cmd);
// wait for the device to report ready
waitforDeviceReady();
// now read the pressure
writeCmd(CMD_READ_P);
return ((float)readData() / 100.0);
}
float HP20X::getAltitude()
{
// wait for the device to report ready
waitforDeviceReady();
// start conversion, PT only
uint8_t cmd = CMD_ADC_CVT | (CHNL_PT << CHNL_SHIFT) | (m_dsr << DSR_SHIFT);
writeCmd(cmd);
// wait for the device to report ready
waitforDeviceReady();
// now read the pressure
writeCmd(CMD_READ_A);
return ((float)readData() / 100.0);
}
void HP20X::compensationEnable(bool enable)
{
if (enable)
writeReg(REG_PARA, PARA_CMPS_EN);
else
writeReg(REG_PARA, 0);
}
bool HP20X::setInterruptEnable(uint8_t bits)
{
return writeReg(REG_INT_EN, bits);
}
bool HP20X::setInterruptConfig(uint8_t bits)
{
return writeReg(REG_INT_CFG, bits);
}
uint8_t HP20X::getInterruptSource()
{
return readReg(REG_INT_SRC);
}
void HP20X::setDSR(DSR_BITS_T dsr)
{
m_dsr = dsr;
}
void HP20X::recalibrateInternal()
{
waitforDeviceReady();
writeCmd(CMD_ANA_CAL);
}
void HP20X::softReset()
{
waitforDeviceReady();
writeCmd(CMD_SOFT_RST);
waitforDeviceReady();
}
void HP20X::setAltitudeOffset(int16_t off)
{
writeReg(REG_ALT_OFF_LSB, (off & 0xff));
writeReg(REG_ALT_OFF_MSB, ((off >> 8) & 0xff));
}
void HP20X::setPAThreshholds(int16_t low, int16_t med, int16_t high)
{
// low
writeReg(REG_PA_L_TH_LSB, (low & 0xff));
writeReg(REG_PA_L_TH_MSB, ((low >> 8) & 0xff));
// medium
writeReg(REG_PA_M_TH_LSB, (med & 0xff));
writeReg(REG_PA_M_TH_MSB, ((med >> 8) & 0xff));
// high
writeReg(REG_PA_H_TH_LSB, (high & 0xff));
writeReg(REG_PA_H_TH_MSB, ((high >> 8) & 0xff));
}
void HP20X::setTemperatureThreshholds(int8_t low, int8_t med, int8_t high)
{
// low
writeReg(REG_T_L_TH, low);
// medium
writeReg(REG_T_M_TH, med);
// high
writeReg(REG_T_H_TH, high);
}