blob: 5f95aa8c716124845a24fb5f55151ee29ff5e065 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.support.animation;
import android.support.annotation.FloatRange;
/**
* Spring Force defines the characteristics of the spring being used in the animation.
* <p>
* By configuring the stiffness and damping ratio, callers can create a spring with the look and
* feel suits their use case. Stiffness corresponds to the spring constant. The stiffer the spring
* is, the harder it is to stretch it, the faster it undergoes dampening.
* <p>
* Spring damping ratio describes how oscillations in a system decay after a disturbance.
* When damping ratio > 1* (i.e. over-damped), the object will quickly return to the rest position
* without overshooting. If damping ratio equals to 1 (i.e. critically damped), the object will
* return to equilibrium within the shortest amount of time. When damping ratio is less than 1
* (i.e. under-damped), the mass tends to overshoot, and return, and overshoot again. Without any
* damping (i.e. damping ratio = 0), the mass will oscillate forever.
*/
public final class SpringForce implements Force {
/**
* Stiffness constant for extremely stiff spring.
*/
public static final float STIFFNESS_HIGH = 10_000f;
/**
* Stiffness constant for medium stiff spring. This is the default stiffness for spring force.
*/
public static final float STIFFNESS_MEDIUM = 1500f;
/**
* Stiffness constant for a spring with low stiffness.
*/
public static final float STIFFNESS_LOW = 200f;
/**
* Stiffness constant for a spring with very low stiffness.
*/
public static final float STIFFNESS_VERY_LOW = 50f;
/**
* Damping ratio for a very bouncy spring. Note for under-damped springs
* (i.e. damping ratio < 1), the lower the damping ratio, the more bouncy the spring.
*/
public static final float DAMPING_RATIO_HIGH_BOUNCY = 0.2f;
/**
* Damping ratio for a medium bouncy spring. This is also the default damping ratio for spring
* force. Note for under-damped springs (i.e. damping ratio < 1), the lower the damping ratio,
* the more bouncy the spring.
*/
public static final float DAMPING_RATIO_MEDIUM_BOUNCY = 0.5f;
/**
* Damping ratio for a spring with low bounciness. Note for under-damped springs
* (i.e. damping ratio < 1), the lower the damping ratio, the higher the bounciness.
*/
public static final float DAMPING_RATIO_LOW_BOUNCY = 0.75f;
/**
* Damping ratio for a spring with no bounciness. This damping ratio will create a critically
* damped spring that returns to equilibrium within the shortest amount of time without
* oscillating.
*/
public static final float DAMPING_RATIO_NO_BOUNCY = 1f;
// This multiplier is used to calculate the velocity threshold given a certain value threshold.
// The idea is that if it takes >= 1 frame to move the value threshold amount, then the velocity
// is a reasonable threshold.
private static final double VELOCITY_THRESHOLD_MULTIPLIER = 1000.0 / 16.0;
// Natural frequency
double mNaturalFreq = Math.sqrt(STIFFNESS_MEDIUM);
// Damping ratio.
double mDampingRatio = DAMPING_RATIO_MEDIUM_BOUNCY;
// Value to indicate an unset state.
private static final double UNSET = Double.MAX_VALUE;
// Indicates whether the spring has been initialized
private boolean mInitialized = false;
// Threshold for velocity and value to determine when it's reasonable to assume that the spring
// is approximately at rest.
private double mValueThreshold;
private double mVelocityThreshold;
// Intermediate values to simplify the spring function calculation per frame.
private double mGammaPlus;
private double mGammaMinus;
private double mDampedFreq;
// Final position of the spring. This must be set before the start of the animation.
private double mFinalPosition = UNSET;
// Internal state to hold a value/velocity pair.
private final DynamicAnimation.MassState mMassState = new DynamicAnimation.MassState();
/**
* Creates a spring force. Note that final position of the spring must be set through
* {@link #setFinalPosition(float)} before the spring animation starts.
*/
public SpringForce() {
// No op.
}
/**
* Creates a spring with a given final rest position.
*
* @param finalPosition final position of the spring when it reaches equilibrium
*/
public SpringForce(float finalPosition) {
mFinalPosition = finalPosition;
}
/**
* Sets the stiffness of a spring. The more stiff a spring is, the more force it applies to
* the object attached when the spring is not at the final position. Default stiffness is
* {@link #STIFFNESS_MEDIUM}.
*
* @param stiffness non-negative stiffness constant of a spring
* @return the spring force that the given stiffness is set on
* @throws IllegalArgumentException if the given spring stiffness is not positive
*/
public SpringForce setStiffness(
@FloatRange(from = 0.0, fromInclusive = false) float stiffness) {
if (stiffness <= 0) {
throw new IllegalArgumentException("Spring stiffness constant must be positive.");
}
mNaturalFreq = Math.sqrt(stiffness);
// All the intermediate values need to be recalculated.
mInitialized = false;
return this;
}
/**
* Gets the stiffness of the spring.
*
* @return the stiffness of the spring
*/
public float getStiffness() {
return (float) (mNaturalFreq * mNaturalFreq);
}
/**
* Spring damping ratio describes how oscillations in a system decay after a disturbance.
* <p>
* When damping ratio > 1 (over-damped), the object will quickly return to the rest position
* without overshooting. If damping ratio equals to 1 (i.e. critically damped), the object will
* return to equilibrium within the shortest amount of time. When damping ratio is less than 1
* (i.e. under-damped), the mass tends to overshoot, and return, and overshoot again. Without
* any damping (i.e. damping ratio = 0), the mass will oscillate forever.
* <p>
* Default damping ratio is {@link #DAMPING_RATIO_MEDIUM_BOUNCY}.
*
* @param dampingRatio damping ratio of the spring, it should be non-negative
* @return the spring force that the given damping ratio is set on
* @throws IllegalArgumentException if the {@param dampingRatio} is negative.
*/
public SpringForce setDampingRatio(@FloatRange(from = 0.0) float dampingRatio) {
if (dampingRatio < 0) {
throw new IllegalArgumentException("Damping ratio must be non-negative");
}
mDampingRatio = dampingRatio;
// All the intermediate values need to be recalculated.
mInitialized = false;
return this;
}
/**
* Returns the damping ratio of the spring.
*
* @return damping ratio of the spring
*/
public float getDampingRatio() {
return (float) mDampingRatio;
}
/**
* Sets the rest position of the spring.
*
* @param finalPosition rest position of the spring
* @return the spring force that the given final position is set on
*/
public SpringForce setFinalPosition(float finalPosition) {
mFinalPosition = finalPosition;
return this;
}
/**
* Returns the rest position of the spring.
*
* @return rest position of the spring
*/
public float getFinalPosition() {
return (float) mFinalPosition;
}
/*********************** Below are private APIs *********************/
/**
* @hide
*/
@Override
public float getAcceleration(float lastDisplacement, float lastVelocity) {
lastDisplacement -= getFinalPosition();
double k = mNaturalFreq * mNaturalFreq;
double c = 2 * mNaturalFreq * mDampingRatio;
return (float) (-k * lastDisplacement - c * lastVelocity);
}
/**
* @hide
*/
@Override
public boolean isAtEquilibrium(float value, float velocity) {
if (Math.abs(velocity) < mVelocityThreshold
&& Math.abs(value - getFinalPosition()) < mValueThreshold) {
return true;
}
return false;
}
/**
* Initialize the string by doing the necessary pre-calculation as well as some sanity check
* on the setup.
*
* @throws IllegalStateException if the final position is not yet set by the time the spring
* animation has started
*/
private void init() {
if (mInitialized) {
return;
}
if (mFinalPosition == UNSET) {
throw new IllegalStateException("Error: Final position of the spring must be"
+ " set before the animation starts");
}
if (mDampingRatio > 1) {
// Over damping
mGammaPlus = -mDampingRatio * mNaturalFreq
+ mNaturalFreq * Math.sqrt(mDampingRatio * mDampingRatio - 1);
mGammaMinus = -mDampingRatio * mNaturalFreq
- mNaturalFreq * Math.sqrt(mDampingRatio * mDampingRatio - 1);
} else if (mDampingRatio >= 0 && mDampingRatio < 1) {
// Under damping
mDampedFreq = mNaturalFreq * Math.sqrt(1 - mDampingRatio * mDampingRatio);
}
mInitialized = true;
}
/**
* Internal only call for Spring to calculate the spring position/velocity using
* an analytical approach.
*/
DynamicAnimation.MassState updateValues(double lastDisplacement, double lastVelocity,
long timeElapsed) {
init();
double deltaT = timeElapsed / 1000d; // unit: seconds
lastDisplacement -= mFinalPosition;
double displacement;
double currentVelocity;
if (mDampingRatio > 1) {
// Overdamped
double coeffA = lastDisplacement - (mGammaMinus * lastDisplacement - lastVelocity)
/ (mGammaMinus - mGammaPlus);
double coeffB = (mGammaMinus * lastDisplacement - lastVelocity)
/ (mGammaMinus - mGammaPlus);
displacement = coeffA * Math.pow(Math.E, mGammaMinus * deltaT)
+ coeffB * Math.pow(Math.E, mGammaPlus * deltaT);
currentVelocity = coeffA * mGammaMinus * Math.pow(Math.E, mGammaMinus * deltaT)
+ coeffB * mGammaPlus * Math.pow(Math.E, mGammaPlus * deltaT);
} else if (mDampingRatio == 1) {
// Critically damped
double coeffA = lastDisplacement;
double coeffB = lastVelocity + mNaturalFreq * lastDisplacement;
displacement = (coeffA + coeffB * deltaT) * Math.pow(Math.E, -mNaturalFreq * deltaT);
currentVelocity = (coeffA + coeffB * deltaT) * Math.pow(Math.E, -mNaturalFreq * deltaT)
* (-mNaturalFreq) + coeffB * Math.pow(Math.E, -mNaturalFreq * deltaT);
} else {
// Underdamped
double cosCoeff = lastDisplacement;
double sinCoeff = (1 / mDampedFreq) * (mDampingRatio * mNaturalFreq
* lastDisplacement + lastVelocity);
displacement = Math.pow(Math.E, -mDampingRatio * mNaturalFreq * deltaT)
* (cosCoeff * Math.cos(mDampedFreq * deltaT)
+ sinCoeff * Math.sin(mDampedFreq * deltaT));
currentVelocity = displacement * (-mNaturalFreq) * mDampingRatio
+ Math.pow(Math.E, -mDampingRatio * mNaturalFreq * deltaT)
* (-mDampedFreq * cosCoeff * Math.sin(mDampedFreq * deltaT)
+ mDampedFreq * sinCoeff * Math.cos(mDampedFreq * deltaT));
}
mMassState.mValue = (float) (displacement + mFinalPosition);
mMassState.mVelocity = (float) currentVelocity;
return mMassState;
}
/**
* This threshold defines how close the animation value needs to be before the animation can
* finish. This default value is based on the property being animated, e.g. animations on alpha,
* scale, translation or rotation would have different thresholds. This value should be small
* enough to avoid visual glitch of "jumping to the end". But it shouldn't be so small that
* animations take seconds to finish.
*
* @param threshold the difference between the animation value and final spring position that
* is allowed to end the animation when velocity is very low
*/
void setValueThreshold(double threshold) {
mValueThreshold = Math.abs(threshold);
mVelocityThreshold = mValueThreshold * VELOCITY_THRESHOLD_MULTIPLIER;
}
}